Proc. 15th Design Automation Conference, June 19-21, 1978.

LORES -

LOGIC REORGANIZATION SYSTEM

Shunichire Nakamura, Shinichi Murai and Chiyoji Tanaka
Computer Laboratery, Mitsubishi Electric Corp.
325 FKamimachiya, Kamakura, Japan
Masayuki Terai, Hideo Fujiwara and Kozo Kinoshita
Electronics Engineering Dept., Osaka University
Yamadaue, Osaka, Japan

Abstract

pescribed is the outline and the experi-
mental results of the system which automat-
ically restructures and partitions a logic
circuit consisting of standard SSI's and MSI's
so that the gate types and the numbers of in-
putfoutput terminals of the reorganized cir-
cuits are within the restrictions of the spec-
ified LSI.

1. Introduction

The utilization of custom LSI's in com-
puters and the related digital systems is be-
coming widely accepted with the development
of semiconductor device technolegy. The adop-
tion of custom L5SI's would give us such advan-
tages as smaller equipment size, better per-
formance, less power consumption, better reli-

ability, and cost reduction possibility due to’

highly autemated batch fabrication process in-
stead of cumbersome assembly procedures.
However, custom LSI approach has such serious
disadvantages as longer development period,
higher development cost, and much more diffi-
cult debugging.

In order to overcome these disadvantages
and fully utilize above described advantages,
it is wital to prepare the CAD system which
assists various design activities in the most
suitable and efficient way.
organization System) is an experimental CAD
system which effectively attacks the problems
of logic debugging and development period re-
duction in the following circumstances.

We guite often encounter the situations
where we want to develop a new digital equip-
ment whose function and therefore the logic is
basically the same as the field verified ex-
isting equipment, but with higher speed and
cheaper cost. This ls especially the case
where the existing eguipments use standard
55I's and MSI's, and we want to develop new
equipments utilizing custom LSI's.

How, even though the function of a new
eguipment is exactly the same as of the ex-
isting one, it is usually not possible to
implement on LSI's exactly the same legic as
the equipment utilizing standard SSI's and
MSI's, because the clock inplementation on
the selected type of LSI's may not be the same
as the original equipment, and the types of
elementary legie gates in LEI's are usually
restricted according te their device technol-
ogy especially in case of gate arrays or
master-slice type LSI's. Therefore, it is
necessary to reorganize the exiating logic
circuits so that they can be implemented on
selected type of LSI's even though the func-
tion of the new eguipment is exactly the same
as the existing egquipment.

The objective of the LORES is to automate
this type of logic restructuring or conversion

250

LORES (LOgic RE- -

and partitioning of the circuit sc that the
resultant logic circuits fit inte individual
custom LSI's in the case that the similar
clocking system can be implemented on the
target LSI's and the circuit does not include
any asynchronous portion, thus eliminating
the possibility of logiec errors, eliminating
the necessity of logic simulation, and re-
ducing design period. LORES will be useful
even if the circuit includes some asynchro-
nous portion, although a certain amount of
logic simulation may be necessary in this
case. LORES can also be used in the situa-
tien that the exact breadboarding of custom
LST circuits is difficult and the conversion
from the breadboard logic to LEI cell leogic
is necessary.

The functions and the organization of

"LORES is briefly described in the next sec-

tion, followed by the description of working
storage of the system. Then more precise
descriptions of each part of the system are
presented, and finally the experimental re-
gsults are reported.

2. The functions and the organizationm of LORES

The functions of the LORES are summariz-
ed as follows;

1) Extraction of the logic circuit to be
processed
Extract a portion of the logiec circuit
from the data base of the original egquip-
ment or breadboard.

2) Elimination of the unused logic

Eliminate the unused portion of the
extracted circuit (when the circuit is
built with standard M5I's and S5I's, all
the functions of the devices are not
always used, for example, the direct set
terminal and the related gates of flip-
flops) . :

1) Logic conversion
Convert or restructure the logic eir-
cuit consisting of standard SS8I's and
M5I1's to the logic eirecuit with the same
function consisting only of logic elements
allowed in LSI's. .

4) Logic partitioning
Partition the logic circuit so that
the numbers of gates and input-ocutput
terminals of each partitioned circuit are
within the specified limit.

Fig.l shows the total CAD system for
custom LSI's, Logic simulation is necessary
if the circuit includes some asynchronous
portion, since the timing consideration in
LORES is not sufficient. The organization of
LORES is shown in Fig.2. The execution order
of logic conversion and partitioning is

manually specifiable. The design data base

and LSI data base are the in rated engineer=
ing data bases based on EDMS.l),2) The manual
specification data for LORES are:

1) The execution order of the logic conversion
and the logic partitioning.

