
A High-Level Synthesis Approach to Partial Scan Design
Based on Acyclic Structure

Tomoya Takasaki† Tomoo Inoue†† Hideo Fujiwara†

†Graduate School of Information Science
Nara Institute of Science and Technology

Nara, 630-0101 Japan
ftomoya-t, fujiwarag@is.aist-nara.ac.jp

††Faculty of Information Sciences
Hiroshima City University
Hiroshima, 731-3194 Japan

tomoo@im.hiroshima-cu.ac.jp

Abstract
This paper presents a high-level synthesis method for

testable data paths with partial scan design based on
acyclic structure. For a given scheduled data flow graph, we
propose a heuristic method of operational unit binding and
register binding to minimize the number of scan registers
for acyclic structure without sacrifice of area overhead.

1. Introduction

The greater circuit density of VLSI makes testing more
important and more difficult. In order to reduce the test-
ing cost, we need to consider testability at the early stage
of VLSI design. Design cost reduction of VLSI’s can be
achieved by considering testability at the stage of high-level
synthesis, which synthesizes a register-transfer-level (RTL)
circuit from an abstract behavioral description. We con-
sider a method of high-level synthesis for testable data paths
based on partial scan design as a method of high-level syn-
thesis for testability.

Partial scan design, which replaces a part of flip-flops in
a sequential circuit by scannable flip-flops (scan flip-flops),
is one of the important techniques to implement an easily
testable circuit with low hardware overhead. In [3] and [4],
breaking feedback loops by scan flip-flops makes sequen-
tial circuits easily testable. Note that these techniques apply
a test generation algorithm for sequential circuits, since the
subcircuit excluding scan flip-flops (kernel circuit) has self-
loops. On the other hand, some of partial scan design tech-
niques make sequential circuits easily testable by a test gen-
eration algorithm for combinational circuits [5][6][7][8].
These techniques are acyclic partial scan designs, which
make acyclic structure by replacing a part of registers (sets
of flip-flops) in a RTL circuit by scan registers and breaking
all feedback loops including self-loops by the scan registers.
Our goal is to synthesize RTL data paths which minimize
the number of scan registers for acyclic partial scan design.

Many techiniques have been proposed concerning high-
level sythesis for testable data paths based on partial scan
design. Lee et al. [9] proposed a method of synthesizing

testable data paths to improve controllability/observability
of registers using the user-defined number of scan regis-
ters. Potkonjak et al. [10] proposed a method to synthesize
RTL designs such that all feedback loops except self-loops
can be broken using a minimal number of scan registers.
Fernandez et al. [12] present a register binding method for
minimizing the number of scan registers required to break
all feedback loops except self-loops. Mujumdar et al. [11]
proposed a binding method to reduce the number of feed-
back loops without the use of partial scan design. Note that
the above mentioned methods suppose to apply a test gener-
ation algorithm for sequential circuits and they do not break
all feedback loops.

Our goal is to minimize the number of scan registers for
breaking all feedback loops including self-loops so that the
kernel circuit is acyclic and to apply a test generation al-
gorithm for combinational circuits. In order to minimize
the number of scan registers required for acyclic structure,
we apply two strategies. One is to avoid creating self-loops
by sharing operational units or registers. The other is to
bind operational units and registers so that as many feed-
back loops pass through the same register as possible.

Section 2 presents an overview of our high-level syn-
thesis method. We details our operational unit and register
binding methods in Section 3. We present a heuristic algo-
rithm of binding based on minimum clique partitioning in
Section 4, and finally show experimental results in Section
5.

2. High-level synthesis flow

High-level synthesis for data paths is to transform a be-
havioral description, data flow graph (DFG), into a RTL
data path. In this paper, as a subproblem of high-level syn-
thesis, we focus on the binding problem to minimize the
number of scan registers for ayclic structure in synthesized
RTL data paths. We assumed that the scheduling of the in-
put DFG and the allocation have been done earlier. We use
the following scheduled DFG (SDFG) as the input.

h.fujiwara
タイプライターテキスト
IEEE the 8th Asian Test Symposium (ATS'99), pp. 309-314, Nov. 1999.

