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Abstract

We present a high-level synthesis method that considers
weak testability of generated register-transfer level (RTL)
data paths, as well as their area and performance. The
weak testability, proposed in our previous work, is a testa-
bility measure of RTL data paths for non-scan design. We
introduce a design objective for weak testability that is a
condition on resource sharing sufficient for weak testability.
We propose a heuristic synthesis algorithm that generates a
weakly testable data path while minimizing area under a
performance constraint.
Key words: high-level synthesis, testability, sequential
ATPG, non-scan design

1. Introduction

This paper addresses testability consideration of VLSI
circuits during high-level synthesis. Such early considera-
tion to testability in the design process is one of the most ef-
fective ways to reduce testing cost. High-level synthesis for
testability has been investigated in the several literatures[6].
They include such various testability goals as partial scan
designs easily testable for sequential automatic test pattern
generation (ATPG)[14, 8, 7, 11], full scan designs to make
combinational ATPG[12] applicable, designs for hierarchi-
cal testability[2], or designs for self testability[1, 5, 4]. In
this paper, we propose a high-level synthesis method gener-
ating easily testable data paths. Our work is mainly different
from the previous related works in the following two points.
(1) Our target is aweak testabilitywhich is a testability mea-
sure of register-transfer level (RTL) data paths whose target
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is non-scan design for sequential ATPG[15]. (2) We give
testability consideration from the beginning of high-level
synthesis. High-level synthesis consists of several tasks
such as scheduling and binding. In most works (except for
a few) on high-level synthesis for testability, testability is
considered only during binding after scheduling.

Scan design is the most popular method generating eas-
ily testable design both for combinational and sequential
ATPG. Full scan design guarantees high fault coverage and
high fault efficiency obtained by combinational ATPG, but
it makes much sacrifices of performance and area and it
takes long test application time. Though partial scan de-
sign improves such disadvantages while giving up combina-
tional ATPG, there still remains problems of area overhead
and long test application time. Moreover, scan design has
another disadvantage, incapability of at-speed testing[9].
Recently, some non-scan design-for-testability (DFT) tech-
niques for RTL data paths were proposed by Dey et al.[3]
and Takabatake et al.[15]. The latter is our previous work,
where we defined a new testability measure called weak
testability for RTL data paths and presented a DFT tech-
nique which uses thru module to make the data path weakly
testable. Experimental results showed the effectiveness of
the proposed testability measure and the DFT technique. In
this paper, we consider the weak testability during high-
level synthesis that is a design stage earlier than RTL. This
is the first high-level synthesis technique generating easily
testable non-scan design for sequential ATPG.

Scheduling and binding are main tasks of high-level syn-
thesis. Scheduling assigns operations to control steps where
they are executed. Binding assigns variables and delays
to registers, operations to operational modules, and data
transfers to interconnection units (e.g., connection lines and
multiplexors). Testability of an RTL data path much de-
pends on the data path structure, and binding determines
the structure. Therefore, many previous works consider
testability during binding after scheduling. There are some
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few works, to the best of our knowledge, that consider
testability during scheduling[8, 5, 14, 4]. In the first two
works[8, 5], scheduling methods are not their major contri-
bution. They consider some supplementary heuristic rules
to support the other tasks succeeding to the scheduling. In
other works, generated RTL data paths are restricted to the
model called a register file model[14] (They succeeded in
simultaneous consideration of scheduling and operational
module binding in this restricted model.), or a genetic algo-
rithm approach that attempts to optimize area, performance
and testability is proposed[4]. Scheduling has a great influ-
ence on possibility of resource sharing and consequently on
binding. Therefore, testability consideration from schedul-
ing is necessary to generate testable design. In this pa-
per, we propose a high-level synthesis method which gen-
erates weakly testable data paths while optimizing perfor-
mance and area. This method includes testability analysis
for data flow graph (DFG) before synthesis, and high-level
synthesis tasks, scheduling and binding, which consider the
weak testability. The testability analysis phase is distinc-
tive, where we extract constraints on resource sharing from
a given DFG for testability. Testability is considered as con-
straint on resource sharing in the succeeding high-level syn-
thesis tasks such as scheduling and binding.

