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Abstract: A field-programmable gate array (FPGA) can
implement arbitrary logic circuits in the field. In this paper,
we consider universal t e s t such that when applied to an
unprogrammed FPGA, it ensures that all the corresponding
programmed logic circuits on the FPGA are fault-free. We
focus on testing for look-up tables in FPGAs, and present
two types of programming schemes; sequential loading
and random access loading. Then we show test
procedures for the FPGAs with these programming schemes
and their test complexities. In order to make the test
complexity for FPGAs independent of the array size of the
FPGAs, we propose a programming scheme called block-
sl iced loading, which makes FPGAs C-testable.

1. Introduction
Field-programmable gate arrays (FPGAs) are digital

devices that can implement logic circuits required by users in
the field [1,2]. Because of their short turnaround time, low
manufacturing cost and programmability in the field, there
has been an increasing interest in system prototyping and
system reconfiguration using FPGAs. There are many
different architectures of FPGAs driven by different
programming technologies. One important class is the
SRAM-based FPGAs (e.g. Xilinx [1-3]), also called the
look-up table FPGAs, which can be reprogrammed any
number of times. A novel feature of these FPGAs is that
each basic block can implement any logic function that
satisfies the I/O constraints of the basic block. The
interconnections between the basic blocks consist of metal
segments joined by program controlled pass transistors. In
this paper, we shall consider look-up table FPGAs.

Testing for FPGAs, as well as conventional digital ICs,
is one of the important problems. Several works on testing
FPGAs have been reported [4,5]. Hermann and Hoffmann
[4] presented fault models and test generation for one-time
programmable FPGAs (e.g. Actel's [1,2]). Durate and
Nicolaidis [5] reported a test methodology for cellular-based
FPGAs (e.g. Algotronix's [1,2]). For reprogrammable
FPGAs, two types of testing can be considered; one is
testing for unprogrammed FPGAs, and the other is testing
for programmed FPGAs. An unprogrammed FPGA can
realize many different programmed FPGAs by loading
different programs. Therefore, to test the unprogrammed
FPGA, we might have to test all the programmed FPGAs
obtained from the unprogrammed FPGA. However, it is too
time-consuming to test such a large number of programmed
FPGAs. In order to resolve this intractable problem, we

have to consider alternative approaches to testing for
unprogrammed FPGAs.

In this paper, we shall introduce universal test such that
when applied to a given unprogrammed FPGA, it ensures
that all programmed FPGAs corresponding to the
unprogrammed FPGA are fault-free. Here, we focus on
testing for look-up tables in FPGAs. Testing for other
components in an FPGA can be considered in the same way
as testing for look-up tables. Then we shall present test
complexity of FPGAs, where test complexity of an FPGA
refers to the time required to test the FPGA. We shall
present two types of programming schemes; sequential
loading and random access loading, and show that the test
complexities of FPGAs with these programming schemes
are O(Nnlog n) and O(Nn), respectively, where N is the
array size of FPGAs or the number of configurable logic
blocks, and n is the size of look-up tables or the number of
configuration memory cells for each look-up table. The test
complexities of these FPGAs depend on the array size N,
and thus they might not be C-testable [6]. If we can make
FPGAs C-testable, we can considerably reduce the test
complexity. Therefore, we shall propose a new programming
scheme, called block-sliced loading, which makes FPGAs C-
testable. The test complexities of the proposed block-sliced
FPGAs are O(nlog2n + log3n) and O(n + log n) for
sequential loading and random access loading, respectively.

2. Architecture of FPGAs
The architecture of field-programmable gate arrays

(FPGAs) considered in this paper is illustrated in Fig. 1.
An FPGA consists of an array of programmable logic
blocks, programmable I/O blocks, and a programmable
interconnect structure. Each logic block consists of a single
look-up table (LUT). These blocks and interconnect
structures are configured by static RAMs called
configuration memory cells. This FPGA is referred to as a
look-up table FPGA.

