
A Scheduling Method for Hierarchical Testability
Using Results of Test Environment Generation

Jun Nishimaki

Graduate School of Industrial Technology
Nihon University

Chiba, JAPAN
cizy13016@g.nihon-u.ac.jp

Toshinori Hosokawa
College of Industrial Technology

Nihon University
Chiba, JAPAN

hosokawa.toshinori@nihon-u.ac.jp

Hideo Fujiwara
Faculty of Informatics

Osaka Gakuin University
Osaka, JAPAN

fujiwara@ogu.ac.jp

Abstract—A binding method for hierarchical testability has been
proposed to increase the number of testable functional units in
hierarchical testing using behavioral level circuits [8]. The
method aims to synthesize many functional units which can be
tested by test sequences generated by hierarchical test generation.
In this paper, we propose a scheduling method for hierarchical
testability to increase efficiency of the binding method for
hierarchical testability. Our proposed method assigns control
steps to each operation based on the results of test environment
generation to increase the effectiveness of the binding method.
Experimental results show that combination of our proposed
scheduling method and the binding method for hierarchical
testability improves fault coverage by 11% on average in
hierarchical testing.

Keywords—hierarchical test generation; test environments;
behavioral synthesis; scheduling; binding

I. INTRODUCTION
 Recent advances in semiconductor technologies have
resulted in exponential increases in VLSI circuit density and
complexity. As a result, test generation becomes more difficult.
In particular, test generation for sequential circuits is difficult
to achieve high fault efficiency in reasonable test generation
time. Full-scan design [1] and automatic test pattern generator
(ATPG) for combinational circuits are widely used to achieve
high fault efficiency for single stuck-at faults. Efficient test
generation methods have been proposed for combinational
circuits [2-6]. These test generation methods can achieve high
fault efficiency for scan designed sequential circuits. However,
scan design increases hardware overhead such as area, delay,
and power consumption. Moreover, long test application time
in scan testing is a problem from the view point of test cost.
To resolve these problems, efficient test generation methods
for sequential circuits are required.
 A hierarchical test generation method using behavioral level
circuits has been proposed as an efficient test generation

method for sequential circuits [7]. This test generation method
is efficient for circuits designed by behavioral synthesis, and
generates test sequences for each operation in a control data
flow graph (CDFG). In hierarchical testing using behavioral
level circuits, test sequences generated for an operation op can
test the functional unit that is assigned to op. In this paper, a
functional unit which has test sequences generated by
hierarchical test generation is referred to as a hierarchically
testable functional unit, and a functional unit which does not
have test sequences generated by hierarchical test generation
is referred to as a hierarchically untestable functional units. It
is important to increase the number of hierarchically testable
functional units to achieve high fault coverage in hierarchical
testing using behavioral level circuits.
 A binding method for hierarchical testability has been
proposed to increase the number of hierarchically testable
functional units [8]. This binding method aims to test
hierarchically untestable functional units by test sequences
generated for other functional units.
Binding in behavioral synthesis is a process which is applied

for scheduled CDFGs (SCDFG), and its solution space
depends on the results of scheduling. Hence, it can be
expected that the number of hierarchically testable functional
units increases by performing scheduling for hierarchical
testability.
In this paper, we propose a scheduling method for

hierarchical testability to increase the number of
hierarchically testable functional units in the binding method
for hierarchical testability. The remainder of this paper is
organized as follows. Section II describes a hierarchical test
generation using behavioral level circuits. Section III
describes the binding method for hierarchical testability
proposed in [8]. A scheduling method for hierarchical
testability is proposed in Section IV. Section V presents the

15th IEEE Workshop on RTL and High Level Testing (WRTLT'14), Nov. 2014.

experimental results. Finally, Section VI concludes this paper
and discusses for future work.

