
A Non-Scan DFT Method for Controllers to Achieve Complete Fault Efficiency

Satoshi Ohtake Toshimitsu Masuzawa Hideo Fujiwara
Graduate School of Information Science, Nara Institute of Science and Technology

8916-5, Takayama, Ikoma, Nara 630-0101, Japan

E-mail: satosi-o, masuzawa, fujiwara @is.aist-nara.ac.jp

Abstract This paper presents a non-scan design-for-test-
ability method for controllers that are synthesized from
FSMs (Finite State Machines). The proposed method can
achieve complete fault efficiency: test patterns for a combi-
national circuit of a controller are applied to the controller
using state transitions of the FSM. In the proposed method,
at-speed test application can be performed and the test ap-
plication time is shorter than previous methods. Moreover,
experimental results show the area overhead is low.

1. Introduction
Testing of large VLSI circuits is a well-known hard prob-

lem. It is necessary to reduce the cost of testing and to en-
hance the quality of testing. The cost of testing is estimated
by test generation time and test application time. The qual-
ity of testing is estimated by fault efficiency1. Therefore,
we have to reduce test generation time and test application
time and to enhance fault efficiency.
For combinational circuits, efficient test generation algo-

rithms are proposed[1] to generate test patterns and com-
plete (100%) fault efficiency can be achieved. On the
other hand, for sequential circuits, any test generation al-
gorithm generally can not attain complete fault efficiency
within reasonable time since the search space of test gen-
eration grows explosively as the number of flip-flops (FFs)
increases. Therefore, several design-for-testability (DFT)
methods for sequential circuits are proposed.
One of the most commonly used DFT methods for se-

quential circuits is the full-scan DFT method[1]. A sequen-
tial circuit consists of a combinational logic block and a
state register (set of FFs). In order to control and to observe
the value of the state register, the full-scan DFT method re-
places each FF in the state register with a scannable FF. By
considering the state register as primary inputs/outputs, a
combinational test generation algorithm can be used to ob-
tain a test sequence with short test generation time and to
achieve complete fault efficiency. However, as the num-
ber of FFs of the state register becomes larger, test applica-

1Fault efficiency is the ratio of the number of faults detected or proved
redundant to the total number of faults.

tion time becomes longer because of scan in/out operations.
Furthermore, this method excludes at-speed test application
(test application at the operational speed). Maxwell et al.[2]
show that the number of physical faults detected by apply-
ing test patterns for stuck-at faults at the operational speed
is larger than that at slow speed. Therefore, at-speed test
application is important.
A non-scan DFT method which allows at-speed test ap-

plication is proposed by Patel et al.[3]. In their method,
for a sequential circuit, a set of FFs in the state register is
selected to control the values of those FFs directly from pri-
mary inputs. To make those FFs controllable, multiplexers
are inserted in front of those FFs. If the number of primary
inputs is larger than or equal to the number of FFs in the
state register, all the FFs in the state register can be con-
trolled from primary inputs, and thus a combinational test
generation algorithm can be used. On the other hand, if the
number of primary inputs is smaller than the number of FFs
in the state register, some FFs are not directly controllable
from primary inputs. Therefore, a sequential test generation
algorithm must be used, and hence complete fault efficiency
is not always guaranteed.
In this paper, we present a non-scan DFT method for

controllers which guarantees complete fault efficiency. In
this method, test patterns for a combinational logic block of
a controller is generated using a combinational test genera-
tion algorithm. Each generated test pattern consists of the
values of primary inputs and the state register. If the value
of the state register can be stored by state transitions from
the reset state, the test pattern can be applied using the state
transitions. However, some test patterns may contain values
of the state register that cannot be stored by state transitions
from the reset state. We call states corresponding to such
values invalid states. We append an extra logic to the con-
troller so that it generates those invalid states. The proposed
method has the following advantages:
1. Test patterns can be generated by combinational test
generation algorithms.

2. Complete fault efficiency can be achieved.
3. Test application time is shorter than previous methods.
4. At-speed testing can be performed.

IEEE the 7th asian test symposium (ATS'98), pp. 204-211, Dec. 1998.



s1 s2 s3

s4 s5

s6

s0

R

si : state
R : reset signal

Figure 1: A finite state machine (FSM).