The rest of the paper is organized as follows. In Section
2, some basic definitions and a definition of weak testability
are given. In Section 3, we propose a high-level synthesis
method that generates weakly testable data path. Experi-
mental results appear in Section 4. Conclusions are given in
Section 5.

2. Models and Testability

Our high-level synthesis method is applied to a data flow
graph (DFG), and transforms it into an RTL data path. We
first define these two models at different levels.

A DFG is a digraph G V E , which represents behav-
ior of a circuit. The nodes are classified into primary inputs,
primary outputs, operations and delays. A delay is used in
the case where an output sequence is computed iteratively
for some input sequence, where a delay represents to hold a
value obtained in one iteration to use in the succeeding iter-
ations. A directed edge e u v in E represents a data flow
from a node u to a node v. We call a set of edges outgoing
from the same tail but not incoming to a delay a variable.
Figure 1 shows a DFG of the 3rd order lattice wave filter
(3LWF). It has one primary input PI, one primary output
PO, 5 operations labeled by or , 3 delays D1 D2 D3,
and 7 variables in out d1 d3 a b c.

A data path consists of hardware elements (primary in-
puts, primary outputs, registers, multiplexors, and mod-
ules)1 and connection lines with some bit-width. We define

1We consider that constants are included within modules.
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Figure 1. DFG of 3LWF.

weak testability of a data path using weak controllability
and weak observability of hardware elements. Intuitively,
weak controllability of a hardware element H means that
some value (not necessarily any) on the output of H can
be justified from primary inputs, and weak observability of
a hardware element H means that some value on the output
ofH can be propagated to primary outputs. In the following
formal definition, H1 X (resp. H1 H2) means that there
is a connection line from the output of a hardware element
H1 to an input X of some hardware element (resp. some in-
put of a hardware element H2). Let PI , R eg, M ux and M
denote sets or primary inputs, registers, multiplexors, and
modules, respectively. Let IN M denote a set of inputs of a
module M. For an input X of a module, let thru X denote
a predicate representing that the module provides an oper-
ation that returns just the value of the X . We call such an
input thru input.

Definition 1 weak controllability[15]
A set of weakly controllable hardware elements is the min-
imum set Hwc satisfying the following conditions.

1. A primary input.
I PI I Hwc.

2. A register or multiplexor with a weakly controllable
input.
H R eg M ux H Hwc H H H Hwc.

3. A module only with weakly controllable inputs or with
a weakly controllable thru input.
M M X IN M H Hwc H X
X IN M thru X H Hwc H X
M Hwc.

Definition 2 weak observability[15]
A set of weakly observable hardware elements is the mini-
mum set Hwo satisfying the following conditions.

1. A primary output.
O PO O Hwo.
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2. A hardware element connecting to a weakly observ-
able register or multiplexor.
H R eg M ux H Hwo H H H Hwo.

3. A hardware element connecting to a weakly observ-
able module where the connecting input is a thru input
or all the other inputs are weakly controllable.
M M M Hwo X IN M H X thru X
X IN M X H Hwc H X
H Hwo.

Definition 3 weak testability[15]
A data path DP is weakly testable iff all registers in DP are
weakly controllable and weakly observable.

We assume that from any register there exists a path to
some primary output. In this case, if all registers in a data
path are weakly controllable, all registers are also weakly
observable, and hence the data path is weakly testable.
Therefore, we consider only weak controllability in the fol-
lowing.

3. High-level synthesis for weak testability

3.1. Outline

We propose a high-level synthesis method for weak
testability. This is a heuristic that generates a weakly
testable data path with the minimum number of resources
from a DFG under a time constraint, where a resource
means a module or a register, and a time constraint is given
as the number of control steps in which all operations must
be executed. For simplicity, we assume disjoint operation
type sets, that is, for each operation type, a corresponding
module type is uniquely determined. Moreover, we assume
that all operations are single-cycle operations.

