IEEE Asian Test Symposium, pp. 130-135, November 1996.

An Approach to the Synthesis of Synchronizable Finite
State Machines with Partial Scan

Tomoo Inoue, Toshimitsu Masuzawa, Hiroshi Youra, and Hideo Fujiwara
Nara Institute of Science and Technology
8916-5 Takayama, Ikoma, Nara 630-01, Japan

Abstract

Initialization of sequential circuits is one of time-
consuming processes in test generation for sequential
circuits, and hence synthesizing sequential circuits of
which synchronizing sequences are short is an important
approach to reducing the cost of test generation for the
circuits. In this paper, we propose an approach to the
synthesis of finite state machines (FSMs) with partial
scan. We focus on repeating partial scan for synchroniz-
ing FSMs, and present an extended synchronizing
sequence which consists of scan inputs and normal in-
puts, and which takes a circuit to a single specific state,
regardless of the initial state. To synthesize synchro-
nizable FSMs, we formulate a problem of minimizing
extended synchronizing sequence length, and present a
heuristic algorithm for the problem. We show the exper-
imental results of the minimization of extended synchro-
nizing sequence length on MCNC’91 benchmark FSMs.
The experimental results show that the proposed heuris-
tic algorithm can find a minimum-length extended syn-
chronizing sequence for most of MCNC’91 benchmark
FSMs, and the length of the extended synchronizing se-
quence is three or less for all the benchmark FSMs.

1 Introduction

Test generation for sequential circuits is a time-
consuming problem [1]. Design for testability (DFT)
is an important approach to reducing the complexity of
test generation. A popular DFT method is scan design,
which refers to making memory elements (flip-flops)
controllable and observable via extra primary ports.
Although full scan design [2] referring to making all
filp-flops scannable in a circuit can transform the se-
quential test generation problem to the combinational
one, large hardware overhead is required. The design
such that a subset of filp-flops are scannable is said to
be partial scan [3, 4]. This DFT approach can reduce
the complexity of test generation with small overhead.
However, conventional DFT methods by using scan de-
sign is applied to logic-synthesized circuits, and conse-
quently the optimized area and/or performance (delay)
of the circuits are degraded. Hence, testability is also
taken into account during the synthesis of the circuits
(synthesis for testability) [5, 7, 6, 10].

Initialization of circuits is one of time-consuming pro-
cesses in test generation for sequential circuits. An in-
put sequence such that when applied to a circuit, it will
drive the circuit to a single specific state, regardless of
the initial state is called a synchronizing sequence [8].

When a circuit has a short synchronizing sequence, it is
easy to initialize the circuit in the process of test genera-
tion for the circuit. Therefore, it can be considered that
designing sequential circuits having short synchronizing
sequences is an approach to synthesis for testability.

A sequential circuit is modeled by a finite state ma-
chine (FSM). Cheng and Agrawal [9] presented the con-
ditions for initializability of FSMs and an automatic
state assignment algorithm for logic minimality and ini-
tializability. Jiang et al. [10] focused on the fact that
partial scan can reduce the ambiguity of the states of
FSMs, and presented a method of synchronizing FSMs
after partial scan. Pomeranz and Reddy [11] considered
the effect of repeating partial reset on test generation.

In this paper, we consider repeating partial scan for
synchronizing FSMs, and present an extended synchro-
nizing sequence which consists of scan inputs and nor-
mal inputs, and which drives a circuit to a single specific
state, regardless of the initial state. To generate syn-
chronizable FSMs with small hardware overhead, we
formulate a problem of minimizing extended synchro-
nizing sequence length and present a heuristic algorithm
to solve the problem. We show the experimental results
of the minimization of extended synchronizing sequence
length on MCNC’91 benchmark FSMs [12]. The exper-
imental results show that the proposed heuristic algo-
rithm can find a minimum-length extended synchroniz-
ing sequence for most of MCNC’91 benchmark FSMs,
and the length of the extended synchronizing sequence
is three or less for all the benchmark FSMs.