In this paper, we also evaluate the effectiveness of the
proposed method by experiments with MCNC’91 FSM
benchmarks. The experimental results show that the pro-
posed method is effective and the area overhead is low.
This paper is organized as follows: Section 2 gives some

definitions. Section 3 describes an overview of our ap-
proach. Section 4 presents a non-scan DFT method for con-
trollers. Section 5 presents a test generation method and
a test application method. Section 6 shows comparison of
the proposed method with previous methods and presents
experimental results.

2. Preliminaries
In register transfer level (RTL) description, a VLSI cir-

cuit generally consists of a controller and a datapath. In
this paper, we consider only controllers. A controller is
described by a finite state machine (FSM). An FSM (see
Figure 1) has one reset state, and it goes to the reset state
regardless of the current state when reset signal is supplied.
A controller is realized by a sequential circuit (see Figure 2)
which is synthesized from an FSM by logic synthesis. A se-
quential circuit consists of a combinational logic block (CC)
and a state register (SR). In the logic synthesis, a state as-
signment is determined to assign a value of the SR to each
state of the FSM. In this paper, for simplicity, we assume
that only a single value is assigned to each state. This as-
sumption makes no restriction on sequential circuits under
consideration. Even if the case that two or more values are
assigned to one state for a sequential circuit, our method
can be applied to the sequential circuit by regarding those
values as different states of the FSM.
Let n be the number of FFs in the SR of a sequential

circuit synthesized from an FSM. Then the SR can represent
2n states which can be classified into valid states and invalid
states as follows.
Definition 1 For any value of the SR in a sequential circuit
synthesized from an FSM, if the corresponding state of the
value is reachable from the reset state, then the state is called
a valid state. Otherwise, the corresponding state is called an
invalid state.

CC

SR

PIs POs

NSPS

R

CC : combinational logic block
SR : state register

PS : present state
NS : next state

PIs : primary inputs
POs : primary outputs
R : reset signal

Figure 2: A sequential circuit.

CC
PIs POs

PPIs PPOs
PPIs : pseudo primary inputs
PPOs : pseudo primary outputs

Figure 3: A combinational test generation model.

In this paper, we consider testing of the combinational
logic block in a sequential circuit under the single stuck-at
fault model. In order to guarantee complete fault efficiency,
we first extract a combinational test generation model from
a given sequential circuit, and then generate test patterns
for the combinational test generation model. The combina-
tional test generation model is defined as follows.
Definition 2 For a sequential circuit (Figure 2), a com-
binational circuit extracted from the sequential circuit by
replacing the SR with pseudo primary inputs and pseudo
primary outputs is called a combinational test generation
model (Figure 3).
Each test pattern for the combinational test generation

model consists of two values; one corresponding to pri-
mary inputs (PIs) and the other corresponding to pseudo
primary inputs (PPIs). We classify those test patterns into
two classes as follows.
Definition 3 If the value of PPIs of a test pattern is a valid
state, the test pattern is called a valid test pattern. Other-
wise, the test pattern is called an invalid test pattern. A
valid state that appears in some valid test pattern is called
a valid test state, and an invalid state that appears in some
invalid test pattern is called an invalid test state.

3. Overview
In this section, we give an overview of our non-scan DFT

method.
For a sequential circuit synthesized from an FSM, our

method achieves complete fault efficiency with short test



generation time and allows at-speed test. In order to gen-
erate a test sequence and achieve complete fault efficiency
with short test generation time, we generate test patterns
for the combinational test generation model of the sequen-
tial circuit using a combinational test generation algorithm.
Each of test patterns consists of the values of primary inputs
(PIs) and pseudo primary inputs (PPIs). In order to apply a
test pattern to the combinational logic block, we have to set
the value of PPIs of the test pattern to the SR of the sequen-
tial circuit. If the value corresponds to a valid state (i.e., the
test pattern is a valid test pattern), the value of PPIs can be
set to the SR using original state transitions of the FSM.
On the other hand, if the value corresponds to an invalid

state (i.e, the test pattern is an invalid test pattern), the value
of PPIs can not be set to the SR using state transitions of the
FSM. In order to set the invalid state to the SR, we append
an extra logic which generates all invalid test states to the
synthesized sequential circuit. Note that we just append the
extra logic but do not change the combinational logic block.
This guarantees complete fault efficiency.
We show details of the non-scan DFT method in Section

4 and the corresponding test generation method and test ap-
plication method in Section 5.

