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Abstract—A binding method for hierarchical testability has been 
proposed to increase the number of testable functional units in 
hierarchical testing using behavioral level circuits [8]. The 
method aims to synthesize many functional units which can be 
tested by test sequences generated by hierarchical test generation. 
In this paper, we propose a scheduling method for hierarchical 
testability to increase efficiency of the binding method for 
hierarchical testability. Our proposed method assigns control 
steps to each operation based on the results of test environment 
generation to increase the effectiveness of the binding method. 
Experimental results show that combination of our proposed 
scheduling method and the binding method for hierarchical 
testability improves fault coverage by 11% on average in 
hierarchical testing. 
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I.  INTRODUCTION 
 Recent advances in semiconductor technologies have 
resulted in exponential increases in VLSI circuit density and 
complexity. As a result, test generation becomes more difficult. 
In particular, test generation for sequential circuits is difficult 
to achieve high fault efficiency in reasonable test generation 
time. Full-scan design [1] and automatic test pattern generator 
(ATPG) for combinational circuits are widely used to achieve 
high fault efficiency for single stuck-at faults. Efficient test 
generation methods have been proposed for combinational 
circuits [2-6]. These test generation methods can achieve high 
fault efficiency for scan designed sequential circuits. However, 
scan design increases hardware overhead such as area, delay, 
and power consumption. Moreover, long test application time 
in scan testing is a problem from the view point of test cost. 
To resolve these problems, efficient test generation methods 
for sequential circuits are required. 
 A hierarchical test generation method using behavioral level 
circuits has been proposed as an efficient test generation 

method for sequential circuits [7]. This test generation method 
is efficient for circuits designed by behavioral synthesis, and 
generates test sequences for each operation in a control data 
flow graph (CDFG). In hierarchical testing using behavioral 
level circuits, test sequences generated for an operation op can 
test the functional unit that is assigned to op. In this paper, a 
functional unit which has test sequences generated by 
hierarchical test generation is referred to as a hierarchically 
testable functional unit, and a functional unit which does not 
have test sequences generated by hierarchical test generation 
is referred to as a hierarchically untestable functional units. It 
is important to increase the number of hierarchically testable 
functional units to achieve high fault coverage in hierarchical 
testing using behavioral level circuits. 
 A binding method for hierarchical testability has been 
proposed to increase the number of hierarchically testable 
functional units [8]. This binding method aims to test 
hierarchically untestable functional units by test sequences 
generated for other functional units. 
Binding in behavioral synthesis is a process which is applied 

for scheduled CDFGs (SCDFG), and its solution space 
depends on the results of scheduling. Hence, it can be 
expected that the number of hierarchically testable functional 
units increases by performing scheduling for hierarchical 
testability. 
In this paper, we propose a scheduling method for 

hierarchical testability to increase the number of 
hierarchically testable functional units in the binding method 
for hierarchical testability. The remainder of this paper is 
organized as follows. Section II describes a hierarchical test 
generation using behavioral level circuits. Section III 
describes the binding method for hierarchical testability 
proposed in [8]. A scheduling method for hierarchical 
testability is proposed in Section IV. Section V presents the 

15th IEEE Workshop on RTL and High Level Testing (WRTLT'14), Nov. 2014. 



experimental results. Finally, Section VI concludes this paper 
and discusses for future work. 
 

II.  HIERARCHICAL TEST GENERATION 
 This section describes a hierarchical test generation method 
using behavioral level circuits. In hierarchical testing using 
behavioral level circuits, test sets for each operation in a 
CDFG are generated by gate-level combinational ATPG 
beforehand. A hierarchical test generation accelerates time to 
generate test sequences for each operation by using these test 
sets. 
 To apply test patterns to an operation op in a CDFG, it is 
necessary to propagate any test pattern from primary inputs of 
a CDFG to the inputs of op. Moreover, it is necessary to 
propagate any test response from the output of op to primary 
outputs of a CDFG. The path allowing any value to be 
propagated from a primary input to the input of op is referred 
to as a justification path, and the path allowing the any value 
at the output of op to be propagated to a primary out is 
referred to as a propagation path. A justification path and a 
propagation path are referred to collectively as a test 
environment. 
 A hierarchical test generation method tries to generate test 
environments for all operations in a CDFG. Test sequences 
are generated for operations with a test environment by 
substituting test patterns for test environments. On the other 
hand, a hierarchical test generation method cannot generate 
test sequences for operations without a test environment. 
 In hierarchical testing using behavioral level circuits, test 
sequences generated for an operation op can test the 
functional unit that is assigned to op at functional unit binding. 
Hence, a functional unit which is assigned to at least one 
operation with a test environment is a hierarchically testable 
functional unit. On the other hand, a functional unit which is 
assigned to only operations without a test environment is a 
hierarchically untestable functional unit. If the number of 
operations with a test environment is less than the number of 
required functional units, hierarchically untestable functional 
units are synthesized. In [7], if hierarchically untestable 
functional units are synthesized, test multiplexers are inserted 
to an RTL data path to change hierarchically untestable 
functional units into hierarchically testable functional units. 
All functional units in an RTL data path become hierarchically 
testable functional units by inserting test multiplexers. 
However, the insertion of test multiplexers increases hardware 
overhead such as area, delay, and power consumption. 
Furthermore, additional primary inputs are required to control 