Definition 1 Scheduled DFG (SDFG) is a directed graph
GsD = (VD;ED; t;s). VD is the set of vertex represent-
ing operations including primary inputs and outputs.
ED�VD�VD is the set of edges representing variables.
t : VD!fop1;op2; : : : ;opng represents the types of op-
erations. s : VD ! Z+[f0g (non-negative integer) rep-
resents the control steps when operations are executed.

For the sake of simplicity, the execution delay of each
operation is assumed to be one control step.

Binding procedure consists of operational unit binding
and register binding. In general, it is divided into opera-
tional unit binding and register binding and they are solved
separately. Here we consider a method of operational unit
binding followed by register binding. For each binding, we
find the minimum clique partitioning, or clique partitioning
such that the number of cliques is minimum, of a compati-
bilty graph in order to assign operations and variables to a
minimum number of operational units and registers. Each
clique (complete subgraph) represents a shared operaional
unit or register. Operation and register compatibility graphs
are defined as follows.

If two (or more) operations are not concurrent and they
can be implemented by operational units of the same type,
the operations are said to be compatible.

Definition 2 Operation Compatibility Graph (OCG) corre-
sponding to SDFG GsD is an undirected graph GO =
(VO;EO). v 2VO is the vertex corresponding to an op-
eration in SDFG GsD. (u;v)2 EO �VO�VO is an edge
representing the correnponding operations u and v are
compatible.

If two (or more) variables are alive in different intervals,
the variables are said to be compatible.

Definition 3 Register Compatibility Graph (RCG) corre-
sponding to SDFG GsD is an undirected graph GR =
(VR;ER). v 2 VR is the vertex corresponding to a vari-
able in SDFG GsD. (u;v) 2 ER � VR�VR is an edge
representing the correnponding variables u and v are
compatible.

Using the above operation and register compatibility
graphs, an optimal binding can be generated by minimum
clique partitioning. There may exist several equivalent so-
lutions in terms of number of operaional units or registers,
but these solutions are not necessarily equivalent in terms of
scan overhead required for acyclic structure. Note that our
goal is to find optimal operational unit and register bindings
for acyclic partial scan design. Hence, we define weight of
a clique as a necessity of scan registers, and our goal is re-
duced to finding the minimum clique partitioning of which
weight is the smallest of all the minimum clique partition-
ings. In the next section, we will discuss clique weight in
compatibility graphs for operational unit and register bind-
ings.

3. Binding for acyclic partial scan design

3.1. Operational unit binding

Here we consider to reduce loops formed by sharing op-
erations and to make easy to share scan registers required
for such loops during the subsequent register binding.

If there exists a path between two compatible operations
in SDFG and the operations are shared as an operational
unit, then the path becomes a loop through the shared op-
erational units in RTL data path. Therefore, at least one
variable on the path is assigned to a scan register. When the
length of the path or the number of variables on the path
between compatible operations is large, flexibility to select
a scan register is increased. In general, there exists more
than one path between two compatible operations. For the
sake of simplicity, we regeard the shortest path as a repre-
sentative of several paths between two compatible opera-
tions. The shortest path can be considered to as a path on
which a variable is the hardest to share a scan register. Be-
sides, when the lifetimes of variables which are assigned to
scan registers are long, it is difficult to share a scan register.
An exact lifetime estimation is the task of register binding.
Here we simply estimate the time difference of the path be-
tween two compatible operations instead of the lifetime.

From the above consideration, we give the following
weight for each edge of operation compatibility graph.

3.1.1 Weight of operation compatibility graph

Edge (u;v) weight of operation compatibility graph

(1) There exists no path between the correnponding oper-
ation u and v in SDFG (with either direction of u! v
or v! u) : wo(u;v) = 0

(2) There exists a path between the correnponding opera-
tion u and v in SDFG : Let p be the shortest path be-
tween u and v (when there exist paths with both direc-
tions of u! v and v! u, p is the shortest path among
all the paths). Let l(p) and t(p) be the length and the
time difference (time for short) of p, respectively,

wo(u;v) = t(p)�Kl(p)

where Kl(p) is a sufficiently large number satisfying
Kl(p) > Kl(p)+1.

