
New DFT Techniques of Non-Scan Sequential Circuits
with Complete Fault Efficiency

 Debesh Kumar Das Satoshi Ohtake Hideo Fujiwara
Dept. of Comp. Sc. and Engg. Graduate School of Information Science
 Jadavpur University Nara Institute of Science and Technology
 Calcutta-700 032, India 8916-5, Takayama-Cho, Ikoma, Nara 630-0101, Japan
 debeshd@hotmail.com {ohtake, fujiwara}@is.aist-nara.ac.jp

Abstract:
As opposed to scan schemes, a non-scan DFT allows
at-speed testing. This paper suggests three techniques
on non-scan DFT of sequential circuits. The
proposed techniques guarantee 100% fault efficiency
by using combinational ATPG tool. In all techniques,
an additional circuit called CRIS is proposed to
reach unreachable states on the state register of a
machine. The second and third techniques use an
additional hardware called differentiating logic
(DL), that uniquely identifies a state appearing in a
state register. The design of DL is universal, i.e., not
dependent on the circuit structure. Hardware
overhead of DL and CRIS is lower than that of full
scan. Test generation and application time are found
to compare favorably with those of earlier designs.

1. Introduction
To achieve a good design-for-testability (DFT)
technique, the designers must have following goals –
1) to decrease test generation time, 2) to decrease test
application time, 3) to have high fault efficiency∗, 4)
to achieve at-speed testing, and 5) hardware overhead
should also be less in the designs. One approach in
DFT designs is scan technique. In full scan technique
[1,2], the test generation problem of a sequential
circuit is reduced to that of a combinational one and
use of combinational ATPG guarantees complete
fault efficiency. Partial scan [3,4] offers low
hardware overhead than full scan, but as it uses
sequential test generation methods, high fault
efficiency cannot be achieved. However, scan
techniques fail to provide at-speed testing. To avoid
the problems of scan techniques, non-scan
approaches are proposed in [6-9]. In [6], some flip-
flops are controlled by multiplexers. In [7], DFTs are

∗The ratio of number of faults detected or proved redundant
by a test algorithm to the total number of faults in a circuit
is known as fault efficiency.

designed using locally available lines. In [8], non-
scan design was targeted only to remove equivalent
and isomorph redundancy. In all these approaches,
though testing time may be improved, complete fault
efficiency cannot be achieved. Non-scan DFT
approach with complete fault efficiency using
combinational ATPG is first proposed in [9].

This paper suggests three new non-scan DFT
techniques for sequential circuits. In the proposed
techniques, test sequences for different faults in a
sequential machine are found by generating test
patterns by a combinational ATPG tool used on
combinational part of the machine and use of such
ATPG tool guarantees complete fault efficiency. As
each test pattern generated by this ATPG tool
consists of values on primary inputs as well as state
registers, some test patterns may consist some values
that can never be reached by state transitions from
reset states. To reach such values on state registers
(invalid states), we propose a technique to append an
extra logic called circuit to reach invalid states
(CRIS) with the original machine. Among the three
techniques, the first one requires k additional
observable points (k is the number of flip-flops in the
circuit). Use of one more additional circuit called as
Differentiating Logic (DL) greatly reduces the
number of additional observable points in second and
third techniques. The DL part of the proposed
additional hardware is universal (i.e., independent of
the original machine). To increase the testability for
PLA-based machines, the work in [11] appends an
additional hardware. However, hardware overhead in
[11] is higher and it depends on the original machine.
Three proposed techniques, the method in [9] and full
scan technique are compared on benchmarks. First
two techniques have low hardware overhead. First
and third techniques have low test application time.
Test application time of the second technique is
larger in comparison to those of first and third, but it
is less than that of full scan. Test length and hardware
overhead are found to compare favorably with those
of scan and previous non-scan approaches.

 IEEE the 8th Asian Test Symposium (ATS'99), pp. 263-268, Nov. 1999.