2) The specification of the portion of the
logie eircuit to be processed.

Specified by PCA (printed ecircuit
assembly) names and/or logic element and
signal names in PCA of the original equip-
ment .

3) Control data for logic partitioning

a) Whether or not to partition the logic
circuit in a MSI.

b} Groups of leogic elements which are pro-
hibited to be partitioned.

¢) The signal names which should be input/
output terminals of the partitioned
circuit,

d} The signal paths which should have the
same amount of propagation delay.*
4) Control data for logic conversion

a) The number of fan-cuts of logic elements
in the converted circuit.

b} The number of signals which can be
wired-aNDed.

g} The number of inputs of the elementary
logic gates in the converted circuit.

d) The logic element types which cannot be
converted.

* pelay is measured in terms of the number
of gates in the paths. Fower or wiring
length is not considered.

3. Working Storage

Although it is desirable, in general, to
set up working storage within main memory
area, the working storage of LORES is set up
in a random file on disk, in order to process
big size problems and to reduce the program
complexity required to effectively handle
limited amount of main memory., MELCOM UTS/VS
EDMS (Extended Data Management System) is
used for the maintenance of random file, and
it's 20 EBR buffer in main memory makes the
access time in randem file as fast as in main
memory as far as the neighboring portion of
the circuit is accessed.

Three typ&n of logical connection files
are prepared for the three programs of LORES
as shown in Fig.3.

The schema of these three types of files
are exactly the same, thus enabling te change
the execution order of the logic conversion
and partitioning (eg. preprocess = conver-
sion, preprocess - conversion - partitioning,
preprocess - partitioning - conversion).

4. The Preprocess Program

The preprocess prugran has two principal
functions: one of them is to extract the
legic circuit to be processed, and the other

251

is to eliminate the unused portion of the ex-
tracted eircuit.

(1) Extraction of the logic circuit to be
processed

The specific portion of the logic circuit
is defined by three types of control cards:

1 pefinition by a set of PCA files,

2 pefinition by a set of liqnil lines
to be cut off,

3 pefinition by a set of luqiu elements
to be excluded (element types or
element names) .

The preprocess program reads these con-
trol cards, retrieves the specified logic
area in the PCA files, and forms the corre-
sponding object PCA file. In the course of
this extraction procedure, the macro logic
expansion are executed for the MSI macros and
the repeatedly used PCA's, since the internal
logic structures of these macros are stored
only oncea in the data base. Furthermore
since the element and signal names are
uniguely defined only in PCA file, their
unigueness must be preserved after several
number of PCA files are integrated.

(2) Elimination of the unused portion of MSI
logic

Since MSIs are general-purpose devices
their entire functions are not always utiliz-
ed in actual logical circuits. In some
cases, for instance, only an output, '=',
among outputs, '<', "*', and '="', of a
comparator may be required, or not all of in-
put/output bits of an MSI encoder may be
used. In another case the input ENABLE may
be fixed te 1 or 0, so that the circuit is
enabled all the time. The preprocess program
eliminates such unused portion of MSI logic
(Fig.4). The elimination is as follows.

(i} Elimination starting from the external
output terminals
The logic elements whose outputs are
connected only to the unused external output
terminals are eliminated.

(ii)Elimination starting from input terminals

A logically redundant portion caused by
some input terminals fixed to "1" or "0" are
eliminated.

Algorithm (1)

{a) Trace backward one of the signal lines
which are connected to an unused exter-
nal output terminal.

(b} Return to the preceding node at the
peint where the line branches.

(e} If the line reaches without branching a
gata, which would be regarded as a node,
then memorize all the names of the
signal lines connected te the node, and
restart tracing backward one of them,

(d) In case of (b), trace backward in the
same manner the other untraced lines if
any. If not, go back to the preceding
node and repeat the same operations.

(e} If the process goes back to the starting
output terminal, it is over. Then,

eliminate the traced leogiec elements and
gignal lines from the MSI logic.

Fig. 5 shows an example.

Algorithm (ii)

(a) Trace forward one of the input signal
lines fixed to 1 or 0, kneping ite
logical value.

{b) If a branching pocint is encountered,
which would be a node, them memorizs all
the succeeding logic elements and trace
one of them forward in the same way.
Following four cases show the operations
when the signal line meets the gates
(Fig.6).

1l CASE 1

In case of meeting an inverter it is
eliminated, the logical value of the
signal line is inverted and the forward
tracing goes on

2 CASE 2

In CASE 2 the terminal is eliminated
and the tracing goes back.