4. Design for Testability
In this section, we propose a non-scan DFT method for

controllers.

4.1. Processes of DFT
We assume that a controller is given as an FSM. A non-

scan DFT method for a controller consists of the following
four steps.
Step 1: Logic synthesis

Given an FSM, we synthesize a sequential circuit from
the FSM. Here, we assume that the information of the
state assignment can be utilized in the following steps.

Step 2: Combinational test generation
From the synthesized sequential circuit, we extract the
combinational test generation model. Then, we gen-
erate test patterns for the combinational test genera-
tion model using a combinational test generation algo-
rithm.

Step 3: Appending an extra logic
We append an extra logic that can set all invalid test
states to the SR as follows.
Step 3.1: Synthesizing ISG

We synthesize a combinational logic called an in-
valid test state generator (ISG) that can generate
all invalid test states as follows. First, we gener-
ate an FSM that can traverse all invalid test states
from the reset state of the given FSM (see Fig-
ure 4). The traversing order and the input val-

is1

is2

is3

is5

is4

t 1

si : valid state is j : invalid test state
t : mode switching signal

s1 s2 s3

s4 s5

s6

s0

R

Figure 4: An FSM traversing invalid test states.

ues causing these transitions can be determined
arbitrarily. We can achieve complete fault effi-
ciency despite of them while the amount of hard-
ware overhead depends on them. Then, the ISG
is synthesized from the generated FSM. Notice
that, the state assignment of these invalid test
states is already determined at Step 1 and Step
2.

Step 3.2: Appending ISG
The ISG generated above is appended to the se-
quential circuit synthesized at Step 1 with a mul-
tiplexer (MUX), a mode switching signal t and
state output signals t out (Figure 5). The mode
switching signal t controls the MUX and is set to
one only when an invalid test state must be set to
the SR during test. The state output signals t out
is used to observe the responses of test patterns.

The SR of the sequential circuit can represent 2n (n: the
number of FFs of the SR) states. The number of invalid test
states is at most the number of test patterns. It is conceiv-
able that the number of invalid test states is much smaller
than that of states represented by the SR. Thus we expect
that the test application time does not become long and the
hardware overhead caused by the extra logic is not high.
The transitions to invalid test states are used only during
test application. Therefore, we can append the extra logic
to the synthesized sequential circuit without changing the
combinational logic block.
Step 4: Adding hold mode to the state register

Finally, we add hold mode to the SR. This hold mode
is utilized to reduce test application time. We give the
details in Section 5.

While we assume a controller is given as an FSM, this
assumption makes no restriction on controllers under con-
sideration. Even in the case that a controller is given as a
gate-level circuit, this method can be applied by extracting
an FSM from the circuit using a state machine extraction
algorithm (e.g. one available in SIS[4]).



CC
PI PO

SR

t out

t
H

R

ISG

t : mode switching signal
t out : state output signals

H : hold/load signal
ISG : invalid test state generator

MUX
0

1

Figure 5: A controller augmented with an invalid test
state generator.

4.2. Delay overhead

For a sequential circuit (a controller), the proposed DFT
method appends an MUX in front of the SR and add hold
mode to the SR. Thus, a delay overhead is caused at nor-
mal operation of the controller due to the MUX and an extra
logic for hold mode of the SR. However, the delay overhead
is the same as the full-scan DFT method. Moreover, con-
trollers can be designed and synthesized with taking the de-
lay overhead into consideration because the delay overhead
can be estimated at the first step of designing controllers.
On the other hand, an ISG gives no affect to the normal

operation of a controller. If we can synthesize the ISG with
shorter delay than the combinational logic block, we can
perform test application at the normal operation speed.