Using the above expression, when the length of the short-
est path is short, the weight becomes large. Furthermore,
the time of the shortest path multiplying the weight is used
to discriminate the weights of the same length of shortest
paths. Among sharing pairs of the same length of shortest
paths, it represents to give priority to the pairs of the shortest
corresponding time.

The weight is small when the path between operations is
long. Hence actually it is sufficient to estimate only sharings

2

+1

*

+3+2

11

22

33

+4

d2

d2

d1

u

v

w

y

x
Const.

44

PI

PI

PO

00

55

Figure 1. Scheduled
DFG GsD

+1

+3

+2 +4

(Length, Time)

Weight

(1, 3) (3, 3)

(2, 2) (1, 1)

(2, 6)

3

60

20
100

300

K =1, K =10, K =1003 2 1

Figure 2. Weighted
operation compati-
bility graph for GO

of which path is short to some extent. We estimated only
paths of which length is up to 5 in experiments (See Section
5).

Example 1 For operation compatibilty graph with addition
in SDFG of Figure 1, the length and the time of the
shortest path corresponding to each edge is shown in
parenthesis in Figure 2. Here assumed that present op-
erations of step 5 and next operations of step 0 are ex-
ecuted within the same control step. The weight for
each edge is shown in Figure 2 when K3 = 1, K2 = 10,
and K1 = 100.

3.1.2 Clique weight

We consider the weight of a clique as a measure represent-
ing optimality for scan of a shared operational unit. On
constructing a clique by operation compatibility graph, it
is desirable that the clique includes few edges with high
weight. Hence we define weight of a clique as the sum of
the weights of all edges in the clique.

Wo(Ci) = ∑
e2Ei

wo(e) (provided clique Ci = (Vi;Ei))

3.1.3 Weighted minimum clique partitioning

We consider the weight of a clique partitioning for scan. It
is desirable that the clique partitioning includes few cliques
with high weight. Hence we define weight of a clique par-
titioning as the sum of the weights of all cliques in the par-
titioning. In order to generate an optimal operational unit
binding for scan, we formulate the following problem.

Weighted Minimum Clique Partitioning Problem

Given : An operation compatibility graph GO = (VO;EO)

Solution : A clique partitioning π = (C1;C2; : : : ;Cn) such
that the sum of weights of cliques ∑n

i=1 Wo(Ci) is min-
imum (Assumed a clique Ci = (Vi;Ei), VO =V1[V2[

: : :[Vn and Vi\Vj = /0, 8i 6= j)

subject to : the number of cliques n is minimum

After applying the above clique partitioning for an op-
eration compatibility graph, as a graph to represent sharing
operational units for SDFG, create a graph merging vertices
corresponding to operations to be assigned to the same op-
erational unit as a vertex. This graph is called operation
bound graph.

Example 2 For weighted operation compatibility graph in
Figure 2, the weighted minimum clique partitioning is
ff+ 1;+3g;f+ 2;+4gg. Here the minimum sum of
weights of cliques is 32+ 80 = 112. As a result, the
solution has no self-loop but the others have more than
one self-loop. The operation bound graph is shown in
Figure 3.

3.2. Register binding

Here we consider to reduce loops formed by sharing vari-
ables and to share as many scan registers required for such
loops as possible.

If there exists a path between two compatible variables
in operation bound graph and the variables are shared as a
register, then the path becomes a loop through the shared
registers. Terefore, one of the variables which include the
sharing variables on the path must be assigned to a scan
register. In particular, when two compatible variables adja-
cent in operation bound graph are shared as a register, the
path becomes a self-loop through the shared register and the
register must be a scan register. When there exists a path
without adjacent between two sharing variables in opera-
tion bound graph, whether the shared register is assigned
to a scan register depends on whether the other variables
on the path are assigned to scan registers. On sharing two
compatible variables as a register, We represent whether the
register is assinged to a scan register as the weight for the
corresponding edge of register compatibility graph.