3 CASE 3

In CASE 3 the NAND gate is eliminated
and the forward tracing goes on with the
output logical value inverted. At the
same time the backward elimination from
another input terminal is started by the
game algorithm as (i).

4 CASE 4
In case of an exclusive OR gate, as

ghown in CASE 4, it is converted into an

inverter and the tracing goes back.
Although CASES 2 and 3 shows the cases
of a HAND gate, the same procedure can
be applied at NOR gates if the signal
values are inverted.

(c}) The process is over when the tracing
reaches the starting input terminal as
in (i).
Tracing of the graph will be esasily per-
formed by making use of stacks.

5. Logic Conversion

As previously described, the logic con-
version is defined as to convert a logic cir-
cuit composed of various types of logic ele-
ments such as AND, OR, NAND, NOR, etc., to a
logic ecircuit with the same function but
composed only of limited types of logic ile-
ments such as NOR gates.

The types of logic elements allowed by
LORES in a source circuit are elementary legic
gates (AND, NAND, OR, NOR, EOR, ENOR, Wired-
AND and Wired-OR gates) ., J-K flip-flops, D
flip=flops and latches. A target circuit can
be composed only of k-input NOR gates, l-input
wired-AND gates, J-K flip-flops and D flip-
flops.

The outline of the logic conversion pro-
cedure is shown in Fig.7. The conversion is
first carried out element by element, and then
the elimination of the redundant inverters is
caried out in a whole circuit.

(1) Decomposition of multi-input gates

Bince the converted circuit consists
only of E-input NOR gates and l-input wired-
AND gates, the decomposition of the gates
having more than k inputs is first executed.
As shown in Fig.8 wired-AND gates are used
for the decomposition if it's not inappro-
priate.

(2) Conversion to NOR and AND gates

All the elementary logic gates other than
HOR and AND gates are converted td the logi-
cally equivalent elementary circuit consisting
only of NOR and AKD gates (Fig.9). The elimi-
nation of the redundant inverters which are
generated during the conversion is executed
at the same time, The inverter elimination
rules are shown in Fig.9.

L

(2) Conversion to wired-AND gates

The AND gates in the circuit are con-
verted to wired-AND gates if it's possible.
The AND gates which cannot be converted to
wired-AND gates are converted to inverters
and NOR gates (Fig.l0). AND gates can be
converted to wired-AND gates if and only if

i) no input signals of the AND gates are
fed to other gates,

ii) no input signals of the AND gates are
the signals external te the target
circuits, and

the numbers of inputs of the AND gates
are less than or equal to 1.

iii)

The redundant inverters generated during
this conversion are nIimlnnted at the same
time.-

{4) Expansion of NOR gates

The conversion shown in Fig.ll is exe-
cuted by examining the front and the rear of
all the inwverters in the circuit.

{5) Elimination of inverters in guasi-signals

The elimination of the inverters in
guasi-signals is tried. Quasi-signal is a
set of signals which would become a same
signal, signal (net) if all the inverters in
the circuit were eliminated. An example is
shown in Fig. 12,

The names of the new elements and signals
which were generated during the above con-
version. procedures are the modified ones of
the original elements and signals so that the
correspondence of the new elements and signals
to the original elements and signals may be
easily known. The modification is such that
it would show the relationship between the
new and the original signal (eg. the new
signal is the inverted one of the origimal).

6. Logic Partitioning

The inqlc partitioning program accepts
the restructured PCA file which has been pro-
cessed by a set of logic conversion programs
and partitions the PCA logic to LSI logics
under various restrictions. In general, some
objective functions are defined so as to
minimize or maximize them in the algorithm of

partitioning problem. (2)-{(6). For example,
given upper limits of the number of external

pins or elements included in partitioned cir-
cuits, the optimal solution is computed under
the following ochjective functions.

1}y Minimize the total number of connections
among partitioned sublogiec eircuits.

2) Minimize the number of partitioned sub-
logic ecircuits.

3) Maximize testability and diagnosability.

4) Satisfy a given condition of propagation
delay time.

However, the practical algorithm which opti-
mizes above functions for large logic circuits
are not founded, therefore, heuristic ap-
proaches are used at present so as to locally
optimize or suboptimize the functions.

We introduced a practical partitiening
algorithm satisfying conditions (2), (3} and
(4} whose computing complexity is 0(n) or at
most 0(n?) where n is the size of the circuit
to be partitionead.

The flow chart of this algorithm is
shown in figure 13.

The partioning is done as follows.

1) Select elements starting from the exter-
nals of a target logic circuit until the
limit of the number of elements or termi-
nale are reached.