Weak testability has a good property that, before synthe-
sis, we can consider a condition on resource sharing suffi-
cient for weak testability of a synthesized data path. We call
such a sufficient condition design objective for weak testa-
bility, or just design objective. Figure 2 shows the outline
of this method. In the method, we first estimate the num-
ber of resources using force-directed scheduling[13] that is
a heuristic minimizing the number of resources under a time
constraint. Then we iteratively attempt design objective ex-
traction, scheduling and binding until satisfying the estima-
tion of the number of resource. In design objective extrac-
tion, we analyze a DFG and extract a design objective as
constraint on resource sharing for weak testability. If we
cannot obtain a data path within the predetermined iteration
limit, we reduce the extracted design objectives, and itera-
tively attempt design objective reduction, scheduling, and
binding until satisfying the resource estimation. Finally, we
apply the DFT technique([15]) to a synthesized data path if
it is not weakly testable.
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Figure 2. High-level synthesis method.

3.2. Design objective

We define weak controllability of an element in a par-
tially bound DFG like for a data path. A partially bound
DFG means that binding to resources are partially deter-
mined. For a partially bound DFG, we call the informa-
tion to specify which elements share a hardware element a
sharing information. A sharing information is a set B
B1 B2 Bk of sharing sets, where each sharing set Bi

represents a set of elements which share the same resource.
For such a partially bound DFG, if some DFG element e
is weakly controllable and it shares the same resource with
another DFG element e , we consider e is also weakly con-
trollable. We define weak controllability and weak testabil-
ity on a DFG as follows. For a DFG, let PI d denote a set
of primary inputs.

Definition 4 weak controllability on a DFG
For a DFG G V E and a sharing information B , a set of
weakly controllable elements in G is the minimum set Ewc
satisfying the followings.

1. A primary input.
pi PI d pi Ewc.

2. An edge outgoing from a weakly controllable node.
u v E u Ewc u v Ewc.
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3. A node whose all incoming edges are weakly control-
lable.
v V u u u v E u v Ewc v Ewc.

4. An edge or node which shares a hardware element with
some weakly controllable one.
B B x B x Ewc B Ewc.

Definition 5 weak testability on a DFG
For a DFG G V E and a sharing information B , if all
variables and delays in G are weakly controllable, G is
weakly testable for B .

If some DFG element is weakly controllable for a shar-
ing information B , the resource to which it is bound is also
weakly controllable if the synthesized data path satisfies B .
This implies that if a DFGG is weakly testable for a sharing
information B , B is a sufficient condition for weak testabil-
ity of a data path synthesized from G. A design objective is
a sharing information sufficient for weak testability.

3.3. Design objective extraction

In general, for a given DFG and a time constraint, there
may be one or more design objectives. To extract good de-
sign objectives, we introduce overlap degree of a sharing in-
formation which represents difficulty for a sharing informa-
tion to be satisfied. For two elements to share the same re-
source, it is necessary that these two elements do not use the
same control step. We derive overlap possibility olp e1 e2
of two operations or two variables from ASAP and ALAP
scheduling. The overlap possibility olp e1 e2 0 implies
that they never use the same control steps, therefore, they
can share a resource. The value ' implies that they nec-
essarily use the same control step and they cannot share a
resource. The value 1 implies they may use the same con-
trol step. We define an overlap degree old of a sharing set
B and of a sharing information B as follows.

old B -
e1 e2 B e1 e2

olp e1 e2

old B -
B B

old B

The value 0 of the overlap degree means that all elements in
each sharing set are sure to use distinct control steps, while
the value ' means some elements in some sharing set use
the same control step and they cannot share a resource.

We extract a design objective with a small overlap degree
from a DFG by the following greedy method. Starting from
an empty sharing information, we repeatedly augment it un-
til it becomes a design objective. We consider two types of
augmentation of a sharing information B . One is to add an
element e to some sharing set B, where e is not weakly con-
trollable for B and all elements in B and e are assigned to

the same type of resource. Another is to add a new sharing
set consisting of a weakly controllable element e1 and a not
weakly controllable element e2 to B , where e1 and e2 are
assigned to the same type of resource. In each iteration, we
select the next augmentation as follows.

1. Select the augmentation such that the increased over-
lap degree is the smallest. If there are two or more such
augmentations, consider the next.