A look-up table implements combinational logic as a 2k
× 1 memory composed of configuration memory cells,
where k is the number of input lines of the FPGA. When
an input pattern is applied to a look-up table, the look-up
table selects a configuration memory cell addressed by the
input pattern, and the output of the cell provides the value of
the function. A look-up table can implement any of 2n
functions of its inputs, where n = 2k. When the FPGA is
programmed, the memory is loaded with the bit pattern
corresponding to the truth table of the function. Fig. 2(a)
shows a block of a three-input LUT. 
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Figure 1.  Architecture of FPGA
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A pass transistor controlled by a configuration memory
cell, as shown in Fig. 2(b), configures a connection of
wiring segments in an interconnect structure. The wire
segments on each side of the transistor are connected or not,
depending on the value in the memory cell. A multiplexer,
as shown in Fig. 2(c), also controls a connection of wiring
segments, and is a special-case one-directional routing
structure. Multiplexers may be of any width, with more
configuration memory cells for wider multiplexers. Fig. 3
shows the building blocks from Fig. 2 combined into a
configurable logic block (CLB) with wiring. The CLB in
Fig. 3 includes a single three-input LUT surrounded by
wiring channels. Each wiring channel contains several
segments. Segments have connections to the CLB and to
each other through pass transistors and multiplexers.

A look-up table FPGA is programmed by loading a
program composed of a bit sequence into its configuration
memory cells. Each bit of the program is stored in the
corresponding configuration memory cell, and consequently
LUTs and interconnections are configured. Accordingly a
logic function or a configuration is implemented on the
FPGA. The FPGA must include circuitry to load a
program. Here we consider two types of programming
schemes as follows.
Sequential loading: When an FPGA is programmed,
the program is shifted into the FPGA, and each bit of the
program is stored in the corresponding configuration
memory cell. This type of loading scheme is called
sequential loading, and an FPGA with this type of loading is
called a sequentially loadable FPGA (S L-FPGA). Whenever
an SL-FPGA implements configurations, it loads all
configuration memory cells.
Random access loading: Each configuration memory
cell is directly addressable. When an FPGA is programmed,
each bit is loaded by means of its address, and stored in the
corresponding cell. This type of loading scheme is called
random access loading, and an FPGA with this type of
loading is called a random access loadable FPGA (RAL-
FPGA). An RAL-FPGA can implement a configuration by
loading only the bits which differ from those of the previous
one.

3. Universal Test and Its Complexity
3.1 Universal Tes t

We can consider testing for FPGAs as two types of
testing; one is testing for unprogrammed FPGAs, and the
other is testing for programmed FPGAs. An FPGA
implements different configurations or logic circuits by
loading different programs. Therefore, in order to test the
unprogrammed FPGA, we might have to test all the
configurations implemented by the unprogrammed FPGAs.
However, it is too time-consuming to test such a large
number of configurations. To resolve this intractable
problem, we introduce universal test such that when applied
to a given unprogrammed FPGA, it ensures that all the
corresponding configurations are fault-free.

3.2 Fault Model
The target of universal test is to detect faults that exist in

an unprogrammed FPGA. An LUT is one of the important
configurable components in look-up table FPGAs.
Therefore, in the rest of paper we focus on testing for LUTs
in FPGAs. Testing for other components in an FPGA can
be considered in the same way as testing for LUTs. A k-
input LUT consists of 2k configuration memory cells, and
each memory cell has its own address. When an input
pattern is applied to the LUT from its k input lines, the
LUT decodes the input pattern, and reads out the memory
cell corresponding to the input pattern. Thus, LUTs can be
considered as random access memories (RAMs). However,
since the decoder for writing is different from the decoder for
reading, we can not apply conventional methods for testing
of RAMs [7,8] to such LUTs. Hence, we have to consider
an alternative method for testing of LUTs. The fault models
assumed in this paper are as follows.
Stuck-at faults of memory cells: One or more logic
values in the memory cells cannot be changed for any
configuration. Such faults are called stuck-at faults (SAFs).
When an input pattern corresponding to an SAF memory
cell, the output value for the input pattern is either 0 or 1,
irrespective of configurations.