4.3. Area overhead

For a sequential circuit (a controller), the proposed DFT
method has an area overhead due to the ISG , the MUX,
and an extra logic for hold mode of the SR. The areas of the
MUX and the extra logic are the same as that of the full-
scan DFT method. This method appends the ISG which
generates the invalid test states to the sequential circuit. The
order of the invalid test states generated by the ISG does
not affect fault efficiency. However, it is conceivable that
the order affects the area of the ISG . Therefore, we can
minimize the area overhead by considering the appropriate
order of the invalid test states.
If we design a sequential circuit as shown in Figure 6,

we can control the values of some FFs in the SR directly
from primary inputs. In this case, only the values of the FFs
which can not be controlled directly from primary inputs
have to be generated by the ISG , and thus, the number of
invalid states generated by the ISG are reduced. Therefore,
the area of the ISG can be reduced.

CC
PI PO

SR

t out

t
H

R

ISG MUX

1

0
0

1

Figure 6: An example of invalid test state generation
using primary inputs.

4.4. Observation points

We suppose that t out shown in Figures 5 and 6 is an
observation point for testing. Thus primary output pins for
t out are required. However, due to limitation of the number
of primary output pins, we may not use sufficient primary
output pins for t out. An RTL circuit generally consists of
a controller and a datapath. When testing the controller, the
datapath is not used. Hence we can use the primary output
pins of the datapath as the observation points of the con-
troller. Thus, t out can be observed at the primary output
pins of the datapath by inserting an extra MUX in front of
the primary output pins. In the case when the datapath does
not have sufficient primary output pins, we can observe a
parity of t out using an XOR tree. If an error of a fault is
observed at an odd number of t out, the fault can be de-
tected. If an error of a fault is observed at an even number
of t out, the fault can not be detected. Fujiwara et al.[5]
show that, for most faults, an error of a fault is observed at
an odd number of outputs by experiments with ISCAS’89
benchmarks.

5. Test Application Method
In this section, we propose a test application method cor-

responding to the proposed non-scan DFT method for con-
trollers. Here, we only discuss application of test patterns
because we assume that responses of test patterns can be
observed as mentioned above.

5.1. Applying valid test patterns

Each valid test pattern can be applied to a sequential cir-
cuit using normal operation of the sequential circuit as fol-
lows.
Step 1: Applying PPI value of a test pattern

First, we find a transition sequence from the reset state
to the valid test state corresponding to the PPI value of
the test pattern. Then, we set the valid test state to the



: PIs’ value of a test pattern 
: PPIs’ value of a test pattern

PI
SR
PO

t

R
H

CLK

t out
time

1
0
1
0
1
0
1
0

transition sequence

output responses

a valid test pattern
a valid test states0 si

Figure 7: Applying valid test patterns.

SR (see Figure 7) by applying the transition sequence
under the normal operation mode (the mode switching
signal t 0).

Notice that, if the combinational logic block contains a
fault, we may not set the valid test state to the SR. However,
the fault can be detected during the above step because the
value loaded into the SR can be observed from t out.
Step 2: Applying PI value of a test pattern

We apply the PI value of the test pattern to the primary
inputs of the sequential circuit (see Figure 7).

For a valid test state, there may exist two or more valid
test patterns which contain the valid test state. Therefore,
the length of the test sequence can be reduced if we apply
the PI values of the test patterns one after another with hold-
ing the PPI value at the SR (see Figure 8).
Moreover, a valid test state s j may be reached from an-

other valid test state si by transitions of the normal operation
without reset. Therefore, we can reduce the length of a test
sequence if we can set s j to the SR using the transitions
without reset (see Figure 8). Notice that, in this case, we
have to hold the state si in the SR for one more cycle af-
ter applying all test patterns that contain the state si as (2)
in Figure 8. Hence a transition sequence which starts from
the reset state and traverses all valid test states can set all
PPI values to the SR. We call such a transition sequence a
valid test state traversing sequence. Here, there always ex-
ists such a valid test state traversing sequence because any
valid test state is reachable from the reset state and the reset
state can be reached from any state using the reset signal.
Let Lvt and Nvp be the length of a valid test state traversing
sequence and the number of valid test patterns, respectively.
The length of a test sequence required to apply all valid test
patterns is Lvt Nvp.
We can obtain the shortest test sequence required to ap-

ply all valid test patterns, if we obtain the shortest valid
test state traversing sequence. We can obtain the shortest
valid test state traversing sequence by solving the traveling
salesman problem (TSP)[6] at a directed graph where nodes
are all valid test states and the weight between nodes is the
length of the shortest transition sequence between the two
states. Although TSP is an NP-hard problem, we can ob-

1
0
1
0
1
0
1
0

PI trans.
SR
PO

t

R
H

CLK

t out
time

s0 si s j
trans.