2. Select the augmentation such that the increased num-
ber of types of weakly controllable resources is the
largest. If there are two or more such augmentations,
consider the next.

3. Select the augmentation such that the increased num-
ber of weakly controllable elements is the largest. If
there are two or more such augmentations, select one
of them, arbitrarily.

An extracted design objective is considered as constraint
in the succeeding high-level synthesis tasks. If the succeed-
ing tasks fail to satisfy the extracted design objective, we
extract the next design objective. In this case, the last aug-
mentation is canceled and the design objective extraction
algorithm backtracks.

3.4. Scheduling

Scheduling assigns operations to control steps where
they are executed. First we delete all delay nodes from
a DFG, and apply a scheduling algorithm to the remained
acyclic DFG. We schedule operations for a given sharing
information to be satisfied. For two elements in the same
sharing set to share a resource, it is necessary that two ele-
ments are assigned to different control steps. To represent
such a condition, we add new types of edges to a DFG. We
define two types of edges an operation constraint edge and
a variable constraint edge.

An operation constraint edge op1 op2 means that op2
must be executed after op1. Therefore, two operations never
be executed at the same control step and they can share the
same module. For two operations in the same sharing set
with overlap possibility of 1, we add an operation constraint
edge that is outgoing from the operation whose largest dis-
tance from a primary output is not smaller and incoming to
the other operation. A variable constraint edge op1 op2
means that op2 must be executed at the same control step as
op1 or after. If there exist variable constraint edges from all
operations that use a variable v1 to an operation that gener-
ates a variable v2, two variables never use the same control
steps and they can share a register. For two variables in
the same sharing set with overlap possibility of 1, we add
variable constraint edges that are outgoing from all opera-
tions which use the variable whose largest distance from a
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primary output is not smaller and incoming to an operation
which generates the other variable.
Example. Figure 3 shows an original DFG and an extended
DFG for a design objective 1 4 b f where 1 and 4
are operations and b and f are variables. We add an op-
eration constraint edge 1 4 for a sharing set 1 4 and a
variable constraint edge 2 1 for a sharing set b f .
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Figure 3. (a) original DFG. (b) extended DFG.

We schedule the above extended DFG by the modified
algorithm of the force-directed scheduling algorithm[13].
We modified it so as to consider operation constraint edges
and variable constraint edges.

3.5. Binding

We consider design objective during register binding and
the succeeding module binding. Register binding and mod-
ule binding are performed on a register compatibility graph
and a module compatibility graph, respectively. These are
graphs that represent which DFG elements can share a re-
source. In register binding, we first merge variables in the
same sharing set into one node, and then apply a known
minimum clique partition algorithm[16] to the merged com-
patibility graph. Module binding performs similarly. We
first merge operations in the same sharing set into one node.
Then we repeatedly pick a maximal clique from the merged
compatibility graph and assign operations in the clique to
one module. We repeat this until all operations are assigned.
To minimize the interconnection cost, we select a maximal
clique so that operations that have common input registers
or common output registers belong to the same clique. Fi-
nally, we connect resources by connection lines and multi-
plexors according to a DFG.

3.6. Design objective reduction

If we cannot obtain a weakly testable data path within
the iteration limit, we reduce design objectives. Design
objectives obtained in the preceding extraction are reduced
to sharing information that may not be sufficient for weak

testability. We apply the following one element deletion
and synthesis considering the reduced sharing information
to the extracted design objectives in turn until we obtain a
data path within the estimated number of resources. If we
cannot obtain such a data path, we delete one more element
from reduced sharing informations, and repeat this.

We explain how to delete one element from some sharing
set in a design objective or a sharing information B . Let Ge
be an extended DFG for B . We first find constraint edges
that cause the dissatisfaction of B . For this purpose, we ap-
ply the modified algorithm of a well known list scheduling
algorithm[10] to Ge. It is a heuristic scheduling algorithm
that minimizes the number of control steps under a resource
number constraint. We modified it so as to consider con-
straint edges. If scheduling result exceeds the time con-
straint and some constraint edges appear on critical paths,
we select an element to be deleted among the operations and
variables corresponding to such constraint edges. Other-
wise we select an element among all elements in B . Among
these candidates, we select the element such that an overlap
degree is decreased most by its deletion.