Let k be the number of input lines of an LUT. Let n =
2k be the number of memory cells of the LUT. Let A =



{a0, a1, ..., an–1} denote a set of input patterns for the LUT,
i.e., a set of addresses of memory cells of the LUT. Let M
= {m0, m1, ..., mn–1} denote a set of memory cells in the
LUT. The fault-free decoding function of an LUT can be
modeled as a mapping f from A to M such that f(ai) = mi for
all i. As faulty decoding functions, we can consider the
following three cases.
Incorrect access faults (IAFs): For some ai, f(ai) = mj ≠ mi
due to a fault. That is, whenever memory cell mi is to be
accessed by input pattern ai, different memory cell mj is
accessed.
Non-access faults (NAFs): For some ai, f(ai) is empty due
to a fault. That is, whenever memory cell ai is to be
accessed, no memory cell is accessed. Here, the output
value for the input pattern ai depends on the previous output
value of the LUT.
Multiple access faults (MAFs): For some ai, f(ai) is neither
singleton nor empty due to a fault. That is, whenever
memory cell mi is accessed, more than one memory cell are
accessed. Here, the output value is formed either by the bit-
wise OR or AND function (depending on the technology)
over the memory cells of the set f(ai).

Hereafter, we consider universal test for these faults of
LUTs under single fault assumption.

3.3 Test Complexity
Universal test is performed by repeating implementation

of a configuration and application of an input sequence to
the configuration alternately. Hence, a test procedure for the
universal testing is represented as a sequence of pairs of a
configuration and its input sequence. Let Ci be the i-th
configuration in a test procedure TP, and Let Si be the input
sequence for the i-th configuration of the test procedure TP.
Then, we can express a test procedure as

  TP = C1, S1 , C2, S2 , ..., Cnc, Snc (1)
where nc is the number of pairs of a configuration and its
input sequence in test procedure TP. Let c(i) be the number
of configuration memory cells that are loaded to implement
the i-th configuration, i.e., the bit size of a program for the
i-th configuration. For an SL-FPGA, the size of each
program is constant, i.e.,

  c i = Nm (2)
where Nm is the total number of configuration memory
cells in the FPGA. For a RAL-FPGA, c(i) becomes the
number of different bits between consecutive configurations
Ci–1 and Ci. Note that c(1) = Nm . Let ns(i) be the length
of input sequence Si for the i-th configuration Ci.

The time required to test an FPGA by a test procedure
TP can be expressed as 

   T TP = tcc i + tsns iΣ
i = 1

nc

(3)
where tc is the time required to load one bit of a program
into a configuration memory cell in the FPGA, and ts is the
clock cycle time of a configuration implemented in the
FPGA. By denoting

   Ns = ns iΣ
i = 1

nc

, (4)

Eq. (3) can be expressed as
   T TP = tcc iΣ

i = 1

nc
+ tsNs . (5)

From Eqs. (2) and (5), the test complexity of test procedure
TP for SL-FPGAs or the time required to test SL-FPGAs by
test procedure TP can be expressed as

  TSL TP = tcncNm + tsNs . (6)
For RAL-FPGAs, we can let

   Nc = c iΣ
i = 1

nc

. (7)
By substituting this equation for Eq. (5), we have the test
complexity of test procedure TP for RAL-FPGAs as
follows.

  TRAL TP = tcNc + tsNs (8)

4. Test procedure and Test Complexity
4.1 Testing for SL-FPGAs

First, we consider testing for a single LUT of SL-
FPGAs. Testing for an LUT can be considered to ensure
that each memory cell in the LUT is read out correctly by
applying the corresponding input pattern. Here we present a
test procedure called TP-SL for a single LUT of an SL-
FPGA. Let k be the number of input lines of an LUT. Let
n = 2k be the number of memory cells in the LUT or the
size of the LUT. Let ai be an input pattern that access the
corresponding memory cell mi. To simplify the discussion,
unless otherwise noted, from now we assume that input
pattern ai denotes a binary code of i for all i without loss of
generality. Let b(i, j) be the i-th bit of the binary code of j,
e.g., b(2, 4) = 1 since (4)10 = (100)2. Then, test procedure
TP-SL is as follows:
Test Procedure TP-SL:
Step 1: for (i := 1 to k) {
Step 1.1: for (j := 0 to n – 1) { # the i-th configuration

Load b(k – i, j) into memory cell mj}
Step 1.2: for (j := 0 to n – 1) { # read all memory cells

Read mj with input pattern aj}
}

Step 2: for (i := k + 1 to 2k) {
Step 2.1: for (j := 0 to n – 1) { # the i-th configuration