(1) (2)

Figure 8: Applying valid test patterns using hold
mode of state register.

PO

t

R
H

CLK

t out

1
0
1
0
1
0
1
0

time

s0 is1 is4is2 is3
PI
SR

Figure 9: Applying invalid test patterns.

tain the shortest (or may be nearly shortest) valid test state
traversing sequence using existing heuristic algorithms for
TSP.
Notice that, time required to solve TSP is much shorter

than the total test generation time of our method because the
number of states of the FSM is generally much smaller than
that of gates of the test generation model of the sequential
circuit synthesized from the FSM.

5.2. Applying invalid test patterns

Each of invalid test patterns can be applied in the same
way as valid test patterns using the ISG (invalid test state
generator). In the rest of this paper, for simplicity, we as-
sume that primary inputs are not used as inputs of the ISG .
The transition modes are switched as shown in the timing
chart of Figure 9.
The length of the shortest invalid state transition se-

quence (included applying reset signal at the beginning) is
the number of invalid test states plus 1 because the ISG
generates all invalid test states in turn. Therefore, letting Nis
and Nip be the numbers of invalid test states and invalid test
patterns, respectively, the length of a test sequence required
to apply all invalid test patterns is Nis Nip 1. In the worst
case, the length of the test sequence is only Nip 2 1.

5.3. Testing of extra logic

Appended logic circuits in the DFT process are an ISG
and an MUX added in front of the SR. Since the ISG is
not used at the normal operation, we test the ISG only to
confirm that the invalid test states are generated correctly.



It is performed by observing state output signals t out at in-
valid test pattern application, simultaneously. Testing of the
MUX is performed as follows. Since appending the MUX
in front of SR is known beforehand, we can generate test
patterns for a combinational test generation model includ-
ing the MUX.

6. Advantage of Our Method
In this section, we compare our DFT method with

the full-scan DFT method[1] and Patel’s non-scan DFT
method[3] in test generation time, fault efficiency, test ap-
plication time and area overhead. Then we present the re-
sults of experiments.

6.1. The full-scan DFT method

Given a sequential circuit, the full-scan DFT method
guarantees complete fault efficiency and can generate a test
sequence with short test generation time because a test gen-
eration model of the sequential circuit is a combinational
circuit. However, the method requires scan in/out opera-
tions for applying and observing test patterns, and thus it
requires extremely long test application time. Letting AMUX
and NFF be the area of a MUX (two one bit inputs and one
bit output) and the number of FFs, respectively, the area
overhead of the method is NFF AMUX because each FF of
the SR is replaced with a scannable FF. Letting Npat be the
number of test patterns, the test application time required
to apply all test patterns and to observe the responses is
Npat NFF 1 NFF. Therefore, if the number of FFs
of the SR is larger, the test application time is longer.
This method does not allow at-speed test application be-

cause the speed of scan sifting operation is slower than the
normal operation speed.

6.2. Patel’s non-scan DFT method

Given a sequential circuit, Patel’s non-scan DFT method
appends an MUX to control the values of some FFs in the
SR directly from primary inputs. The controllable FFs are
selected to cut feedback loops except self loops and to max-
imize controllability. The observability of the circuit is im-
proved by inserting observation points which are connected
to an XOR tree circuit with a primary output.
If the number of primary inputs is equal to or larger than

that of FFs in the sequential circuit, all FFs can be controlled
directly from the primary inputs, and thus this method can
guarantee complete fault efficiency and can generate a test
sequence with short test generation time because the test
generation model is a combinational circuit. In this case,
the area overhead is NFF AMUX. In order to apply each of
test patterns, two system clock cycles are required because
the value of the SR is set through primary inputs. The test

application time required to apply all test patterns and to
observe the responses is Npat 2 1 cycles.
On the other hand, if the number of primary inputs

is smaller than that of FFs in the sequential circuit, this
method can not guarantee complete fault efficiency and re-
quires long test generation time generally because the test
generation model is a sequential circuit. Moreover, the gen-
erated test sequence tends to become longer because the se-
quence contains initialization sequences of FFs which are
not controlled directly from primary inputs. In this case,
letting NPI be the number of primary inputs, the area over-
head is NPI AMUX. Letting Lseq be the length of obtained
test sequence, the test application time required to apply all
test patterns and to observe the responses is Lseq 2 1
cycles.
In this method, at-speed test application can be per-

formed.