II. HIERARCHICAL TEST GENERATION
 This section describes a hierarchical test generation method
using behavioral level circuits. In hierarchical testing using
behavioral level circuits, test sets for each operation in a
CDFG are generated by gate-level combinational ATPG
beforehand. A hierarchical test generation accelerates time to
generate test sequences for each operation by using these test
sets.
 To apply test patterns to an operation op in a CDFG, it is
necessary to propagate any test pattern from primary inputs of
a CDFG to the inputs of op. Moreover, it is necessary to
propagate any test response from the output of op to primary
outputs of a CDFG. The path allowing any value to be
propagated from a primary input to the input of op is referred
to as a justification path, and the path allowing the any value
at the output of op to be propagated to a primary out is
referred to as a propagation path. A justification path and a
propagation path are referred to collectively as a test
environment.
 A hierarchical test generation method tries to generate test
environments for all operations in a CDFG. Test sequences
are generated for operations with a test environment by
substituting test patterns for test environments. On the other
hand, a hierarchical test generation method cannot generate
test sequences for operations without a test environment.
 In hierarchical testing using behavioral level circuits, test
sequences generated for an operation op can test the
functional unit that is assigned to op at functional unit binding.
Hence, a functional unit which is assigned to at least one
operation with a test environment is a hierarchically testable
functional unit. On the other hand, a functional unit which is
assigned to only operations without a test environment is a
hierarchically untestable functional unit. If the number of
operations with a test environment is less than the number of
required functional units, hierarchically untestable functional
units are synthesized. In [7], if hierarchically untestable
functional units are synthesized, test multiplexers are inserted
to an RTL data path to change hierarchically untestable
functional units into hierarchically testable functional units.
All functional units in an RTL data path become hierarchically
testable functional units by inserting test multiplexers.
However, the insertion of test multiplexers increases hardware
overhead such as area, delay, and power consumption.
Furthermore, additional primary inputs are required to control

test multiplexers during testing. A binding method for
hierarchical testability has been proposed to increase the
number of hierarchically testable functional units without the
insertion of test multiplexers [8].

III. BINDING FOR HIERARCHICAL TESTABILITY
 This section describes the binding method for hierarchical
testability proposed in [8]. This method aims to test
hierarchically untestable functional units by test sequences
generated for other functional units. Testing hierarchically
untestable functional units by test sequences generated for
other functional units is referred to as rescue.
 Fig. 1 shows an example of a SCDFG. In Fig. 1, white
colored operations are ones with a test environment. On the
other hand, gray colored operations are ones without a test
environment. In Fig. 1, multiplication *1 and additions +1
and +2 are operations with a test environment. Multiplications
*2 and *3 are operations without a test environment. M1 and
M2 represent multipliers assigned to multiplications, and A1
and A2 represent adders assigned to additions. Variable o is a
primary output variable. In Fig. 1, since M1, A1, and A2 are
assigned to operations with a test environment, these
functional units are hierarchically testable functional units. On
the other hand, since M2 is not assigned to a multiplication
with a test environment, M2 is a hierarchically untestable
functional unit. In Fig. 1, the number of multipliers required is
2. On the other hand, the number of multiplications with a test
environment is 1. Hence, one multiplier becomes a
hierarchically untestable multiplier.
 The binding method for hierarchical testability proposed in
[8] performs register binding to rescue hierarchically
untestable functional units synthesized due to lack of the
number of operations with a test environment.

Fig. 1 Example of SCDFG

Circuit Elements

Circuit Elements

t

t+1

c

h

m n

o

M1

M1 M2

a b

i j

*1

*2 *3

+2+1
A1 A2

d e f g

 Fig. 2 shows an example of binding for hierarchical
testability to rescue M2. In Fig. 2, R1, R2, and R3 represent
registers assigned to variables.
 Registers assigned to input variables of operations with a test
environment are referred to as test pattern registers. In Fig. 2,
R1 and R2 are assigned to a and b which are the input
variables of multiplication *1 with a test environment. Hence,
R1 and R2 are test pattern registers for M1. Test patterns for
M1 are loaded to R1 and R2 at control step t.
 The binding method for hierarchical testability proposed in
[8] focuses on idle states of functional units. An idle state of a
functional unit fu is explained as follows. If no operation that
fu is assigned is executed at control step t, fu is in idle state at
control step t. This binding method performs register binding
to propagate test patterns from test pattern registers to inputs
of hierarchically untestable functional units which are in idle
state.
 In Fig. 2, M2 is in idle state at control step t since no
multiplication where M2 is assigned is scheduled at control
step t. Hence, even if M2 performs the operation for
hierarchical testing at control step t, there is no effect on the
circuit function. If M2 can load data from R1 and R2 which
are the test pattern registers for M1 at control step t, test
patterns for M1 are propagated to the inputs of M2. In Fig. 2,
R1 and R2 are assigned to i and j, respectively. Therefore, R1
and R2 are connected to the inputs of M2. The method
proposed in [8] augments the RTL controller to supply control
signals which allow data from R1 and R2 to be propagated to
the inputs of M2 at control step t. As the result, test patterns
for M1 can be propagated to the inputs of M2 at control step t.
Furthermore, the binding method for hierarchical testability

proposed in [8] assigns primary output registers to output
variables of hierarchically untestable functional units to
observe test responses of hierarchically untestable functional
units.