Load the complement of b(2k – i, j)
into memory cell mj}

Step 2.2: for (j := n – 1 to 0) {
# read all memory cells in the reverse order
Read mj with input pattern aj}

}
Table 1(a) shows an example of test procedure TP-SL for

a two-input LUT. As shown in this table, a collection of
each memory cell mj at Step 1 denotes its address aj, and a
collection of each memory cell mj at Step 2 denotes the bit-
wise complement of its address aj. Let D1(aj) be a sequence
of the output bits when reading memory cell mj at Step 1 of
TP-SL. This sequence D1(aj) denotes the address of memory
cell mj, i.e.,



Table 1.  Test procedure for LUT (# of input lines: k = 2)
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  D1 a j = a j (9)
for all j. Let D2(aj) be a sequence of the output bits when
reading memory cell mj at Step 2 of TP-SL. This sequence
D2(aj) denotes the bit-wise complement of the address of
memory cell mj, i.e.,

  D2 a j = a j = D1 a j (10)
for all j. Then, we have the following lemmas.
Lemma 1 : TP-SL can detect any SAF.
Proof: If a memory cell mj is stuck at 0 (1), mj = 0 (1)
for any configuration. Hence,

  D1 a j = D2 a j = 00...0 (11...1) . (11)
This equation is inconsistent with Eq. (10). Hence TP-SL
can detect any SAF. □
Lemma 2 : TP-SL can detect any IAF.
Proof: If an input pattern aj selects a memory cell mi
instead of mj,

  D1 a j = ai

D2 a j = ai
 (12)

(13)
These equations are inconsistent with Eqs. (9) and (10),
respectively. Hence TP-SL can detect any IAF. □
Lemma 3 : TP-SL can detect any NAF.
Proof: When i = k at Step 1, memory cells m0, m1, ...,
mn–2 and mn–1 are loaded with 0,1,...,0 and 1, respectively.
Each memory cell loaded with 0 (1) is read after reading out
the opposite value 1 (0) except m0. Similarly, memory cell
m0 loaded with 1 is read after reading 0 when i = 2k. If an
input pattern aj selects no memory cell, then the output
value keeps the previous one, and does not alternate with 0
and 1. Hence TP-SL can detect any NAF. □
Lemma 4 : TP-SL can detect any MAF.
Proof: If an input pattern aj selects not only memory cell
mj but also another memory cell mi, then

  D1 a j = a j * ai

D2 a j = a j * ai

 (14)
(15)

where * denotes the bit-wise function depending on
technology. Hence,

   D1 a j ≠ D2 a j (16)
This equation is inconsistent with Eq. (10). Hence TP-SL
can detect any MAF. □

From Lemmas 1 to 4, we can see that test procedure TP-
S L can detect any faults of an LUT. Therefore, we have the
following theorem.

Theorem 1 : Test procedure TP-SL can detect any fault in
an LUT.

Next, let us consider the test complexity of test
procedure TP-SL. Test procedure TP-SL consists of Step1
and Step2, and k configurations are implemented in each
step. Hence, the total number of configurations is

  nc = 2k = 2 log n . (17)
Moreover, each memory cell is read out once for each
configuration. Hence,

  ns i = n for 1 ≤ i ≤ nc. (18)

Therefore, from Eq. (6) the time required to test one LUT of
an SL-FPGA is

  TSL TP–SL = 2Nm log n tc + 2n log n ts

  = O Nm + n log n . (19)
Let N be the array size of the FPGA, i.e., the number of
LUTs in the FPGA. Since the total number of
configuration memory cells, Nm , depends on the array size
N and on the total number of configuration memory cells n,
Eq. (19) can be also expressed as

  TSL TP–SL = O Nn log n . (20)
Hence, we have the following theorem.
Theorem 2 : The test complexity of test procedure TP-SL
for a single LUT of an SL-FPGA is O(Nn log n), where N
is the array size of the FPGA and n is the size of the LUT.