2 Preliminaries
2.1 Finite State Machines

The behavior of a sequential circuit is modeled by a
finite state machine (FSM). An FSM M can be defined
by a triple !:

M =(5,1,6) (1)

where S is the set of states, I is the set of inputs, and §
is the state transition function which maps states and
inputs into states, i.e., 6 : S x I — S. When an input
1 € I takes FSM M from a current state s € S to the
next state ¢ € S, the state transition is expressed as

q= 6(3:i)' (2)

1In general, an FSM is defined by a six-tuple which also in-
cludes the set of initial states, the output function and the set
of outputs. However, those are suppressed from the definition
because they play no role in the subsequent discussion.

The state transition function 6 is normally extended to
a function 6* of S x I* — § as follows:

E‘ZS) (3)

where s € S,z € I*,: € I, and € denotes an empty
sequence of inputs. Moreover, we define the following
function for an input sequence z € I and for a subset

QCs:
8°(Q,z) = {8(¢,)lq € Q). (4)

In the rest of this paper, the extended function 6* is
simply denoted by §é if no confusion occurs.

For a subset Q C S and an input sequence z € I*, we
express the set of states Q' C S such that Q = 6(Q’,)

as 671(Q, z), i.e.,
671(6273“) =

2.2 Synchronizing Sequences

{s € 5|6(s,z) € Q}. (5)

Definition 1(Synchronizing sequence): An input
sequence of an FSM M is a synchronizing sequence for
M if the input sequence takes FSM M to a certain final
state, regardless of the initial state of FSM M. The final
state to which a synchronizing sequence takes an FSM
M is called the reset state of the synchronizing sequence
for M. An FSM M is said to be synchronizable if FSM

M has a synchronizing sequence. a

A synchronizing sequence for an FSM M = (S,1,6)
can be derived from the state transition diagram by
constructing the synchronizing tree in which node rep-
resents the uncertain states of FSM M. First, we make
the root node which represents the set of all states S.
For each input ¢ € I, an edge is created to a new child.
The new child corresponds to the set of states to which
input ¢ takes FSM M from the set represented by its
parent, i.e., §(S,7). This procedure is repeated for each
new node, and a node becomes a leaf when the node
corresponds to a single state, or is identical to some
other node in the tree. After the synchronizing tree is
constructed, a synchronizing sequence can be found as
any path in the tree from the root to a leaf containing
a single state. In the synchronizing tree, the number of
states represented by a node is called the eambiguity of
the node.

Example 1: Consider FSM M; illustrated in Fig.
1(a). The set of states S of FSM M is {sq, s1, 52, 83 }.
Fig. 1(b) shows the synchronizing tree of FSM M. As
shown in this figure, FSM M; is synchronized by the
synchronizing sequence (0,1,0,1,0), and the reset state
is 87. O

As shown in the above equation, a synchronizing se-
quence is an input sequence that reduces the ambiguity
from the total number of states to 1.

Example 2: Fig. 2(b) shows the synchronizing tree of
FSM M, illustrated in Fig. 2(a). As shown in Fig. 2(b),
there is no leaf node representing a single state in the
synchronizing tree, i.e., FSM M5 is not synchronizable.
O

50 S1 82 83
0 i

50 S1 3 .30 §1 82 83

-'0 &7 N

SO S1 83 50 S1 S22
VI N
51 53 51 82 S3
*1 0/ \1

SURE S0 2 S05183 508182

0, 1
s ST 83

(a) State diagram (b) Synchronizing tree

Figure 1: FSM M,

S0 51 52 53
0 1

S0 S1 52 53 S0 5152 83

(a) State diagram

(b) Synchronizing tree

Figure 2: FSM M,

2.3 Encoded FSMs

When an FSM is implemented by a sequential circuit,
each state of the FSM is assigned to a unique binary
code word. This assignment is said to be state encoding
or state assignment. The value (or content) of a flip-flop
in a sequential circuit is represented by a state variable.
Note that m state variables represent 2™ states. Hence,
when the set of states S of an FSM M is encoded with m
state variables, 2 — | S| states represented by m state
variables do not correspond to any state of FSM M.
Such states are called invalid states.

Partial scan design of a sequential circuit refers to
chaining a subset of flip-flops into a shift register (scan
chain). The flip-flops in the scan chain are said to be
scannable flip-flops. FEach of scannable flip-flops can
be set to any value of O and 1 by shifting a single-
bit sequence into an extra input port (scan-in). We
consider a bit sequence applied to scannable flip-flops
in a sequential circuit as an input of the FSM corre-
sponding to the sequential circuit. Such an input is
called a scan-input. The state variables corresponding
to scannable flip-flops are called scannable state vari-
ables (or scannable variables for short), and the other
state variables are called non-scannable state variables
(or non-scannable variables for short).