6.3. Our method

Given a sequential circuit, our non-scan DFT method
can guarantee complete fault efficiency. Test generation
of our method for a controller consists of generating test
patterns for the test generation model and obtaining a valid
test state traversing sequence of the FSM. Test sequence for
the controller is constructed from these test patterns using
the valid test state traversing sequence. Those test patterns
can be generated with short test generation time because
the test generation model is a combinational circuit. Notice
that, time required to obtain the valid test state traversing
sequence is negligible compared to the combinational test
generation time. Letting AISG be the area of the ISG , the
area overhead is NFF AMUX AISG . The ISG is a com-
binational logic which generates only invalid test states. In
Section 6.4, we evaluate the area with experiments using
FSM benchmarks. Letting Lvt and Nis be the length of a
valid test state traversing sequence and the number of in-
valid test states, respectively, the test application time re-
quired to apply all test patterns and to observe the responses
is Lvt Nis Npat 2 cycles.
In this method, at-speed test application can also be per-

formed.

6.4. Experimental Results

We show experimental results with MCNC’91 FSM
benchmark set[7]. The benchmark characteristics and re-
sults of logic synthesis are shown in Table 1. In our experi-
ment, we used a logic synthesis tool AutoLogic II (Mentor-
Graphics) with sample libraries of MentorGraphics on S-
4/20 model 712 (Fujitsu) workstation. Columns “circuit”,
“#states”, “#PIs” and “#POs” denote FSM name, the num-
ber of states, the number of primary inputs and the number
of primary outputs of original FSMs, respectively. Columns



Table 1: FSM benchmark characteristics and areas af-
ter logic synthesis.

circuit #states #PIs #POs #FFs area (gates)
bbara 10 4 2 4 410.30
bbsse 16 7 7 4 781.20
bbtas 6 2 2 3 87.60

beecount 7 3 4 3 331.50
dk14 7 3 5 3 295.10
dk16 27 2 3 5 510.40
dk27 7 1 2 3 92.00
dk512 15 1 3 4 220.80
ex1 20 9 19 5 2740.50
ex2 19 2 2 5 416.90
ex3 10 2 2 4 192.80
ex4 14 6 9 4 479.20
ex5 9 2 2 4 183.70
ex7 10 2 2 4 189.60
keyb 19 7 2 5 1835.40
lion9 9 2 1 4 322.10
opus 10 5 6 4 567.60

planet1 48 7 19 6 2791.10
planet 48 7 19 6 2791.10
pma 24 8 8 5 1068.60
s1488 48 8 19 6 6190.20
s1494 48 8 19 6 6242.80

s1 20 8 6 5 2396.00
s208 18 11 2 5 2361.30
s27 6 4 1 3 416.30
s298 218 3 6 8 8720.80
s386 13 7 7 4 1241.10
s420 18 19 2 5 2217.50
s510 47 19 7 6 1184.20
s820 25 18 19 5 4411.00
s832 25 18 19 5 4543.70
sse 16 7 7 4 781.20
styr 30 9 10 5 2748.90
tma 20 7 6 5 802.70

train11 11 2 1 4 364.50

“#FFs” and “area” denote the number of FFs and circuit ar-
eas after synthesis, respectively. Here, areas are estimated
using gate equivalent of the library cell area.
Table 2 shows test generation results of each method. We

used a combinational/sequential test generation tool Test-
Gen (Sunrise) on the workstation. Columns “Scan”, “Pa-
tel” and “Ours” in column “TG time” denote test generation
time in seconds of the full-scan method, Patel’s method and
our method, respectively. Similarly, column “TA time” de-
notes test application time in cycles.
Test generation time of the proposed method is the same

as that of the full-scan DFT method because test patterns
are generated for the same combinational test generation
model. In the column “circuit”, symbol “ ” denotes that
the number of primary inputs is larger than or equal to the
number of FFs. In Patel’s method, the combinational test
generation algorithm can also be applied to these circuits.
Thus Patel’s method guarantees complete fault efficiency
for these circuit. Experimental results show that fault ef-

Table 2: Test generation results of each method.