Fig. 2 Binding for Hierarchical Testability

 In Fig. 2, R3 is a primary output register since R3 is assigned
to the primary output variable o. R3 is also assigned to n
which is the output variable of M2. Therefore, the output of
M2 is connected to R3. The method proposed in [8] augments
the RTL controller to supply control signals which allow data
from the output of M2 to be propagated to R3 at control step t.
As the result, test responses of M2 can be observed at o of
control step t+1. The propagation of test patterns for M1 to
the inputs of M2 is achieved, and observation for test
responses of M2 is also achieved. Hence, M2 becomes a
hierarchically testable functional unit.

IV. SCHEDULING FOR HIERARCHICAL TESTABILITY
 In this section, a scheduling method for hierarchical
testability to increase the number of rescued hierarchically
untestable functional units is proposed.
 Scheduling in behavioral synthesis is a process which
assigns control steps to each operation in CDFGs.
In general, scheduling algorithms in behavioral synthesis are

classified into latency-constrained scheduling algorithms and
resource-constrained scheduling algorithms.
 Latency-constrained scheduling algorithms aim to minimize
the number of functional units under a latency constraint. On
the other hand, resource-constrained scheduling algorithms
aim to minimize latency under constraints for the number of
functional units. This paper focuses on latency-constrained
scheduling algorithms.
 The force directed scheduling (FDS) method has been
proposed as an efficient latency-constrained scheduling
method [9]. In our proposed scheduling method for
hierarchical testability, first, FDS is performed to obtain the
number of functional units and latency in FDS. The number of
functional units and latency obtained by FDS are used as
constraints in our proposed scheduling method. In this paper,
we propose two scheduling strategies to increase the number
of rescued hierarchically untestable functional units in the
binding method proposed in [8].

A. Strategy for Idle States of Functional Units
 We propose a scheduling strategy which takes idle states of
functional units into account as the first strategy. As described
in the previous section, the binding method proposed in [8]
rescues hierarchically untestable functional units by using idle
states of hierarchically untestable functional units. To rescue a
hierarchically untestable functional unit fu by using an
operation op with a test environment, fu must be in idle state
at control step t which is assigned to op. The proposed

Circuit Elements

Circuit Elements

t

t+1

c

h

m n

o

M1

M1 M2

R1 R2

R1 R2

R3

a b

i j

R3

*1

*2 *3

+2+1
A1 A2

d e f g

scheduling method aims to increase the number of rescued
hierarchically untestable functional units. Thus, it is important
to increase the number of hierarchically untestable functional
units which are in idle state at control steps assigned to
operations with a test environment.
 Fig. 3 shows an example of scheduling for hierarchical
testability. In Fig. 3, a white colored operation is one with a
test environment. On the other hand, gray colored operations
are ones without a test environment. Only *8 is an operation
with a test environment. Control steps are uniquely assigned
to all operations except for *8 due to the latency constraint.
The numbers of multipliers and adders obtained by FDS are 3
and 1, respectively. If control step t is assigned to *8, the
number of required multipliers becomes 4 and violates a
constraint for the number of multipliers obtained by FDS.
Therefore, our proposed scheduling method cannot assign
control step t to *8. Control steps which can be assigned to *8
are t+1, t+2, and t+3.
 If control step t+1 is assigned to *8, the number of the
multiplications where control step t+1 is assigned becomes 3.
Hence, the number of the multipliers that execute
multiplication at control step t+1 becomes 3. In other words,
the number of the multipliers that are in idle state at control
step t+1 is 0. Hence, the binding method proposed in [8]
cannot rescue the hierarchically untestable multipliers. On the
other hand, in Fig. 3, our proposed scheduling method assigns
control step t+2 to *8. As the result, one multiplier is in idle
state at control step t+2. Therefore, there is a possibility that
one multiplier is rescued by the binding method proposed in
[8].
 As mentioned above, our first scheduling strategy aims to
increase the number of hierarchically untestable functional
units which are in idle state at control steps assigned to
operations with a test environment.