test multiplexers during testing. A binding method for 
hierarchical testability has been proposed to increase the 
number of hierarchically testable functional units without the 
insertion of test multiplexers [8]. 
 

III.  BINDING FOR HIERARCHICAL TESTABILITY 
 This section describes the binding method for hierarchical 
testability proposed in [8]. This method aims to test 
hierarchically untestable functional units by test sequences 
generated for other functional units. Testing hierarchically 
untestable functional units by test sequences generated for 
other functional units is referred to as rescue. 
 Fig. 1 shows an example of a SCDFG. In Fig. 1, white 
colored operations are ones with a test environment. On the 
other hand, gray colored operations are ones without a test 
environment. In Fig. 1, multiplication *1 and additions +1 
and +2 are operations with a test environment. Multiplications 
*2 and *3 are operations without a test environment. M1 and 
M2 represent multipliers assigned to multiplications, and A1 
and A2 represent adders assigned to additions. Variable o is a 
primary output variable. In Fig. 1, since M1, A1, and A2 are 
assigned to operations with a test environment, these 
functional units are hierarchically testable functional units. On 
the other hand, since M2 is not assigned to a multiplication 
with a test environment, M2 is a hierarchically untestable 
functional unit. In Fig. 1, the number of multipliers required is 
2. On the other hand, the number of multiplications with a test 
environment is 1. Hence, one multiplier becomes a 
hierarchically untestable multiplier. 
 The binding method for hierarchical testability proposed in 
[8] performs register binding to rescue hierarchically 
untestable functional units synthesized due to lack of the 
number of operations with a test environment. 
 

 

Fig. 1 Example of SCDFG 
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 Fig. 2 shows an example of binding for hierarchical 
testability to rescue M2. In Fig. 2, R1, R2, and R3 represent 
registers assigned to variables. 
 Registers assigned to input variables of operations with a test 
environment are referred to as test pattern registers. In Fig. 2, 
R1 and R2 are assigned to a and b which are the input 
variables of multiplication *1 with a test environment. Hence, 
R1 and R2 are test pattern registers for M1. Test patterns for 
M1 are loaded to R1 and R2 at control step t. 
 The binding method for hierarchical testability proposed in 
[8] focuses on idle states of functional units. An idle state of a 
functional unit fu is explained as follows. If no operation that 
fu is assigned is executed at control step t, fu is in idle state at 
control step t. This binding method performs register binding 
to propagate test patterns from test pattern registers to inputs 
of hierarchically untestable functional units which are in idle 
state. 
 In Fig. 2, M2 is in idle state at control step t since no 
multiplication where M2 is assigned is scheduled at control 
step t. Hence, even if M2 performs the operation for 
hierarchical testing at control step t, there is no effect on the 
circuit function. If M2 can load data from R1 and R2 which 
are the test pattern registers for M1 at control step t, test 
patterns for M1 are propagated to the inputs of M2. In Fig. 2, 
R1 and R2 are assigned to i and j, respectively. Therefore, R1 
and R2 are connected to the inputs of M2. The method 
proposed in [8] augments the RTL controller to supply control 
signals which allow data from R1 and R2 to be propagated to 
the inputs of M2 at control step t. As the result, test patterns 
for M1 can be propagated to the inputs of M2 at control step t. 
Furthermore, the binding method for hierarchical testability 

proposed in [8] assigns primary output registers to output 
variables of hierarchically untestable functional units to 
observe test responses of hierarchically untestable functional 
units. 