The state encoding of the set of states S with k
scannable variables and m — k non-scannable variables
is defined as follows.

Definition 2(State encoding): Let S be the set of
states of FSM M. Let m(> [log, |S|]) be the number
of state variables. Let k& be the number of scannable
variables (0 < k < m). Let S° be the encoded state set

such that
S¢=5US;n (6)

where S;,, is the set of invalid states, which satisfies
|S¢| = 2™, SN Siny = ¢. (7)

Let f, : S¢ — B* be the scan encoding function of
S with k scannable variables, where B = {0,1}. Let
fn : 8¢ — B™ % be the non-scan encoding function of
S with m — k non-scannable variables.

A state code word a of a state s € 5S¢ is expressed as

a = (fs(5); fn(s))- (8)
O

Here, we consider the two partitions over an encoded
state set 5S¢ by scan and non-scan encoding functions,
fs and f, as follows.

The scan partition over the encoded state set S, by
the scan function f; is

75 = {T)|as € B} (9)

where Tf; is called a scan partition block which is ex-
pressed as

Tf: = {slfs(s) = as}. (10)

The non-scan partition over the encoded state set S,
by the non-scan function f, is

Tn = {PI"|a, € B™ ¥} (11)

where PC{: is called a non-scan partition block which is
expressed as

Pl = {sfa(s) = an}. (12)
Note that
T Tp = 0, (13)
where 0 is the zero partition in which every block is a
singleton.

Thus, we define an encoded FSM of an FSM as fol-

lows.

Definition 3(Encoded FSMs): Let M = (S5,1,6)
be an FSM. Let m(> [log, |S|]) be the number of state
variables. Let k be the number of scannable variables
(0 < k < m). Let S¢ be the encoded state set of S.
Let f, : S°* — B* be the scan encoding function. Let
fn: 8¢ — B™F be the non-scan encoding function.

FSM M with the encoding functions f; and f, is
said to be a (fs, frn)-encoded FSM M€ of FSM M, and
is defined by

Me = (S°,1¢,6.). (14)
The set of inputs I¢ is
I°=T1UlI,, (15)

where the set of inputs of FSM M, I, is referred to as
the set of normal-inputs, and I is the set of scan-inputs,
which is given by

I, = B". (16)

The state transition function é. satisfies
Vse S, Viel, 6.(s,i) =68(s,i), (17)
and

Vs € S¢, Vi € I, 6.(s,7) =T/ n P

sy (18)

where T(f: and P(f:' are the scan partition block of

as € B* by f, and the non-scan partition block of
an € B™ % by f,, respectively. 0O

For a scan-input sequence z, = ¢143...4, € IS, the
state transition function of an encoded FSM M¢ =
(5¢,1I¢,6.), 6. satisfies the following property.

Vs € 5%, 8e(s,2s) = 6e(8,1n). (19)

As shown in Equation (18), FSMs with partial scan
have a state transition by scan-inputs, and the state
transition is defined by state encoding. Next, we con-
sider a method for synchronizing FSMs using scan-
inputs.

2.4 Extended Synchronizing Sequence

Definition 4(Extended synchronizing sequence):
An input sequence consisting of normal-inputs and
scan-inputs of an encoded FSM M?€ is an extended syn-
chronizing sequence for M€ if the input sequence takes
a certain final state, regardless of the initial state of
encoded M*€. The final state to which an extended
synchronizing sequence takes an encoded FSM M*€ is
called the reset state of the extended synchronizing se-
quence for M€ An encoded FSM M¢® is extended-
synchronizable if encoded FSM M¢® has an extended-
synchronizing sequence. a

In the same way as synchronizing trees, the extended
synchronizing trees can be constructed for an encoded
FSM, and the extended synchronizing sequence can be
derived from it.