Moreover, regardless of sharing with any other variable,
variables forming self-loop in operation bound graph must
be assinged to scan registers. We represent that as the
weight for each vertex of register compatibility graph.

3.2.1 Weight of register compatibility graph

We give the following weight for each edge of register com-
patibility graph.

Edge (u;v) weight of register compatibility graph :

(1) There exist no path between the corresponding vari-
able u and v in operation bound graph (with either di-
rection of u! v or v! u) : wer(u;v) = 0

(2) There exists a path between the corresponding variable
u and v in operation bound graph (with either direction
of u! v or v! u) :

(2-1) variable u and v are adjacent : wer(u;v) = 1

3

+2,+4 * +1,+3

d2

d1
u

v

w

y

x
PI

PO

Figure 3. Operation
bound graph GoD

d2

d1

u

v w

y
x

1 1

1

1 11
0.5

1 0.5
0.5

0.5

0

0

0

0
0

0

0

0

Figure 4. Weighted
register compatibil-
ity graph for GR

(2-1) variable u and v are not adjacent : wer(u;v) = ω
(provided 0 < ω < 1)

We give the following weight for each vertex (variable)
of register compatibility graph.

Vertex v weight of register compatibility graph :

(1) Corresponding variable v in operation bound graph
forms a self-loop : wvr(v) = 1

(2) Otherwise : wvr(v) = 0

Example 3 For register compatibility graph in SDFG of
Figure 1, after operational unit binding as operation
bound graph of Figure 3, each edge and each vertex
are weighted as shown in Figure 4 provided that ω =
0.5.

3.2.2 Clique weight

We consider the weight of a clique as a measure represent-
ing necessity for scan of a shared register. On constructing
a clique by register compatibility graph, when the shared
register (clique) includes a sharing of variables forming a
self-loop (an edge with weight 1) or a variable forming a
self-loop (a vertex with weight 1), the register must be as-
signed to a scan register. Hence we define weight of a clique
as the maximum value of the weights of all edges and all
vertecies in the clique.

Wr(Ci) = maxfmax
e2Ei

wer(e);max
v2Vi

wvr(v)g

(provided clique Ci = (Vi;Ei))
On sharing all the variables in a clique as a register, the

weight of the clique represents whether the corresponding
register is assigned to a scan register.

3.2.3 Weighted minimum clique partitioning

We consider the weight of a clique partitioning for scan. It
is desirable that the clique partitioning includes few cliques
with high weight, especially cliques with weight 1 which
must be assigned to scan registers. Hence we define weight
of a clique partitioning as the sum of the weights of all
cliques in the partitioning. The weight represents the ap-
proximate number of scan registers required in RTL data

A1 A2M1
+1

+4
+2

+3*

R1 R3R2

PI1

d2d1
x

w
y

u
v

PO1

Scan

Const

Mux1

Mux2

Mux3

Figure 5. Example of synthesized RTL data path

path. In order to generate an optimal register binding for
scan, we solve the weighted minimum clique partitioning
problem in a similar way to operational unit binding.

Example 4 For weighted register compatibility graph in
Figure 4, the weighted minimum clique partitioning is
ffd2g, fu;v;w;yg, fd1;xgg. Here the minimum sum
of weights of cliques is 0+ 1+ 0 = 1. At least one
scan register is required by clique fu;v;w;yg forming
a self-loop. The other solutions of minimum clique
partitioning require at least two scan registers because
they generate two cliques forming self-loops. Hence
the above cliuqe partitioning is an optimal for scan.

Example 5 As a result of operational unit and register
bindings of Example 2 and 4, the synthesized RTL data
path is shown in Figure 5, and the minimum number
of scan registers for acyclic partial scan design is 1. It
is the minimum number of scan registers among RTL
data paths synthesized from SDFG of Figure 1.