4. Experimental result

We made experiments on the proposed high-level test
synthesis method. Experiments were made on four bench-
mark circuits, the 3rd order lattice wave filter (3LWF,
Fig.1), the 4th order IIR cascade filter (4IIR), the 4th order
Jaumann wave filter (4JWF) and the 5th order digital ellip-
tical filter (5EWF), under different time constraints. Table
1 shows the characteristic of these benchmark circuits. We
applied our synthesis method to these and generated weakly
testable data paths (Table 2). A column T denotes time con-
straints. In a column DO, ’–’ means the synthesis without
design objective extraction and “ex” means the synthesis
considering extracted design objectives. Columns Rv, Rd ,
A and M denote the numbers of registers for variables, reg-
isters for delays, adders and multipliers of the synthesized
RTL data path, respectively, and BT denote the number of
backtracks of design objective extraction caused by the dis-
satisfaction of the succeeding synthesis. In a column WT,
“wt” means that an obtained data path is weakly testable
and “n/wt” means a data path is not weakly testable. We
then applied test generation to show the effectiveness of
weak testability. We used a logic synthesis tool AutoLogicII
(Mentor Graphics Co.) and an ATPG tool TestGen (Sunrise
Test System, Inc.) on a Sun Ultra (300MHz 2). Columns
fault eff. and CPU denote the fault efficiency and the test
generation time.

For all benchmark circuits and all time constraints, we
obtained weakly testable data paths with the same number
of resources as the case without design objective extraction.
In the case without design objective extraction, we did not
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Table 1. Characteristic of benchmark circuits.
circuit #PI #PO #delay #variable #add #mult.
3LWF 1 1 3 7 4 1
4IIR 1 1 4 22 8 9

4JWF 1 1 4 20 13 4
5EWF 1 1 7 38 26 8

Table 2. Experimental result
data path fault CPUcircuit T DO Rv Rd A M BT WT eff.[%] [sec.]

3LWF 4 - 4 3 2 1 - n/wt 23.29 17754
ex 4 3 2 1 0 wt 99.88 44

5 - 4 3 1 1 - n/wt 24.44 15988
ex 4 3 1 1 0 wt 99.93 13

4IIR 6 - 7 4 2 3 - n/wt 24.48 36725
ex 7 4 2 3 0 wt 99.74 385

8 - 7 4 2 2 - n/wt 39.35 29164
ex 7 4 2 2 0 wt 99.88 117

4JWF 8 - 8 4 2 2 - n/wt 18.38 33158
ex 8 4 2 2 1 wt 99.93 49

11 - 8 4 2 1 - n/wt 20.08 33120
ex 8 4 2 1 0 wt 99.90 221

5EWF 15 - 10 7 4 2 - n/wt 15.11 60212
ex 10 7 4 2 0 wt 99.38 1057

20 - 10 7 3 1 - n/wt 15.55 50502
ex 10 7 3 1 0 wt 99.97 30

obtain any weakly testable data path. That is, our method
realized weak testability without sacrifice of the number on
resources. Moreover, in most cases (except for one case),
the synthesis algorithm generated a data path for the design
objective extracted first. This implies the effectiveness of
the overlap degree. In the test generation result, weakly
testable data paths have almost complete fault efficiency
with small test generation time, while not weakly testable
data paths have low fault efficiency.

5. Conclusions

In this paper, we proposed a high-level synthesis method
that generates a weakly testable data path. We introduce a
design objective for weak testability that is a condition on
resource sharing sufficient for weak testability. We propose
a high-level synthesis method using design objective ex-
traction while minimizing the number of resources under a
time constraint. We showed the effectiveness of the method
by experiments on several benchmark circuits. In the ex-
periments, we obtained weakly testable data paths with the
same number of resources as the case without design objec-
tive extraction. That is, we achieved weak testability with-
out sacrifice of the number of resources. One of the future
works is to evaluate the proposed method for more large
scale circuits.
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