Example 3: Consider FSM M, shown in Fig. 2 again.
This FSM M, has no synchronizing sequence consist-
ing only of normal-inputs. Consider the state encoding
shown in Fig. 3(a), where two state variables are as-
signed and one of the two state variables is scannable.
Fig. 3 shows the extended synchronizing tree of encoded
FSM M3 of FSM M;. From Fig. 3, we can see that the
encoded FSM M3 is extended-synchronizable with the
sequence (1,1,0) and can be taken to a reset state sq,
where an underlined input denotes a scan-input. a

3 Minimization of ESS length

3.1 Problem Formulation

As mentioned in the previous section, an extended
synchronizing sequence (ESS) which includes scan-
inputs can synchronizing FSMs. In this section, we
consider the synthesis of an extended-synchronizable
encoded FSM of an FSM.

In synthesizing encoded FSMs, the state assign-
ment and the transitions from invalid states are de-
termined. Determining the state assignment and the
transitions from invalid states play important roles in

50 51 52 53

- - 0
5 175 [F® & KON
5051 5253 505152 53 5051 5253

T S

si] o [B 0
1
I

5253 503 SQS1 253
57

‘ D L DV
& 0 0% 00 N 5

(a) State encoding (b) Extended synchronizing tree

Figure 3: Extended synchronization of FSM M,

synthesizing an encoded FSM having a short ESS as
well as optimizing area and/or performance of the se-
quential circuit which implements the FSM. In [13],
we have considered two problems concerning extended-
synchronizable encoded FSMs: (1) the minimization
of the number of scannable variables to obtain an
extended-synchronizable encoded FSM, and (2) the
minimization of the number of extra states to obtain
an extended-synchronizable encoded FSM. In this pa-
per, we consider the following problem.

Minimum-length ESS problem:

Given: An FSM M = (S,1,6), the number m of state
variables and the number k of scannable variables.

Solution: An (fs,fn)-encoded FSM M¢ = (S¢,I¢,6,)
of FSM M having the minimum-length ESS,
where fs: 5S¢ — B* and f,: S5¢ — B™ k. a

3.2 Algorithm

We present a heuristic algorithm min_ess for the
minimum-length ESS problem. This algorithm is based
on the reverse-order-search (ROS) [10] algorithm. Fig.
4 shows details of the algorithm min_ess.

A given FSM M = (S,1,6) is considered to be a
partially-defined encoded FSM M*® = (5°¢,1¢,6.) such
that

5S¢ =85USine
Te=TUI,
Vs € 8, Vi € I, 6.(s,) = 8(s,4)
Vs € §°.Vi € I, 6.(s,4) =L
(i.e., Vs € 5%, fs(s) = fn(s) =1)
e(s,3) =1

Vs € Sipw, Vi€, 6
where 1 denotes undefined. The min_ess algorithm
starts from a state s, € S as a candidate of the re-
set state to which the minimum-length ESS takes M €.
Then, min_ess estimates the set of states from which
an input ¢ € I° takes M° to the candidate state s, for
each 7 € I®. Here, when estimating the previous states
of s, by a scan-input 75 € I, min_ess defines only the
state transition (or state encoding) to s, by 7, partially
according to some strategies (mentioned below). The
min_ess algorithm selects the input i.(€ I°) such that
the number of states from which input 7. takes M€ to
the candidate reset state s. (i.e., |6, !(sc,%c)|) becomes
maximum, and changes the target state set from {s.}
to the previous state set S, = &, (s¢,4). This compu-
tation of the previous state set is executed concurrently
for every state s € S, and repeated until the previous

state set becomes the set of all states S¢. The minimum-
length ESS is obtained by arranging the inputs that are
selected during the computation from the single reset
state to all the states according to the reverse order of
the selection.

Let s, € S be a candidate reset state, and let S(1) =
{sr}. Let S(n)(C S°) be the n-th current state set, and
let 2(n)(€ I°) be the n-th selected input, i.e., S(n) =
6. 1(S(n — 1),i(n — 1)). Suppose S(I) is the current

state. The previous state set S(I + 1) from which a

scan-input i, € I,(= B¥) takes M* to the current state
S(1) is estimated, and the state transitions with respect
to S(I) and ¢(I) are defined if 4, is selected as the I-th
input ¢(1) as follows.
1. State transitions from invalid states: If
8e(Sinv,i(l — 1)) =L and (I = 1) € I (I > 2), then
define 6.(Siny,2({ — 1)) = S(I—1) and S({) is updated
to S(H)U Siny.
2. State assignments: Let S,(C S({)) be the set of
states of which state assignments are not defined, i.e.,