Next we consider testing for all LUTs in an SL-FPGA.
If we can use any number of primary I/Os, we can test all
LUTs in an FPGA simultaneously. However, since an
FPGA has a restricted number of I/O blocks, we cannot
apply the same test patterns to all LUTs directly and
simultaneously. We have to consider another method of
testing for all LUTs under such a constraint of the limited
number of I/O blocks. In test procedure TP-SL, as shown
by Eqs. (9) and (10), output sequences of an LUT become
addresses of its memory cells. Hence, we can use the output
sequences of an LUT as input patterns for another LUT. If
we consider k LUTs to be a block which has k input lines
and k output lines, all the 2k patterns can be extracted from
the output of the block. Therefore, we can test any number
of LUTs concurrently with test procedure TP-SL by
cascading such blocks by applying all the 2k input patterns
to the block. These blocks are called test blocks. Fig. 4
shows an example in case of k = 2. Fig. 4(a) illustrates 4
(=2k) configurations for all LUTs in an SL-FPGA. Here,
two LUTs are combined into a single test block, shown
outlined, and test blocks are cascaded from left to right. In
this cascade, connections between blocks are configured to
generate the input/output sequences of Fig. 4(b). The first
leftmost test block can be tested since all the input
sequences of test procedure TP-SL are included in the first
column of this table. Here, the output patterns of the first
test block (i.e., the second column) are transferred to the
inputs of the next test block (i.e., the third column). Hence,
all patterns can be applied to the second test block for each
configuration. In configurations C1 and C2, input sequences
for the second test block coincide with input sequences for



the first block. However, in configurations C3 and C4,
input sequences for the second test block are the reverse of
those for the first test block. Therefore, all faults except
NAFs for the first memory cells (m0) in the second test
block can be detected. To detect the NAFs, the last
input/output pattern in configuration C1 is added. In this
way, all test blocks in the cascade can be tested by the
input/output sequences of Fig. 4(b). This test procedure can
be easily extended to an arbitrary size k. Hence, we have the
following theorem.
Theorem 3 : There exists a test procedure for SL-FPGAs
such that the test complexity is O(Nn log n), where N is
the array size of the FPGAs and n is the size of LUTs. 

4.2 Testing for RAL-FPGAs
Next we present a test procedure for a single LUT of a

RAL-FPGA, called TP-RAL. In the following test
procedure, we assume that FPGAs behave the bit-wise AND
function toward MAFs. For FPGAs that behave the bit-
wise OR function, we can get the same test procedure by
complementing load values in test procedure TP-RAL.
Test Procedure TP-RAL:

for (i := 1 to n) {# the i-th configuration
if (i = 1) { # Initial configuration

for (j := 1 to n – 1) {
Step 1.1: Load 0 into memory cell mj}

} else {
Step 1.2: Load 0 into memory cell mp}
Step 2: j := i – 1

Load 1 into memory cell mjStep 3: Read memory cell mj with input pattern ajif (i < n) {
Step 4.1: p := j + 1

} else {
Step 4.2: p := 0

}
Step 4.3: Read memory cell mp with input pattern ap}

Table 1(b) shows an example of test procedure TP-RAL
for a two-input LUT. As shown in this table, for each
configuration, only one memory cell is programmed with 1,
and all other memory cells are programmed with 0.

Let d1(j) be the output value obtained by reading mj at
Step 3. Let d2(j) be the output value obtained by reading mj
at Step 4.3. If an LUT is fault-free, then

  d1 i = 1
d2 i = 0

 (21)
(22)

for 0 ≤ j ≤ n – 1. Then, we show the following lemmas.
Lemma 5 : TP-RAL can detect any SAF.
Proof: If a memory cell mj is stuck at 0 (1), then d1(j) =
d2(j) = 0 (1). This is inconsistent with Eqs. (21) and (22).
Hence, TP-RAL can detect any SAF. □
Lemma 6 : TP-RAL can detect any IAF.
Proof: As mentioned above, all memory cells except mi–1
is programmed with 0 on the i-the configuration for all i.
Hence, if an input pattern aj selects a memory cell ml