4. Heuristic algorithm

We present a heuristic algorithm for the weighted mini-
mum clique partitioning problem mentioned in the previous
section. This is based on a greedy algorithm [2] to find a
minimum number of cliques without weights. We embed
weights in the algorithm to satisfy optimality for scan while
finding a minimum number of cliques. We can apply the
same algorithm to both operational unit and register bind-
ings by changing the computation of weight of a clique. The
algorithm weighted min clique is shown in Figure 6.

For an operation or register compatibility graph Gc,
weighted min clique selects an optimal clique parti-
tioning C best for scan among several equivalent solutions
in terms of minimum number of cliques. This algorithm
first assigns a clique to each vertex. In operation and reg-
ister compatibility graphs, each vertex and edge represent a
clique and a pair of sharing cliques, respectively.

In order to make a search for optimal design
more widely, the algorithm repeatedly generates so-
lutions of clique partitioning several times using

4

weighted_min_clique(Gc = (Vc, Ec, w_v, w_e))
{
while (L < Lmax) {

++L;
C = {Vc};
/* First assign a clique to each vertex */
(Cs1, Cs2) = select_start_pair(C);
/* Select a start pair of sharing cliques

on heuristic function H1 */
merge(Cs1, Cs2);
while(Exist a pair of sharing cliques) {

(Ci, Cj) = select_clique_pair(C);
/* Select a pair of sharing cliques

on heuristic function H2 */
merge(Ci, Cj);

}
if ((number(C) < number(C_best)) ||

((number(C) == number(C_best)) &&
(Ws(C) < Ws(C_best)))) {

C_best = C;
/* Update solution */

}
}

}

� Input : compatibility graph Gc = (Vc, Ec, w v, w e)

– Vc : operation/variable in SDFG
– Ec : sharing possible relation between operations/variables
– w e : weight of edge
– w v : weight of vertex

� Output : optimal clique partitioning C best

� number(C) : number of cliuqes

� Ws(C) : sum of weights of cliques

Figure 6. Heuristic algorithm for weighted mini-
mum cliue paritioning

select start pair(C), and select one whose
sum of weights of cliques is minimum while the number
of cliques is minimized among the solutions as an optimal
solution. In select start pair(C), we select a start
pair of sharing cliques by a heuristic funtion H1 and merge
the cliques. The heuristic function gives priority to the
edge (pair of sharing cliques) with smaller weight of a
compatibility graph. The repetition is continued as far as
we can obtain a clique partitioning such that the number
of cliques is smaller or the sum of weights of cliques is
smaller with the same number of cliques than before. The
total repeating number Lmax is experimentally evaluated.

For each repetition to find a clique partitioning, we select
a pair of sharing cliques, select clique pair(C), by
a heuristic funtion H2(hc;hw) and merge the cliques until
there exists no such a pair. The heuristic function is ap-
plied for finding an clique partitioning such that the sum of
weights of cliques is small while the number of cliques is
minimized. Heuristic measure hc is applied for finding a
minimum clique partitioning [2]. Heuristic measure hw is
applied for minimizing the sum of weights of cliques and
is used for selecting one among several equivalent pairs of
sharing in terms of measure hc. During operational unit
binding, we estimate (the weight of the selecting edge of
operation compatibility graph) � (the sum of the weights
of the edges not to be selected by the selecting edge), and
select the edge such that the value is minimum. During reg-
ister binding, we estimate (the sum of the weights of the
two merging vertecies of register compatibility graph) �

Table 1. Benchmark characteristics
Bench. l #PI #PO #Op #Var
LWF
LWF.1

5 2 1 5 7

Tseng 5
Tseng.1 3 1 8 11
Tseng.2

6

Paulin
Paulin.1

5 4 3 10 11

JWF
JWF.1
JWF.2

9 1 1 17 20

JWF.3
IIR
IIR.1

7

IIR.2
1 1 17 22

IIR.3
8

EWF
EWF.1 16 1 1 34 38
EWF.2

(the maximum value of the weights of the selecting edges
and the merging vertecies), and select the edge such that the
value is minimum.