Su={s € SOIL(s) = fuls) =L} (20)

In order to maximize the cardinality of the previous
state set (i.e., |S({+1)]), for all states in S, fs(s) and
fn(s) are defined so that they maximize

[{an € B™*|fu(s) = an,s € SO}, (21)
and minimize
{is € Is|fs(s) = as,s € S(1)} - (22)

Then, let S,(C S€) be the set of states whose f,(s)
are the same as some state in S(I), i.e.,

Sp = {s € 535’ € S(1), fuls) = fuls)}. (23)

Let Ay = {is|fs(s) = ts,s € Sp}, and let A, =
{an|fn(s) = an,s € Sp}. The cardinality of the pre-
vious state set S(I + 1) will become |A4| X |A,|. Let
Sl = {s € S¢|fs(s) = fn(s) =L}. Let S, be a set of
states obtained by extracting |A;| x |An| — |Sp| states

from S,,. In order to maximize the previous set of
S(1+41), Sq is determined so that it maximizes

Vi€ 1,16, (Sp U Sas)], (24)

and for Vs € Sy, the state encoding functions f,(s)
and f,(s) which satisfy

fs(s) € As, fn(s) € Ay, (25)
Vg # s € Sa, fs(s) # fs(a), fa(s) # fala) (26)

are defined.

Example 4: Consider FSM Mj illustrated in Fig. 5(a).
Let M§ = (5S¢, 1¢,6.) be an partially-defined encoded
FSM of FSM Mj3;. The number of state variables is
three and one of the three state variables is scannable.
Hence, I, = {0,1}. Let s;n, be an invalid state, i.e.,
Sinv = {Sinv}- Here, we focus only on the search for a
candidate reset state s;.

encoded FSM min_ess(FSM M, int m, int k)
/* m: # of state variables, k: # of scannable variables */

Sine = tnvalid(2™ — |M.S|);
Sgoar = M.S U Sinv;
I, = scan_input(k); I¢ = M.IU I

S, = M.S;
for(Vs € S;) {
MC[s.S = (s} M°[s].f, = M°[s].fn =
Me[s].l = .ess[0] = ¢

min = &
while(M? | 81 = 5,00 && S,1= ¢) {
for(Vs € S;) {

M. = M°[s]; ip = Mec.ess[Mec.l];

if(ip, € I,) { I. = M.I; }else { I, = 1%}

Ay, = 15

for(Vi. € I.) {

if(i, € 1) {
(M6, (Simnyip) ==L && M1 > 1) {
def trans(M..65(Sinu,ip) = Ms.6.(Mc.S,1p));

part_encode(M..fs, Meo.fn, M..S);

S, = 671(M..S,i.);

if(|S.] > am && untried(S.)) {
Im = te; Gm = |Scl;

b

if(an, >1) {
M®[s] = Mq; + 4+ (M°[s].1);
M*®[s].ess|[M®[s].l] = iy,;

} else { M*[s] = backtrack(M “[s]); }

by
if(all_tried(s)) { S, = S, — {s}; }
H(M[s].8 == Sgoar) {
My, = M®[s];
break;
b
}
}
return M,

}

e .
min?

Figure 4: Algorithm min_ess

1.S. = s1. Vs € 8¢, fs(s) = fn(s) =L.

2. Select an input that maximizes the previous state
set for S.. [671(s1,0)] = 1. 6. (s1,1)] = 2. Vas €
I, 167 (s1,a5)] = 2. Here, select normal-input 1.
Update S¢. S, = 6. (s1,1) = {s0, S6}-

3. Estimate [6,1(S.,%)| for all ¢ € I°. [6;1(S.,0)] =
|61 (S, 1)| = 2. Since Vi € I, 6.(Siny,?) =L, change

. to Sc = {so, S6, Sinv }, and define 8¢ (siny,1) = s1.
Select scan-input 0, i.e., fs(s0) = fs(s6) = fs(Sinw) =