 

Fig. 2 Binding for Hierarchical Testability 

 In Fig. 2, R3 is a primary output register since R3 is assigned 
to the primary output variable o. R3 is also assigned to n 
which is the output variable of M2. Therefore, the output of 
M2 is connected to R3. The method proposed in [8] augments 
the RTL controller to supply control signals which allow data 
from the output of M2 to be propagated to R3 at control step t. 
As the result, test responses of M2 can be observed at o of 
control step t+1. The propagation of test patterns for M1 to 
the inputs of M2 is achieved, and observation for test 
responses of M2 is also achieved. Hence, M2 becomes a 
hierarchically testable functional unit. 
 
IV.  SCHEDULING FOR HIERARCHICAL TESTABILITY 
 In this section, a scheduling method for hierarchical 
testability to increase the number of rescued hierarchically 
untestable functional units is proposed. 
 Scheduling in behavioral synthesis is a process which 
assigns control steps to each operation in CDFGs. 
In general, scheduling algorithms in behavioral synthesis are 

classified into latency-constrained scheduling algorithms and 
resource-constrained scheduling algorithms. 
 Latency-constrained scheduling algorithms aim to minimize 
the number of functional units under a latency constraint. On 
the other hand, resource-constrained scheduling algorithms 
aim to minimize latency under constraints for the number of 
functional units. This paper focuses on latency-constrained 
scheduling algorithms. 
 The force directed scheduling (FDS) method has been 
proposed as an efficient latency-constrained scheduling 
method [9]. In our proposed scheduling method for 
hierarchical testability, first, FDS is performed to obtain the 
number of functional units and latency in FDS. The number of 
functional units and latency obtained by FDS are used as 
constraints in our proposed scheduling method. In this paper, 
we propose two scheduling strategies to increase the number 
of rescued hierarchically untestable functional units in the 
binding method proposed in [8]. 
 
A.  Strategy for Idle States of Functional Units 
 We propose a scheduling strategy which takes idle states of 
functional units into account as the first strategy. As described 
in the previous section, the binding method proposed in [8] 
rescues hierarchically untestable functional units by using idle 
states of hierarchically untestable functional units. To rescue a 
hierarchically untestable functional unit fu by using an 
operation op with a test environment, fu must be in idle state 
at control step t which is assigned to op. The proposed 

Circuit Elements

Circuit Elements

t

t+1

c

h

m n

o

M1

M1 M2

R1 R2

R1 R2

R3

a b

i j

R3

*1

*2 *3

+2+1
A1 A2

d e f g



scheduling method aims to increase the number of rescued 
hierarchically untestable functional units. Thus, it is important 
to increase the number of hierarchically untestable functional 
units which are in idle state at control steps assigned to 
operations with a test environment. 
 Fig. 3 shows an example of scheduling for hierarchical 
testability. In Fig. 3, a white colored operation is one with a 
test environment. On the other hand, gray colored operations 
are ones without a test environment. Only *8 is an operation 
with a test environment. Control steps are uniquely assigned 
to all operations except for *8 due to the latency constraint. 
The numbers of multipliers and adders obtained by FDS are 3 
and 1, respectively. If control step t is assigned to *8, the 
number of required multipliers becomes 4 and violates a 
constraint for the number of multipliers obtained by FDS. 
Therefore, our proposed scheduling method cannot assign 
control step t to *8. Control steps which can be assigned to *8 
are t+1, t+2, and t+3. 
 If control step t+1 is assigned to *8, the number of the 
multiplications where control step t+1 is assigned becomes 3. 
Hence, the number of the multipliers that execute 
multiplication at control step t+1 becomes 3. In other words, 
the number of the multipliers that are in idle state at control 
step t+1 is 0. Hence, the binding method proposed in [8] 
cannot rescue the hierarchically untestable multipliers. On the 
other hand, in Fig. 3, our proposed scheduling method assigns 
control step t+2 to *8. As the result, one multiplier is in idle 
state at control step t+2. Therefore, there is a possibility that 
one multiplier is rescued by the binding method proposed in 
[8]. 
 As mentioned above, our first scheduling strategy aims to 
increase the number of hierarchically untestable functional 
units which are in idle state at control steps assigned to 
operations with a test environment. 
 