5. Experimental results

In order to show the effectiveness of our proposed
method, we implemented the heuristic algorithm in the pre-
vious section and obtained solutions of operational unit and
register bindings for some behavioral description bench-
marks. The benchmarks are six types of scheduled DFG’s
(SDFG’s), 3rd Lattice Wave Filter (LWF), Tseng, Paulin,
4th Jaumann Wave Filter (JWF), 4th IIR Cascade Filter
(IIR), and 5th Elliptic Wave Filer (EWF). ‘.1’ and so forth
represent some scheduling variations. For each benchmark,
latency(l), number of primary inputs(#PI), number of pri-
mary outputs(#PO), number of operations(#Op), number of
variables(#Var) are shown in Table 2.

Concerning weights of operation compatibility graph,
we estimate only shortest paths of which length is up to 5.
Thus the constant Ki is set to Kl(p) = 325�l(p) where l(p) is
the length of shortest path p. During register binding, the
value of ω is set to be 0.5. In order to examine an appropri-
ate value of the repeating number to find clique partition-
ings, the total repeating number Lmax is set to the maxi-
mum value or the number of all edges of each compatibility
graph.

For the resultant RTL data paths, a minimum number of
scan registers required for acyclic structure is obtained by
using the algorithm in [13]. The experimental results are
shown as ST in Table 2.

In Table 2, #OU, #Mux, #Reg and #Scan denotes the
number of operational units, 2-input multiplexors, registers
and scan registers in synthezied RTL data path. CPU de-
notes the CPU time in seconds to find clique partitionings
by repeating Lmax times for operational unit and register
bindings on a SUN Ultra30. The notation ‘<0.1’ in CPU
column represents that CPU time is less than 0.1 seconds.

To show the effect of weights of operation and regis-

5

Table 2. Experimental results

RTL Characteristics CPU
Bench. M #OU #Mux #Reg #Scan [s]
LWF NT 3 6 3 3 <0.1

ST 3 3 3 1 <0.1
LWF.1 NT 3 5 4 3 <0.1

ST 3 3 4 1 <0.1
Tseng NT 7 6 6 4 <0.1

ST 7 8 5 2 <0.1
Tseng.1 NT 6 8 6 4 <0.1

ST 6 7 6 3 <0.1
Tseng.2 NT 6 7 6 5 <0.1

ST 6 10 5 3 <0.1
Paulin NT 4 17 6 6 <0.1

ST 4 12 6 4 <0.1
Paulin.1 NT 5 16 7 7 <0.1

ST 5 13 7 5 <0.1
JWF NT 3 15 7 7 <0.1

ST 3 14 7 5 <0.1
JWF.1 NT 3 16 7 7 <0.1

ST 3 17 7 5 <0.1
JWF.2 NT 3 17 7 7 <0.1

ST 3 17 7 6 <0.1
JWF.3 NT 4 17 8 8 <0.1

ST 4 17 8 4 <0.1
IIR NT 5 21 7 7 <0.1

ST 5 16 7 4 <0.1
IIR.1 NT 5 23 7 7 1.0

ST 5 20 7 4 1.0
IIR.2 NT 4 22 7 7 1.0

ST 4 20 7 4 1.0
IIR.3 NT 4 21 7 7 1.0

ST 4 13 7 4 1.0
EWF NT 4 39 11 11 56.0

ST 4 33 11 7 53.0
EWF.1 NT 4 35 11 11 56.0

ST 4 37 11 7 53.0
EWF.2 NT 4 35 11 11 56.0

ST 4 34 11 7 53.0

ter compatibility graphs, we also apply a non-testability
method NT. The results by NT are obtained by changing the
heuristic algorithm so that the resultant weights (the sums of
weights of cliques) are maximum. For all benchmarks, our
method ST generate a better solution than NT in terms of
scan overhead. It is consider to be realized by reducing the
number of self-loops and sharing scan registers effectively
so that several loops pass through the same register.

As regards the repetition number of finding clique parti-
tionings, most benchmarks can obtain the best solution by
repeating less than 10 times, except large benchmarks such
as EWF, about 120 times.