B. Strategy for Test Pattern Registers
 We propose a scheduling strategy which takes test pattern
registers into account as the second strategy. As described in
the previous section, the binding method proposed in [8]
assigns test pattern registers to the inputs of hierarchically
untestable functional units to rescue hierarchically untestable
functional units. The proposed scheduling method aims to
increase the number of rescued hierarchically untestable
functional units. Thus, it is important to increase the number
of variables where test pattern registers can be assigned. To
achieve this goal, our second scheduling strategy aims to
reduce the lifetime length of input variables for operations

with a test environment.
 In Fig. 3, e and f are the input variables of *8 with a test
environment. Hence, the test pattern registers for the
multiplier are assigned to e and f. If control step t+3 is
assigned to *8, the lifetimes of e and f overlap with those of
the input variables of all multiplications without a test
environment. Therefore, the test pattern registers for the
multiplier cannot be assigned to the input variables of
hierarchically untestable multipliers. Hence, the binding
method proposed in [8] cannot rescue hierarchically
untestable multipliers. On the other hand, in Fig. 3, our
proposed scheduling method assigns control step t+2 to *8.
As the result, the lifetimes of e and f are reduced and do not
overlap with those of o and p. Therefore, the test pattern
registers for multiplier can be assigned to o and p. Hence,
there is a possibility that one multiplier is rescued by the
binding method proposed in [8].
As mentioned above, our second scheduling strategy aims to

reduce lifetimes of input variables of operations with a test
environment.

V. EXPERIMENTAL RESULTS
 Experiments were performed to evaluate the effectiveness of
our proposed method. In the experiments, the hierarchical test
generation using behavioral level circuits was performed for
three circuits. To clarify the effectiveness of our proposed
method, we compare two cases. In one case, the circuits are
synthesized by using FDS and the binding method proposed
in [8], and in the other case, the circuits are synthesized by
using our proposed scheduling method and the binding
method proposed in [8]. Design CompilerTM was used for
logic synthesis. All of faults in the data paths and the
controllers were evaluated in the experiments.

Fig. 3 Scheduling for Hierarchical Testability

t

t+1

t+2

*1 *2 *3

*4 *5

*6

+1

t+3

+2

+3

*7

*8

a 3 5 b c 5 3 d e f

g h i j

k m n

o p

q r

Table I shows the information of behavioral description for
three circuits. In Table I, the “Circuit” column indicates the
name of circuit. ARF is the auto regressive filter (ARF) from
[10]. We designed two circuits named FIR+MPEG and
DWT+MPEG to obtain large CDFGs. FIR+MPEG is the
circuit that adds results of finite impulse response filter (FIR)
[10] and results of MPEG motion vector (MPEG) [10].
DWT+MPEG is the circuit that adds results of discrete wave
transformation (DWT) [10] and results of MPEG [10].
In Table I, the “#ADD” column and the “#MUL” column list

the numbers of additions and multiplications, respectively.
The “ADD with TE” column and the “MUL with TE” column
list the numbers of additions with a test environment and
multiplications with a test environment, respectively.
Fig. 4 and Fig. 5 show the results of FDS for FIR+MPEG

and our proposed scheduling for FIR+MPEG, respectively. In
Fig. 4 and Fig. 5, white colored operations are ones with a test
environment. On the other hand, gray colored operations are
ones without a test environment. Unfortunately, the
scheduling results of ARF and DWT+MPEG are omitted due
to page limitation.
Table II shows the results of circuit synthesis and the

hierarchical test generation. In Table II, the “Circuit” column
indicates the name of circuit. The “Latency” column lists the
latency of circuit. The “#FU” column lists the number of
functional units. The “FDS” column lists the results of FDS.
The “Proposed” column lists the results of our proposed
scheduling method. The “#Testable FU” column lists the
number of hierarchically testable functional units. The “FC”
column lists the fault coverage in the hierarchical test
generation. The fault coverage was calculated by sequential
fault simulator in TetraMAXTM by using test sequences
generated by the hierarchical test generation. The “#REG”
column lists the number of registers in the data path. The
“#MUX” column lists the total number of inputs of the
multiplexer. Finally, the “Area” column lists the circuit area
after logic synthesis. In the experiments, the bit width of data
path was set to 32.
 Our proposed scheduling method was performed under the
latency constraint and the constraints for the number of
functional units obtained by FDS. Hence, the latency and the
number of functional units were the same as FDS.
 In FDS, hierarchically untestable functional units were
synthesized in all circuits. On the other hand, in our proposed
scheduling method, all functional units were synthesized as
hierarchically testable functional units for all circuits.
Therefore, our proposed scheduling method achieved higher

fault coverage for all circuits compared to FDS. The fault
coverage was improved by approximately 11% on average.
Since our proposed method made all functional units
hierarchically testable, all of faults in functional units were
detected. Undetected faults existed in controllers and
multiplexers. On the other hand, in FDS, some functional
units were hierarchically untestable. Therefore, many
undetected faults existed in functional units.
The increase in the circuit area was suppressed to

approximately 2% on average. Therefore, the combination of
our proposed scheduling method and the binding method
proposed in [8] is an effective test design method for circuits
designed by behavioral synthesis.