B.  Strategy for Test Pattern Registers 
 We propose a scheduling strategy which takes test pattern 
registers into account as the second strategy. As described in 
the previous section, the binding method proposed in [8] 
assigns test pattern registers to the inputs of hierarchically 
untestable functional units to rescue hierarchically untestable 
functional units. The proposed scheduling method aims to 
increase the number of rescued hierarchically untestable 
functional units. Thus, it is important to increase the number 
of variables where test pattern registers can be assigned. To 
achieve this goal, our second scheduling strategy aims to 
reduce the lifetime length of input variables for operations 

with a test environment. 
 In Fig. 3, e and f are the input variables of *8 with a test 
environment. Hence, the test pattern registers for the 
multiplier are assigned to e and f. If control step t+3 is 
assigned to *8, the lifetimes of e and f overlap with those of 
the input variables of all multiplications without a test 
environment. Therefore, the test pattern registers for the 
multiplier cannot be assigned to the input variables of 
hierarchically untestable multipliers. Hence, the binding 
method proposed in [8] cannot rescue hierarchically 
untestable multipliers. On the other hand, in Fig. 3, our 
proposed scheduling method assigns control step t+2 to *8. 
As the result, the lifetimes of e and f are reduced and do not 
overlap with those of o and p. Therefore, the test pattern 
registers for multiplier can be assigned to o and p. Hence, 
there is a possibility that one multiplier is rescued by the 
binding method proposed in [8]. 
As mentioned above, our second scheduling strategy aims to 

reduce lifetimes of input variables of operations with a test 
environment. 
 

V.  EXPERIMENTAL RESULTS 
 Experiments were performed to evaluate the effectiveness of 
our proposed method. In the experiments, the hierarchical test 
generation using behavioral level circuits was performed for 
three circuits. To clarify the effectiveness of our proposed 
method, we compare two cases. In one case, the circuits are 
synthesized by using FDS and the binding method proposed 
in [8], and in the other case, the circuits are synthesized by 
using our proposed scheduling method and the binding 
method proposed in [8]. Design CompilerTM was used for 
logic synthesis. All of faults in the data paths and the 
controllers were evaluated in the experiments. 

 

Fig. 3 Scheduling for Hierarchical Testability 
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Table I shows the information of behavioral description for 
three circuits. In Table I, the “Circuit” column indicates the 
name of circuit. ARF is the auto regressive filter (ARF) from 
[10]. We designed two circuits named FIR+MPEG and 
DWT+MPEG to obtain large CDFGs. FIR+MPEG is the 
circuit that adds results of finite impulse response filter (FIR) 
[10] and results of MPEG motion vector (MPEG) [10]. 
DWT+MPEG is the circuit that adds results of discrete wave 
transformation (DWT) [10] and results of MPEG [10]. 
In Table I, the “#ADD” column and the “#MUL” column list 

the numbers of additions and multiplications, respectively. 
The “ADD with TE” column and the “MUL with TE” column 
list the numbers of additions with a test environment and 
multiplications with a test environment, respectively. 
Fig. 4 and Fig. 5 show the results of FDS for FIR+MPEG 

and our proposed scheduling for FIR+MPEG, respectively. In 
Fig. 4 and Fig. 5, white colored operations are ones with a test 
environment. On the other hand, gray colored operations are 
ones without a test environment. Unfortunately, the 
scheduling results of ARF and DWT+MPEG are omitted due 
to page limitation. 
Table II shows the results of circuit synthesis and the 

hierarchical test generation. In Table II, the “Circuit” column 
indicates the name of circuit. The “Latency” column lists the 
latency of circuit. The “#FU” column lists the number of 
functional units. The “FDS” column lists the results of FDS. 
The “Proposed” column lists the results of our proposed 
scheduling method. The “#Testable FU” column lists the 
number of hierarchically testable functional units. The “FC” 
column lists the fault coverage in the hierarchical test 
generation. The fault coverage was calculated by sequential 
fault simulator in TetraMAXTM by using test sequences 
generated by the hierarchical test generation. The “#REG” 
column lists the number of registers in the data path. The 
“#MUX” column lists the total number of inputs of the 
multiplexer. Finally, the “Area” column lists the circuit area 
after logic synthesis. In the experiments, the bit width of data 
path was set to 32. 
 Our proposed scheduling method was performed under the 
latency constraint and the constraints for the number of 
functional units obtained by FDS. Hence, the latency and the 
number of functional units were the same as FDS. 
 In FDS, hierarchically untestable functional units were 
synthesized in all circuits. On the other hand, in our proposed 
scheduling method, all functional units were synthesized as 
hierarchically testable functional units for all circuits. 
Therefore, our proposed scheduling method achieved higher 