instead of mj, then d1(j) = 0 at Step 3. This is inconsistent
with Eq. (21). Hence, TP-RAL can detect any IAF. □
Lemma 7 : TP-RAL can detect any NAF.
Proof: For all i, 0 is read out with input pattern ap at Step
4.3 after 1 is read out at Step 3. If an input pattern ap
selects no memory cell, then d2(p) = 1 instead of 0, because
the output keeps the previous value, 1. This is inconsistent
with Eq. (22). Hence, TP-RAL can detect any NAF. □
Lemma 8 : TP-RAL can detect any MAF.
Proof: As mentioned above, all memory cells except mi–1
is programmed with 0 on the i-th configuration for all i.
Hence, for any pair of memory cells mα and mβ such that α
≠ β,

   mi ∧ m j = 0 (23)
If an input pattern aj selects two memory cells, mα and mβ,
then d1(j) = 0. This is inconsistent with Eq. (21). Hence,
TP-RAL can detect any NAF. □

From Lemmas 5 to 8, we have the following theorem.
Theorem 4 : Test procedure TP-RAL can detect any fault
in an LUT.

Next, let us consider the test complexity of test
procedure TP-RAL for a single LUT of a RAL-FPGA. In
test procedure TP-RAL, n configurations are implemented,
i.e., 

nc = n . (24)
For i = 1, all the memory cells in the LUT are loaded.
Hence,

c(1) = n . (25)
For 2 ≤ i ≤ n, only two memory cells are loaded at Steps
2.1 and 2.2. Hence,

c(i) = 2 for 2 ≤ i ≤ n. (26)
Moreover, only two memory cells are read out at Steps 3
and 4. Therefore,

ns(i) = 2 for 1 ≤ i ≤ n. (27)
From these equations and Eq. (8), the time required to test
one LUT in an RAL-FPGA is given by

  TRAL TP–RAL = n + 2 n–1 tc + 2nts

  = 3n–2 tc + 2nts . (28)
Accordingly, we have the following theorem.
Theorem 5: The test complexity of test procedure TP-
RAL for a single LUT of a RAL-FPGA is O(n), where n is
the number of memory cells of the LUT , i.e., the size of
the LUT. 

Next we consider testing for all LUTs in an RAL-FPGA.
In the same way as SL-FPGAs, we consider a cascade of test
blocks to test all the test blocks simultaneously. We can
generate input/output sequences and configurations so that
output sequences of each test block can be used as input
sequences of the next test block. In order to illustrate this,
we show an example in case of k = 2 in Fig. 5. Fig. 5(a)
illustrates 4 (= 2k) configurations for all LUTs in a RAL-
FPGA. Here, one LUT is a single test block, shown
outlined, and test blocks are cascaded from left to right. In
this cascade, connections between test blocks are configured
to generate the input/output sequences of Fig. 5(b). The
first and the third columns of this table show the input



Figure 4.  Example of test procedure TP-SL   (k = 2)
(b) Input /output sequences(a) Configurations
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sequences of the next test block. In order to illustrate this,
we show an example in case of k = 2 in Fig. 5. Fig. 5(a)
illustrates 4 (= 2k) configurations for all LUTs in a RAL-
FPGA. Here, one LUT is a single test block, shown
outlined, and test blocks are cascaded from left to right. In
this cascade, connections between test blocks are configured
to generate the input/output sequences of Fig. 5(b). The
first and the third columns of this table show the input
sequences for the leftmost and the next test blocks,
respectively. From test procedure TP-RAL, we can see that
the input sequences necessary to test each test block are
(00,01), (01,11), (10,00) and (11,10) for C1, C2, C3 and
C4, respectively. These input sequences are all included in
the first and the third columns of the table. Therefore, the
leftmost and the next test blocks are tested by the
input/output sequences. In this way, all test blocks in the
cascade can be tested by the input/output sequences of Fig.
5(b). This test procedure can be easily extended to an
arbitrary size k. Hence, we have the following theorem.
Theorem 6 : There exists a test procedure for a RAL-
FPGA such that the test complexity is O(Nn), where N is
the array size of the RAL-FPGA, and n is the size of each
LUT of the RAL-FPGA.
Proof: The number of configurations in test procedure TP-
RAL is expressed as:

nc = n. (29)
Since all the memory cells in the FPGA are loaded for the
first configuration C1, 

c(1) = Nm . (30)

For each configuration Ci (2 ≤ i ≤ n), two memory cells of
each LUT are loaded with 0 and 1. On the other hand, one
connection between the primary inputs and one of input
lines of each test block is changed for each configuration.