TG time (sec) TA time (cycles)
circuit Scan Patel Ours Scan Patel Ours
bbara 0.99 0.99 0.99 334 131 87
bbsse 1.79 1.79 1.79 399 159 101
bbtas 0.16 0.27 0.16 71 121 27

beecount 0.67 0.67 0.67 199 95 60
dk14 0.46 0.46 0.46 231 113 68
dk16 1.08 12.97 1.08 623 1661 153
dk27 0.21 0.39 0.21 71 169 31
dk512 0.34 2.21 0.34 199 537 72
ex1 14.82 14.82 14.82 1613 527 312
ex2 0.75 8.79 0.75 485 1513 123
ex3 0.48 1.74 0.48 244 575 71
ex4 0.95 0.95 0.95 304 119 78
ex5 0.44 1.52 0.44 244 545 71
ex7 0.35 1.46 0.35 194 587 60
keyb 16.79 16.79 16.79 1409 491 270
lion9 0.45 1.52 0.45 239 529 65
opus 1.11 1.11 1.11 394 151 106

planet1 11.56 11.56 11.56 1574 453 405
planet 12.72 12.72 12.72 1574 453 405
pma 4.17 4.17 4.17 947 315 200
s1488 72.07 72.07 72.07 3149 871 629
s1494 78.26 78.26 78.26 2981 859 633

s1 15.11 15.11 15.11 1241 433 262
s208 31.51 31.51 31.51 1607 497 301
s27 0.88 0.88 0.88 199 97 61
s298 254.01 9581.75 254.01 9890 36251 2446
s386 3.59 3.59 3.59 514 207 123
s420 22.48 22.48 22.48 1439 465 273
s510 3.56 3.56 3.56 916 269 194
s820 48.50 48.50 48.50 2225 727 442
s832 50.91 50.91 50.91 2297 787 450
sse 1.73 1.73 1.73 399 159 101
styr 16.37 16.37 16.37 1367 475 293
tma 2.41 2.41 2.41 653 229 156

train11 0.62 2.35 0.62 274 779 77

ficiency of s298 is 99.55% and other circuits are 100% in
Patel’s method. The full-scan method and our method guar-
antee complete fault efficiency for all circuits.
Test application time of the full-scan and Patel’s methods

are calculated from the formulas mentioned in Sections 6.1
and 6.2, respectively. Test application time of our method
is calculated from the formula mentioned in Section 6.3.
In order to obtain a valid test state traversing sequence, we
implemented a simple algorithm to solve the TSP. In our
method, for all circuits, the length of each test sequence is
shorter than other two methods. Particularly, in s298, the
ratio of our method to the full-scan method is one to four
and of our method to Patel’s method is one to fifteen. If a
more efficient algorithm is used to solve the TSP, the test
application time of our method may become shorter.
Table 3 shows area overheads of each method. Columns

“Scan”, “Patel” and “Ours” in column “#MUXes” denote
the number of MUXes of each method. The MUXes over-
head of our method is equal to the full-scan method and is
generally larger than Patel’s method. Column “Our ISG



Table 3: Area overheads of each method.

#MUXes Our ISG area
circuit Scan Patel Ours (gates (ratio))
bbara 4 4 4 0 ( 0%)
bbsse 4 4 4 0 ( 0%)
bbtas 3 2 3 1.20 (1.36%)

beecount 3 3 3 0 ( 0%)
dk14 3 3 3 0 ( 0%)
dk16 5 2 5 39.30 (6.13%)
dk27 3 1 3 1.20 (1.30%)
dk512 4 1 4 7.00 (3.17%)
ex1 5 5 5 0 ( 0%)
ex2 5 2 5 34.70 (8.32%)
ex3 4 2 4 11.70 (6.06%)
ex4 4 4 4 0 ( 0%)
ex5 4 2 4 12.90 (7.02%)
ex7 4 2 4 14.10 (6.80%)
keyb 5 5 5 0 ( 0%)
lion9 4 2 4 1.20 (0.37%)
opus 4 4 4 0 ( 0%)