fault coverage for all circuits compared to FDS. The fault 
coverage was improved by approximately 11% on average. 
Since our proposed method made all functional units 
hierarchically testable, all of faults in functional units were 
detected. Undetected faults existed in controllers and 
multiplexers. On the other hand, in FDS, some functional 
units were hierarchically untestable. Therefore, many 
undetected faults existed in functional units. 
The increase in the circuit area was suppressed to 

approximately 2% on average. Therefore, the combination of 
our proposed scheduling method and the binding method 
proposed in [8] is an effective test design method for circuits 
designed by behavioral synthesis. 
 

VI.  CONCLUSION 
 This paper proposed a scheduling method for hierarchical 
testability to increase the number of hierarchically testable 
functional units in the binding method proposed in [8]. In the 
experiments, by performing our proposed scheduling method, 
the fault coverage was improved approximately 11% on 
average compared to FDS. Future work includes evaluating 
the proposed method for practical circuits. 
 

REFERENCES 
[1] H. Fujiwara, Logic Testing and Design for Testability, The MIT Press, 

1985. 
[2] M. Schulz, E. Trischler, and T. Serfert, "SOCRATES: A Highly 

Efficient Automatic Test Pattern Generation System," IEEE Trans. on 
Computer-Aided Design, Vol. 7, No. 1, pp. 126-137, Jan. 1988. 

[3] W. Kunz, and D. Pradhan, "Recursive Learning: An Attractive 
Alternative to the Decision Tree for Test Generation in Digital 
Circuits," Proc. IEEE International Test Conference on Discover the 
New World of Test and Design, pp. 816-825, 1992. 

[4] M. Henftling, H. C. Wittmann, and K. J. Antreich, "A 
Single-Path-Oriented Fault Effect Propagation in Digital Circuits 
Considering Multiple-Path Sensitization," Proc. 1995 IEEE/ACM 
International Conference on Computer-Aided Design, pp. 304-309, 
1995. 

[5] C. Wang, S. Reddy, I. Pomeranz, X. Lin, and J. Rajski, "Conflict driven 
techniques for improving deterministic test pattern generation," Proc. 
IEEE International Conference on Computer-Aided Design, pp. 87-93, 
2002. 

[6] E. Gizdarski, and H. Fujiwara, "SPIRIT: A Highly Robust 
Combinational Test Generation Algorithm," IEEE trans. on Computer 
Aided Design for Integrated Circuits and Systems, Vol. 21, No. 12, pp. 
1446-1558, Dec. 2002. 

[7] S. Bhatia, and N. K. Jha, "Integration of Hierarchical Test Generation 
with Behavioral Synthesis of Controller and Data Path Circuits," IEEE 
trans. on Very Large Scale Integration Systems, Vol. 6, No. 4, Dec. 
1998. 

[8] J. Nishimaki, T. Hosokawa, and H. Fujiwara, "Functional Unit and 
Register Binding Methods for Hierarchical Testability," 14th IEEE 
Workshop on RTL and High Level Testing (WRTLT'13), Nov. 2013. 

[9] P. G. Paulin and J. P. Khight, "Force-directed scheduling for the 
behavioral synthesis of ASIC's," IEEE Trans. on Computer-Aided 
Design, Vol.8, No.6, pp661-679, Jun 1989. 

[10] S. P. Mohanty, N. Ranganathan, E. Kougianos, and P. Patra, 
Low-Power High-Level Synthesis for Nanoscale CMOS Circuits, 
Springer, 2008. 

  



Table I.  Circuit Information 

 
 

Table II.  Results of Circuit Synthesis and Hierarchical Test Generation 

 
 

 
Fig. 4 Result of FDS for FIR+MPEG 

 

 
Fig. 5 Result of Our Proposed Scheduling for FIR+MPEG 

Circuit #ADD #ADD with TE #MUL #MUL with TE
ARF 12 1 16 2

FIR+MPEG 32 2 22 1
DWT+MPEG 26 1 22 2

ARF 10 6 4 84.37 10 1,851 35,491 6 99.96 10 2,082 35,900
FIR+MPEG 12 7 4 91.78 26 3,800 37,859 7 99.96 27 3,832 38,497

DWT+MPEG 13 7 5 91.47 22 3,130 35,617 7 99.96 24 3,384 36,816
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