2) Stop the seleotion and form a LSI when
the limitation is reached.

3) Eliminate the logic corresponding to the
newly formed LSI and let the interface
-signals between the new LSI and the remain-
ing logic be external terminals and return
to step 1.

In these steps, the algorithm does not
select the elements again which have once
been selected so that the computing com-
plexity is 0(n) or 0(n2).

In order to satisfy the condition (2)
the algorithm selects the locally optimum
elements causing the minimum number of
terminal increase.

In order to meet the condition (3), the
user can specify the test point by control
card so as to increase the testability and
the resclution of diagnosis.

In order to satisfy the condition (4),
the user can specify the equal propagation
delay for a certain logic by control cards
80 that the delay times of the specified
paths of the logic are egual after the
partitioning.

The following modes are implemented in
the program,

(a) Start partitioning eather from an
external input terminal or from an
external output terminal.

(B) In case of selecting the next element,

253

whether put the priocrity on the ele-
ment connected at the input terminal
or at the output terminal or none of
these (see Fig.14).

{e} In case that the number of the next
elament to be selected is plural,
either select a local optimal element
minimizing the increase of interface
terminals or select a first encountered
element which is connected to the LSI.

The reason why we define mode (a) and (b) is
that we can partly control the configuration
of a LSI logic such that for example, if we
choose the mode of input terminal connected
element from input interface the configuration
of the LSI is in horizontally long logical
chain as shown in figure 15 and if we choose
the mode of output terminal connected element
from input interface, it is vertically long as
shown in figure 16. The numbers in the
figures shows the order of selecting elements.

Az the connection of elements in a ecir-
cuit is generally more complicated, this re-
sults can not always be expected. However,
the user selects either mode and can form the
best LSI partitioning from several experiments,

The selection of mode (C) affects the
computing time of the program. The locally
optimal algorithm is of 0(n2) and the other is
of 0(n).

The selection of the next element or
element group in the partitioning algorithm of
Fig.l3 should be determined based on the above
three modes and the following censideration:
Put priority on non partitioning element group.

The user can specify non partition to a
set of elements which should belong to a
certain LSI., 1In this case, if these elements
are handled in the same manner as the other
elements in the locally optimum mode, the com=
puting time is lost, therefore, this non
partitioned element group is put into LSI
priocr to the other elements.

7. Results

The program size is about 16,000 cards in
FORTRAN. The execution results of legic con-
version is shown in Table 1. The inverter re-
duction in guasi signal is not executed in all
cases in the table. If this reduction is exe-
cuted, the number of cells of the target cir-
cuits would be further reduced.

The major limitation of LORES is that it
basically lacks the timing consideration even
though it does have the feature of equivalent
delay specification upon the arbitrarily se=
lected paths. Therefore, if the circuit in-
cludes some asynchronous portion, eather of
the following manual assistence is necessary:

1) Check the result of LORES whether or not
the timing relations between the signals in
the asynchronous portion are preserved, and
manually modify the result if necessary.

2) Manually eonvert the asynchroncus portion
before the execution of LORES.

In eather case, logic simulation would not be
avoidable in order to check the result of

manual modification or automatic conversion
by LORES, unless the asynchronous portion is
small and trivial.

8. Conclusions

LORES is useful for the feorganization
of the combinational eor synchronous sequential
circuits whose clocking system is basically
the same as the target LSI's. If the source
circuit includes some asynchronous portion,
logic simulation and a certain amount of
manual modification may be necessary.

Acknowledgements

The authors would like to thank Prof.
Ozaki and Mr. Matsumoto for their support and
encouragement of this joint work. They would
also like to thank the referees of this paper
for their valuable comments.

References

1) €. Tanaka et al., "Engineering Data Man-
agement System (EDMS) for Computer Aided
Design of Digital Computers”, Proc., llth
Design Automation Work-shop pp 372-379,
June 1974 .

2) C. Tanaka et al., "The Application of Data
Base for CAD of Digital Computers", Proc.
2nd USA-Japan Computer Conference PP 567-
572, Ahugust 1975,

3) M. A. Breuer, "Recent Developments in the
Automated Design and Analysis of Digital
Systems", Proc, IEEE vol.60, No.l, pp 12-
27, Jan. 1972,

4) R. L. Russo, "h Computer-Based-Design
Approach to Partitioning and Mapping of
Computer Logic Graphs", Proc. IEEE wvol.60,
No.l, pp 28-34, Jan, 1972,

5) S. B. Akers, "Partitioning for Test-
ability", Proc. FTCS-6, pp 121-126, June
1976.