0. Define fr(so) = 00, fn(ss) = 01, and fp(Sine
10.

Further, define fs(s1) = fs(s2) = fs(ss) = 1L
fn(s1) = 00, fn(s2) = 01, and f,(s3) = 10. Thus,
Se = {50, 51, 52, 53, 56, Sinv -

4. Select normal-input 0. S.
{50751,52753754585}-

5. By defining fs(s4) = 1, fs(s5) = 0 and f,(s4) =
fn(ss) =11, S. becomes S, = 5S¢ with scan-input 1.

Thus, the state encoding which minimizes the ESS
length is obtained as shown in Fig. 5(b), and the
minimum-length ESS is (1,0,0,1). O

becomes S, =

s | fs()| fuls)
0| 0 | 00
st |1 | oo
20 1 [o1
53 1 10
s | 1| 11
51 0 | 11
6| 0 | o1

Sinv| 0O 10

(a) State diagram

(b) State encoding

Figure 5: FSM M;

4 Experimental results

The min_ess algorithm was implemented in C lan-
guage and experiments were made using MCNC’91
benchmark FSMs [12] to confirm the effectiveness of
the algorithm. We have shown that all the MCNC’91
benchmark FSMs can be extended-synchronized with
one scannable variable in [13]. Some FSMs in the
benchmark set have reset inputs explicitly, i.e., they
are synchronizable by a single normal-input. Hence, we
made experiments on the FSMs that are not resettable
with a single normal-input, provided that the number
of state variables is the minimum, i.e., [log, n], where
n is the number of states, and one of the state variables
is scannable.

Table 1 shows the experimental results. The first
three columns denoted by FSM, ST and PI in this table
mean the FSM name, the number of states and the
bit size of normal-inputs (i.e., the number of normal-

inputs is 27), respectively. The fifth column, min _ess,
denotes the length of the ESS obtained by the min_ess
algorithm. The fourth column, ROS, denotes the length
of the EESS obtained by the ROS algorithm presented by
Jiang et al. [10].

From these results, we can see that the ESS obtained
by the min_ess algorithm is shorter than or as short as
that obtained by ROS for all FSMs. Moreover, we can
see that the FSMs that cannot be synchronized with
the ESSs obtained by ROS, modulo12 and tav, can be
extended-synchronizable.

The last column in Table 1, MIN, denotes the mini-
mum length of the ESS obtained by computing all ESSs
exhaustively without heuristics. In this column, I de-
notes that the minimum-length ESS cannot be calcu-
lated due to the time/memory limitation. From these
results, we can see that the length of the ESS obtained
by min_ess is minimum for most of the FSMs.

In a master-slave configuration, when a slave is nor-
mally allowed to change, a scan-input can be applied
to override the value coming from the master, setting
the slave to the corresponding value. Hence, if FSMs
are implemented on master-slave configurations, a scan-
input in an ESS can be applied simultaneously with the
previous normal-input followed by the scan-input. The
bracketed number of the fifth column, min_ess, in Ta-
ble 1 represents the length of the ESS provided that a
normal-input and the subsequent scan-input are applied

Table 1: Experimental results: ESS length

ESS Length

FSM ST | PI ROS | min_ess | MIN
bbara 10 4 2 2 2
bbsse 16 7 2 2 2
bbtas 6 2 2 2 2
beecount 7 3 2 2 2
dk14 7 3 2 2 2
dk16 27 | 2 3 3(2) I
dk17 8 2 2 2 2
dk27 7 1 2 2 2
dk512 15 1 3 3 i
donfile 24 2 3 3(2) i
exl 20 9 2 2 2
ex2 19 2 2 2 2
ex3 10 2 2 2 2
x4 14 | 6 5 1(3) I
exb 9 2 2 2 2
ex7 10 2 2 2 2
keyb 19 7 2 2 2
lion 4 2 2 2 2
lion9 9 2 2 2 2
mc 4 3 2 2 2
modulol2 | 12 1 1 5 (3) i
planet 48 7 8 4 (3) i
planetl 48 7 8 4 (3) i
sl 20 8 2 2 2
sla 20 8 2 2 2
sand 32 | 11 5 4 (3) i
shiftreg 8 1 3 3 3
sse 16 7 2 2 2
styr 30 9 2 2 2
tav 4 4 1 3(2) 3
trainll 11 2 2 2 2
train4 4 2 2 2 2

—

t: unsynchronizable }: aborted calcuration

simultaneously. From these results we can see that the
ESS length is three or less for all the benchmark FSMs,
and hence the number of clock cycles required to ap-
ply ESSs is short. In particular, for the case where the
ESS includes several scan-inputs, the number of clock
cycles to extended-synchronize is considerably reduced
modulo12.