VI. CONCLUSION
 This paper proposed a scheduling method for hierarchical
testability to increase the number of hierarchically testable
functional units in the binding method proposed in [8]. In the
experiments, by performing our proposed scheduling method,
the fault coverage was improved approximately 11% on
average compared to FDS. Future work includes evaluating
the proposed method for practical circuits.

REFERENCES
[1] H. Fujiwara, Logic Testing and Design for Testability, The MIT Press,

1985.
[2] M. Schulz, E. Trischler, and T. Serfert, "SOCRATES: A Highly

Efficient Automatic Test Pattern Generation System," IEEE Trans. on
Computer-Aided Design, Vol. 7, No. 1, pp. 126-137, Jan. 1988.

[3] W. Kunz, and D. Pradhan, "Recursive Learning: An Attractive
Alternative to the Decision Tree for Test Generation in Digital
Circuits," Proc. IEEE International Test Conference on Discover the
New World of Test and Design, pp. 816-825, 1992.

[4] M. Henftling, H. C. Wittmann, and K. J. Antreich, "A
Single-Path-Oriented Fault Effect Propagation in Digital Circuits
Considering Multiple-Path Sensitization," Proc. 1995 IEEE/ACM
International Conference on Computer-Aided Design, pp. 304-309,
1995.

[5] C. Wang, S. Reddy, I. Pomeranz, X. Lin, and J. Rajski, "Conflict driven
techniques for improving deterministic test pattern generation," Proc.
IEEE International Conference on Computer-Aided Design, pp. 87-93,
2002.

[6] E. Gizdarski, and H. Fujiwara, "SPIRIT: A Highly Robust
Combinational Test Generation Algorithm," IEEE trans. on Computer
Aided Design for Integrated Circuits and Systems, Vol. 21, No. 12, pp.
1446-1558, Dec. 2002.

[7] S. Bhatia, and N. K. Jha, "Integration of Hierarchical Test Generation
with Behavioral Synthesis of Controller and Data Path Circuits," IEEE
trans. on Very Large Scale Integration Systems, Vol. 6, No. 4, Dec.
1998.

[8] J. Nishimaki, T. Hosokawa, and H. Fujiwara, "Functional Unit and
Register Binding Methods for Hierarchical Testability," 14th IEEE
Workshop on RTL and High Level Testing (WRTLT'13), Nov. 2013.

[9] P. G. Paulin and J. P. Khight, "Force-directed scheduling for the
behavioral synthesis of ASIC's," IEEE Trans. on Computer-Aided
Design, Vol.8, No.6, pp661-679, Jun 1989.

[10] S. P. Mohanty, N. Ranganathan, E. Kougianos, and P. Patra,
Low-Power High-Level Synthesis for Nanoscale CMOS Circuits,
Springer, 2008.

Table I. Circuit Information

Table II. Results of Circuit Synthesis and Hierarchical Test Generation

Fig. 4 Result of FDS for FIR+MPEG

Fig. 5 Result of Our Proposed Scheduling for FIR+MPEG

Circuit #ADD #ADD with TE #MUL #MUL with TE
ARF 12 1 16 2

FIR+MPEG 32 2 22 1
DWT+MPEG 26 1 22 2

ARF 10 6 4 84.37 10 1,851 35,491 6 99.96 10 2,082 35,900
FIR+MPEG 12 7 4 91.78 26 3,800 37,859 7 99.96 27 3,832 38,497

DWT+MPEG 13 7 5 91.47 22 3,130 35,617 7 99.96 24 3,384 36,816

Circuit Latency #FU
FDS Proposed

#Testable
FU

FC(%) #REG #MUX Area
#Testable

FU
FC(%) #REG #MUX Area

＊

＋ ＋

＊

＋

＋

＋

＋

＋

＋

＋

＋

＊

＊

＋

＋

＊

＋

＊

＊

＋

＊

＋

＊

＋

＊

＋

＊

＊

＋

＋

＊

＋

＊

＊ ＊

＋

＋

＋

＋ ＋

＊

＊

＋

＋ ＊

＋

＊

＊

＊

＋

＋

＋

＋

＊

＋ ＋

＊

＋

＋

＋

＋

＋

＋

＋

＋

＊

＊

＋

＋

＊

＋

＊

＊

＋

＊

＋

＊

＋

＊

＋

＊

＊

＋

＋

＊

＋

＊

＊ ＊

＋

＋

＋

＋ ＋

＊

＊

＋

＋ ＊

＋

＊

＊

＊

＋

＋

＋

＋