2. Preliminaries
The general model of a synchronous sequential
machine is shown in Fig. 1, consisting of a
combinational circuit (CC) and a state register (SR).
The machine has n primary input (PI) fed by Binary
variables x1, x2,…, xn. The outputs [inputs] y1, y2,…,
yk [Y1, Y2,…, Yk] of k memory elements of SR
define the present [next] state of the machine. The
behavior of the machine is described by the state
transition diagram (STG). We assume that the
machine has a reset state. Given an input, transition
from a state Si means the state transitions and change
in primary output (PO) lines, if that input is applied
in the machine with state Si. If a fault f in a sequential
machine changes the transitions from a state Si, then
to detect f, we have to first initialize the machine to
state Si (called initialization state for f). To do this,
we have to apply a sequence of vectors (known as
justification sequence [5] of Si), application of which
to the machine in the reset state, changes the state to
Si. However, there may not exist any such
justification sequence for a state Si, as there may exist
some states in the machine that are unreachable or
cannot be reached in sufficient time (hard to reach)
from the reset state. But some of these may be needed
for initialization for testing. A state that cannot be
reached or which is hard to reach from reset state is
known as an invalid state, else it is a valid state. The
list of invalid and valid states in a machine can be
known from STG of the machine. To detect a fault,
after the application of justification sequence, we to
apply another sequence of vectors known as
differentiating sequence. A differentiating sequence
[5] for a pair of states Sj and Sk, in a sequential circuit
is a minimal length sequence of input vectors, such
that the output response obtained by applying the
sequence when the circuit is initially in Sj, is different
from that obtained when the circuit is initially in Sk.

Let us extract the combinational circuit from a
sequential machine, by replacing inputs [outputs] of
SR by pseudo primary outputs (PPOs) [pseudo
primary inputs (PPIs)]. Then this combinational
circuit is known as the combinational test generation
model (CTGM) of the sequential machine. For
example, CTGM of the machine of Fig. 1 is shown in
Fig. 2. Given the CTGM of a sequential machine, we
try to generate the test vectors for this CTGM.
Obviously each test vector is an ordered (n+k)-tuple,
corresponding to n PIs and k PPIs. A state in a
machine is called a test state, if it appears in PPI lines
of any test vector of CTGM of the machine. A state
of a machine which is a test state and also a valid [an
invalid] state is known as valid test state [invalid test
state]. In general, the number of test states is much
smaller compared with the total number of states, 2k.

3. New DFT designs
From STG of the machine, first we find the set of
valid and invalid states. Then we use combinational
ATPG algorithm to find the set of test vectors of the
CTGM. If such a test vector is a valid test state, then
this state can be reached from the reset state. But if it
is an invalid test state (i.e, it is unreachable from the
reset state), the value of PPIs cannot be set to the SR
using state transitions of the machine. The problem of
state initialization to an unreachable state poses a
major problem in the test generation of sequential
circuits. In our designs, we adopt a new technique to
reach these unreachable states. Notice that to test a
circuit, we need not reach all invalid states, reaching
only to invalid test states are sufficient.

3.1 The first technique
In our design to set the invalid test states to the SR,
we append an extra logic called as CRIS (circuit to
reach invalid states) to the original machine that
generates all invalid test states of the machine. The
DFT scheme is shown in Fig. 3. CRIS has the inputs
as the next state lines of the original machine. In a
similar approach recently [9], an additional circuit
was also used to reach these invalid test states, where
primary inputs are used as inputs to the extra logic.

 CC

SRy1yk

xn

x1 Z1

Zm

PI
PO

Fig. 1: The general model of a sequential machine

Y1 Yk

Fig. 2: CTGM of the machine of Fig. 1

 CCxn

x1 Z1

Zm
PI

PO

PPI PPO

 CC

SRy1

yk

xn

x1 Z1

Zm

PI
PO

Fig. 3: DFT to achieve complete fault efficiency
(Technique 1)