€) A. Goundan, J, P. Hayes, "Partitioning
Logic Circuits to Maximize Fault Resolu-
tion®, Proc. 13th Design Automation Con-
ference, pp 271-277, June 1976,

(Existing Design) {New Design)
Coriginal
Shtn s Logic et modification
Logic sign Da i
LST Chip I Chip E X
h'l’.l Base | Dimens Logic
l : :
Logic Diagram Test Data Logic
Generation Generation Simulation
Chip Layout -
Design 1
= e e
el
h"h—nf_
Fig. 1 LORES and the Related CAD Systems
far Custom L[SI's
Original Data Base
Proprocess
Original -
ta Bas
(] F
b ject
1 PCA
Preprocess
F J
s Logic Conversion
Manual Work
Manual
File
Spec Spec ,
T [vert
PCA

L

Logic Conversion Logic Partioning

Y

Data Base Store

LSI
Data Bas

Fig. 2 The Organization of LORES

Logic Partitioning

Data Base Store

LSI Data Base

Fig. 3 Three Logic Piles (Work File)

255

—
n Backward
Trace

7
|

-tIIn 5

U"'%TEULI g

Fig.4 Elimination of Unused Logic

L

Partition of HMulei-

:
g
R

-

2 o

Conversion to NOR a
tion of front and

AND Logic, Elimina-
Inverters

]

...<,>._

Conversion of AND gates, Elimination of
Rear Inverters

o

L]

Expansion of HNOR gates

L<,>._

¥

Elimination of Inverters in (masi Signals

Fig. 7 Flow of Logic Conversion

Fig. 5 Output Terminal Elimination

= D — }ﬁ-} D’?r

Fig. & Imput Terminal Elimination

- _u..-p

ey

|- 1

s

Y
®

Fig. 8 Partition of Multi-Input Gate

256

= o
S

SN—

DDA e

e

o

Fig. 9 Conversion to NOR and AND Gatesg
and Elimination of Related Inverters

—

Fig. 100 Conwersion of AND Gates and
Elimination of Related Inverters

D TP

Fig. 11 Expansion of HOR Gates

Initialize
Variables
and Stacks

>
o sy
-

|

Select the next slement
or alement group to be
included in the LSI

Put a flag on the
selected element or
element group

r limie "2

yes

-—

mn- 1

Fig. 12 Elimination of Invarters in
& Quasi-Bignal

257

Form a L5I and add to
LEI file

Rafresh variables
and stacks

1 elements

selacted

Fig. 13

Flow of Logic Partitioning

e o T S =

Expanding LSI
{under limit)

the element connected
at output terminals

Fig. 14 Selection of the Next Element

o—
[, a—
o0—

o
o—

B e 88
D_ .

o—
e T o0
o—

Fig.lé Selection of Output Terminal Connected

r

o 1 Elements
-L |
2 il
(e
o=y g
Fig. 15 Selection of Input Trminal Connected Elements
elements of source circulit # eells of Compiting Time
- terget clro, i
Inv. EOR Gates * DFF JEFF Preprocess Conv.
1 208 a8 340] 14 1145 5.7 10.1
2 127 | 14 205 48 16 1159 5.3 7.0
k) 318 32 304 20 0 1782 10.3 20.8
4 237 41 299 22 4 1024 5.8 9.7
5 185 3 225 2 2 845 4.8 7.8
& 162 12 255 L] 2 1046 5.3 9.0
7 57 24 27 16 a 273 0. BE 1.4

L] quti_nt WOR: 3, # inputs of W-ANMD: &

fanout of NOR:

10

* glementary gates other than EOR's and Ymverters

Table 1 Experimental Results of Logic Conversion

258 .

A ;H .:.
S .lr...,... P e i g] sl s 1y ot —— ...-ll..r... 1 m
\\ ﬂ@ﬂﬂﬂ = (Mt | r_. ﬁ—wﬂﬂ—.ﬂ_mﬂ g ﬁﬂﬂmﬁ
KA A B IAAATAR7AAFT THATT T
“ “ h I ’ L
"_m_v “." M A\ __ A
I 5. ? .
00 i >
" . - m .Lx _«....t. l
1t 0 R fAMAa
[
- - 1
404 & & T

259

. . MM, W i e - el i - . - A e i i

17 An example of a source circuit (NO.7 of Table 1)

e &
Fig.

2

CE

Fax

	スキャン 1
	スキャン
	スキャン 2
	スキャン 3
	スキャン 4
	スキャン 5
	スキャン 6
	スキャン 7
	スキャン 8
	スキャン 9
	スキャン 10