Moreover, the number of test blocks is equal to the array
size of the FPGA, N, since each test block includes a single
LUT. Hence, 

c(i) = 4N for 2 ≤ i ≤ n . (31)
Three input patterns and two input patterns are applied for 1
≤ i ≤ n/2 and for n/2+1 ≤ i ≤ n, respecitively, i.e.,

   ns i = 3 for 1 ≤ i ≤ n
2, and

   ns i = 2 for n
2 + 1 ≤ i ≤ n . (32)

Thus, the time required to test RAL-FPGAs by test
procedure TP-RAL can be expressed as

  TRAL TP–RAL = Nm + 4N n–1 tc + 5
2nts . (33)

Since the total number of configuration memory cells Nm
depends on the number of LUTs in a FPGA and on the
number of memory cells of each LUT, the test complexity
of test procedure TP-RAL for RAL-FPGAs can be
expressed as

  TRAL TP–RAL = O Nn . □(34)

5. C -Testable FPGAs
Since an FPGA consists of an array of logic blocks, it

can be considered to be one of iterative systems. 'C-testable'
[6] is a term which expresses an important class of testable
iterative systems.
Definition (C-testable): Suppose an iterative array
consisting of N logic cells. If the iterative array can be
tested with a number of test patterns that does not depend on
N, then the iterative array is said to be C-testable.

In each of test procedures TP-SL and TP-RAL, if we
regard each test block as a logic cell, each configuration can
be considered to be an iterative system. Moreover, the
length of input sequences applied to each configuration is



Figure 5.  Example of test procedure TP-RAL (k = 2)
(b) Input /output sequences(a) Configurations
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independent of the array size of FPGAs. On the other hand,
from Eqs. (19) and (34), we can see that the time required to
load programs for testing FPGAs depends on the array size
of the FPGAs. Therefore, if an FPGA can load the same
program into each test block simultaneously, the time
required to load programs will be independent of the array
size. Such type of programming schemes is called block-
sliced loading, and SL-FPGAs and RAL-FPGAs with block-
sliced loading are referred to as BSSL-FPGAs and BSRAL-
FPGAs, respectively.

Let tb be the time required to load the same bit into the
corresponding configuration memory cell of each test block.
Let Nb be the size of each test block, i.e., the number of
LUTs in each test block. Then, we have the following
theorems.
Theorem 7 : BSSL-FPGAs are C-testable.
Proof: Each LUT is composed of n memory cells, k = log n
input lines and one output line, and each test block consists
of k = log n LUTs. Hence, the time required to test a BSSL-
FPGA is given by

  TBSSL TP–SL = Nb 2log n n +log n + 1 tb + nts

  = 2 log3 n + n + 1 log2 n tb + 2n log n ts

  = O n log2 n + log3 n . □(35)
Theorem 8 : BSRAL-FPGAs are C-testable.
Proof: Since each test block consists of a single LUT, Nb
= 1. Each test block has k input lines and one output line,
and the input/output lines are connected with k + 1 wiring
segments. In the same way as Eq. (33), the time required to
test BSRAL-FPGAs can be expressed as

  TBSRAL TP–RAL = n +2 log n + 1 + 4 n–1 tb + 5
2nts

  = O n + log n . □(36)
From these Eqs. (35) and (36), we can see that the test

complexity of BSRAL-FPGAs is lower than that of BSSL-
FPGAs.

6. Conclusion
In this paper, we considered universal test such that when

applied to an unprogrammed FPGA, it ensures that all the
corresponding programmed logic circuits on the FPGA are
fault-free. We presented two types of programming schemes;
sequential loading and random access loading, and showed
test procedures for the FPGAs with these programming
schemes and their test complexities. In order to make the
test complexity for FPGAs independent of the array size of
the FPGAs, we proposed a programming scheme called
block-sliced loading, which makes FPGAs C-testable.

In this paper, we focused on testing for look-up tables in
FPGAs. However, testing for other components, e.g. I/O
blocks and interconnect structures, are also important.
These components can be tested in the same way as testing
for look-up tables. We will report in the near future on the
testing for these components as well as the whole of
FPGAs.
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