planet1 6 6 6 0 ( 0%)
planet 6 6 6 0 ( 0%)
pma 5 5 5 0 ( 0%)
s1488 6 6 6 0 ( 0%)
s1494 6 6 6 0 ( 0%)

s1 5 5 5 0 ( 0%)
s208 5 5 5 0 ( 0%)
s27 3 3 3 0 ( 0%)
s298 8 3 8 255.60 (2.16%)
s386 4 4 4 0 ( 0%)
s420 5 5 5 0 ( 0%)
s510 6 6 6 0 ( 0%)
s820 5 5 5 0 ( 0%)
s832 5 5 5 0 ( 0%)
sse 4 4 4 0 ( 0%)
styr 5 5 5 0 ( 0%)
tma 5 5 5 0 ( 0%)

train11 4 2 4 11.70 (3.20%)

area” denotes ISG area overhead in gate equivalent and
percentage of the area for the corresponding controller.
Here, each ISG was synthesized as Figure 6. Although
the order of generating valid test states affect the area of the
ISG , in this experiments, we determined simply the order.
Area overheads of circuits with “ ” in Table 2 are all zero
because these circuits do not require ISGs. The average of
ISG area overhead over the circuits requiring ISGs (ex-
cluding the circuits with “ ”) is only 3.5%. The smallest
overhead is 0.37% and the largest is only 8.32%. The ISG
area overhead can be more reduced as mentioned in Section
4.3.
Experimental results show that the proposed method

guarantees complete fault efficiency and generates test pat-
terns with short test generation time. Although some bench-
marks require ISGs, the ISG area overhead is very small
(the average of the area overhead is only 3.5%). More-
over, we also show that test application time of the proposed
method is shorter than other two methods for all bench-
marks.

7. Conclusion
Although the full-scan DFT method can achieve com-

plete fault efficiency with short test generation time, it needs
extremely long test application time. Moreover, it does not
allow at-speed test application. Although Patel’s non-scan
DFT method allows at-speed test application, it is not guar-
anteed to achieve complete fault efficiency with short test
generation time.
In this paper, we proposed a new DFT method for con-

trollers to achieve complete fault efficiency with short test
generation time. The DFT method allows at-speed test ap-
plication. We also proposed a test application method cor-
responding to the DFT method. Experimental results show
that the test application time of the proposed method is
shorter than that of previous methods for all FSM bench-
marks. The average area overhead of ISG is only 3.5% for
FSM benchmarks which require ISGs to be appended.

Acknowledgments The authors would like to thanks
Drs. Tomoo Inoue and Michiko Inoue of Nara Institute of
Science and Technology for their valuable discussions. This
work was supported in part by Semiconductor Technology
Academic Research Center (STARC) under the Research
Project.

References
[1] H. Fujiwara: Logic Testing and Design for Testability, The

MIT Press, 1985.
[2] P. C. Maxwell, R. C. Aitken, V. Johansen and I. Chiang: “The

effect of different test sets on quality level prediction: when is
80% better than 90%?,” in Proc. of International Test Confer-
ence, pp. 358–364, 1991.

[3] V. Chickermane, E. M. Rudnick, P. Banerjee and J. H. Patel:
“Non-scan design-for-testability techniques for sequential cir-
cuits,” in Proc. of 30th ACM/IEEE Design Automation Con-
ference, pp. 236–241, 1993.

[4] E. M. Sentovich et al.: “SIS: A system for sequential circuit
synthesis,” Technical Report UCB/ERL-M92/41, University
of California, Berkeley, 1992.

[5] H. Fujiwara and A. Yamamoto: “Parity-scan design to reduce
the cost of test application,” IEEE Transaction on Computer-
Aided-Design, Vol. 12, No. 10, pp. 1604–1611, 1993.

[6] M. R. Garey and D. S. Johnson: Computer and Intractability,
W. H. Freeman and Company, 1979.

[7] S. Yang: “Logic synthesis and optimization benchmarks user
guide,” Technical Report 1991-IWLS-UG-Saeyang, Micro-
electronics Center of North Carolina, 1991.

[8] H. Wada, T. Masuzawa, K. K. Saluja and H. Fujiwara: “A
non-scan DFTmethod for RTL data paths to provide complete
fault efficiency (in Japanese),” Technical Report VLD97–79,
IEICE, 1997.