5 Conclusions

In this paper, we presented an approach to the syn-
thesis of synchronizable finite state machines (FSMs)
with partial scan. We proposed an extended synchro-
nizing sequence which consists of normal-inputs and
scan-inputs, and which takes a circuit to a certain fi-
nal state, regardless of the initial state of the circuit.
We formulated the minimum-length extended synchro-
nizing sequence problem and proposed a heuristic algo-
rithm for the problem. We also presented experimental
results of the minimization of extended synchronizing
sequence length on MCNC’91 benchmark FSMs. The
experimental results show that the proposed algorithm
can find a minimum-length extended synchronizing se-
quence for most of benchmark circuits, and the length
of the extended synchronizing sequence is three or less

for all the benchmark FSMs.

Acknowledgment

It is a pleasure to thank Prof. Kewal K. Saluja (Uni-
versity of Wisconsin-Madison) and Dr. Michiko Inoue
(Nara Institute of Science and Technology) for their
helpful comments and discussions on this work.

References

[1] H. Fujiwara, Logic Testing and Design for Testability.
Cambridge, MA: The MIT Press, 1985.

[2] E.B. Eichelberger and T.W. Williams, “A logic design
structure for LSI testing,” in Proc. 14th Design Automa-
tion Conf., pp462-468, Jun. 1977.

[3] V.D. Agrawal and K.-T. Cheng, “A complete solution
to the partial scan problem,” in Proc. Int. Test Conf.,
pp.44-51, 1987.

[4] V. Chickermane and J.H. Patel, “An optimization based

approach to the partial scan design problem,” in Proc.

Int. Test Conf., pp.377-386, 1990.

[5] S. Devadas, H.-K.T. Ma, A.R. Newton, and A.
Sangiovanni-vincentelli, “A synthesis and optimization
procedure for fully and easily testable sequential ma-
chines,” IEEE Trans. Computer-Aided Design, vol.8,
10.10, pp.1100-1107, Oct. 1989.

[6] V.D. Agrawal and K.-T. Cheng, ”Finite state machine
synthesis with embedded test function,” Jour. Electronic
Testing: Theory and Applic., 1, pp.221-228, 1990.

[7] B. Eschermann and H.-J. Wunderlich, “Optimized syn-
thesis techniques for testable sequential circuits,” IEEE

Trans. Computer-Aided Design, vol.11, no.3, pp-301-
312, Mar. 1992.

[8] F.C. Hennie, Finite State Models for Logical Machines.
John Wiley, New York, 1968.

[9] K.-T. Cheng and V.D. Agrawal, “Initializability consid-
eration in sequential machine synthesis,” IEFEE Trans.
Comput., vol.41, no.3, pp.374-379, Mar. 1992.

[10] N. Jiang, R.M. Chou, and K.K. Saluja, “Synthesizing
finite state machines for minimum length synchronizing

sequence using partial scan,” in Dig. 25th Int. Symp.
Fault-Tolerant Comput., pp.41-49, Jun. 1995.

[11] I. Pomeranz and S.M. Reddy, “On the role of hardware
reset in synchronous sequential circuit test generation,”
IEEE Trans. Comput., vol.43, no.3, pp.1100-1105, Sep.
1994.

[12] S. Yang, “Logic synthesis and optimization benchmarks
user guide version 3.0,” Microelectronics Center of North
Carolina, Research Triangle Park, NC, Tech. Rep., Jan.
1991.

[13] T. Masuzawa, T. Inoue, H. Youra, and H. Fujiwara,
“One resettable variable is almost sufficient for synthe-
sizing synchronizable FSMs,” Graduate School of In-
formation Science, Nara Institute of Science and Tech-
nology, Tech. Rep., NAIST-IS-TR96014, 1996 (avail-
able from http://isw3.aist-nara.ac.jp/IS/TechReport2/
report/96014.ps).