On the whole, applying the weighted minimum clique
partitioning for operation and register compatibility graphs,
it is shown that scan overhead for acyclic strucutre can be
reduced and it is nearly optimal.

6. Conclusions

In this paper, for a scheduled behavioral description (data
flow graph), we proposed a high-level synthesis method of
testable register-transfer-level data paths to minimize the
number of scan registers for acyclic structure without in-
creasing the number of operational units and registers com-
pared with previous methods without consideration to testa-
bility. Moreover, we apply the proposed method to small

benchmarks and show its effectiveness. We can obtain a so-
lution of operational unit and register binding to minimize
the number of scan registers for acyclic partial scan design
in synthesized RTL data paths with satisfying the minimum
number of resources for small benchmarks.

We will consider a shceduling method for minimumiz-
ing number of scan registers, and study a synthesis method
including controllers.

Acknowledgement: This work was supported in part
by Semiconductor Technology Academic Research Center
(STARC) under the Research Project and in part by the Min-
isry of Education, Science, Sports and Culture, Japan under
Grant-in-Aid for Scientific Research B(2) (no.09480054).
Authors would like to thank Toshimitsu Masuzawa and
Michiko Inoue of Nara Institute of Science and Technology
for their helpful discussion.

References

[1] H. Fujiwara, Logic Testing and Design for Testability, The
MIT Press, 1985.

[2] P. Michiel, U. Lauther, and P. Duzy, The Synthesis Ap-
proach to Digital System Design, Kluwer Acedemic Publish-
ers, 1992.

[3] K. Cheng and V. D. Agrawal, “A partial scan method for
sequential circuits with feedback,” IEEE Trans. on Comput.,
Vol. 39, No. 4, pp.544-548, April 1990.

[4] D. H. Lee and S. M. Reddy, “On determining scan flip-flops
in partial-scan design approach,” Proc. Int. Conf. Computer-
Aided Design, pp.322-325, 1990.

[5] R. Gupta, R. Gupta and M. A. Breuer, “The BALLAST
methodology for structured partial scan design,” IEEE Trans.
on Comput., Vol. 39, No. 4, pp.538-544, April 1990.

[6] H. Fujiwara, S. Ohtake, and T. Takasaki, “Sequential cir-
cuit structure with combinational test generation complex-
ity,” Trans. of IEICE (DI), Vol. J80-D-I, No. 2, pp.155-163,
February 1997 (In Japanese).

[7] T. Takasaki, T. Inoue, and H. Fujiwara, “Partial scan design
methods based on internally balanced structure,” Trans. of
IEICE (DI), Vol. J81-D-I, No. 3, pp.318-327, March 1998
(In Japanese).

[8] T. Inoue, T. Hosokawa, H. Fujiwara, “An optimal time ex-
pansion model based on combinational ATPG for RT level
ciruits,” Proc. IEEE the 7th Asian Test Symposium, pp.190-
197, Dec. 1998.

[9] T. C. Lee, N. K. Jha, and W. H. Wolf, “Behavioral synthesis
of highly testable data paths under the non-scan and partial
scan environments,” Proc. Design Automation Conf., pp.292-
297, 1993.

[10] M. Potkonjak, S. Dey, and R. K. Roy, “Behavioral synthe-
sis of area-efficient testable designs using interaction be-
tween hardware sharing and partial scan,” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems,
Vol. 14, No. 9, pp.1141-1154, 1995.

[11] A. Mujumdar, R. Jain, and K. Saluja, “Behavioral synthesis
of testable designs,” Proc. IEEE Int. Symp. on Fault-Torelant
Computing, pp. 436-445, 1994.

[12] V. Fernandez and P. Sanchez, “Partial scan high-level syn-
thesis,” Proc. European Design and Test Conf., pp.481-485,
1996.

[13] S. T. Chakradhar, A. Balakrishman, and V. D. Agrawal, “An
exact algorithm for selecting partial scan design,” Proc. De-
sign Automation Conf., pp.81-86, 1994.

6