Y1

Yk

C
R
I
S Additional

Observable
points

Y′1

Y′k

(a) Designing CRIS: Let V [SITS] denotes the set of
valid [invalid test] states in the machine. Then, any
state Si ∈V [SITS] can [cannot] appear in next state
lines by proper [any] transition from reset state. CRIS
makes also the appearance of SITS at the inputs to SR.
For this, CRIS takes PPOs (Y1, Y2, …, Yk) as the
inputs, and produces (Y′1, Y′2,…, Y′k) as inputs to SR
using some control inputs. The output of CRIS is the
same as input when control inputs are at logic 0, and
when one or more of them is 1, it produces some
invalid test state. Optimization of number of control
inputs and hardware of CRIS is an open problem.
Here, we follow a heuristic approach. For each state
Si ∈ SITS, we first find how Si can be produced from
each state Sj ∈V. For example, say an invalid test
state 0101 can be produced from a valid state 0011
by complementing 2nd and 3rd bits of 0011. This can
be done by ORing Y2 and ANDing Y3 with a control
input C, as shown in Fig. 4. For each state Si ∈ SITS,
we find how Si can be produced from any state in V
in this manner. Among these different possible
productions, we implement one that with minimum
hardware. If different invalid test states require same
bit to be complemented, we use the same control line.
If any line requires both ANDing and ORing, we
replace the gate by XOR.

(b) Number of control inputs and hardware overhead
of CRIS: Theoretically, the number of such control
lines requirement can be maximum k, and that
happens when there is only one valid state in the
machine and there are at least 2k-1 invalid test states.
But practically, as number of invalid test states is
much smaller (can be at most the number of test
states) in comparison to total number (=2k) of states,
and that is not very high in comparison to number of
valid states, control lines requirement and hardware
overhead cannot be high. By our heuristic approach,
benchmarks result depicts significantly low overhead.

(c) Testing of CRIS: To detect a fault, the machine is
initialized to its test state by justification sequence
and controlling control inputs of CRIS. As all next
state lines are observable, a state reached at next state
lines after justification sequence can be identified.
Thus, any fault in CRIS is also detected.

(d) Short test application time: When an initialization
state Si for a fault is properly reached in present state
lines of SR, hold mode is activated where the state of
the machine is kept at Si, independently of the inputs
at PIs. As several faults may have same test state Si,
for all such faults test vectors are applied
consecutively holding the machine at state Si.
Moreover, with the observation of next state lines,
the length of differentiating sequence is always null.
Use of CRIS to reach unreachable states, use of no
differentiating sequences and use of hold mode to
avoid the repeated application of same justification
sequence highly reduce test application time.

(e) Short test generation time and complete fault
efficiency: Use of combinational ATPG tool
decreases test generation time. Use of this tool and
use of CRIS to ensure the machine to reach any test
state make fault efficiency to be 100%.

3.2 The second technique
The drawback of the first technique is that it requires
k additional observable points. To reduce the number
of observable points, we use one more additional
circuit known as differentiating logic (DL). The
complete scheme is shown in Fig. 5.

(a) Design of (DL): Two cases need to be considered.

Case 1: k < n: In this case, DL has one output, given
by F =x1y1+x1y1+x2y2+x2y2+……+xkyk+ xkyk.
The circuit to realize F is shown in Fig. 6. The
function F has a unique property. For every
combination of (y1, y2,…, yk), yi ∈ (0,1), the sub-
function contains a unique pattern in xis, such that for
a pattern (y1, y2,…, yk) at PPIs, if we apply a pattern
X at PIs with (x1, x2,…, xk) = (y1, y2,…, yk), we
get the output of DL as 0, and for any other pattern
at PI the output is at logic 1. It implies that if the
machine reaches a state Si(y1, y2,…, yk), then by
applying a single input pattern, obtained by
complementing each bit of (y1, y2,…, yk), this state
can be uniquely identified. That is, differentiating
sequence of any two states is of unit length.

Y1

Y2

Y3

Y4

Y’1

Y’2

Y’3

Y’4

C

Fig.4: An example of CRIS

 CC

SR
y1

yk

xn

x1 Z1

Zm

PI
PO

Fig. 5: DFT with complete fault efficiency
and less observable pints (Technique 2)

Y′1

Y′k

C
R
I
S

Observable point DL

Y1

Yk

Example 1: The K-map for k=3 is shown in Fig. 7.
Variables xi’s (yi’s) are used to label the map
horizontally (vertically). A horizontal line in k-map
corresponds to a state. Note that any state can be
uniquely identified by a single input pattern. For
example, a state (y1,y2,y3) = (010), can be uniquely
identified by the vector (x1,x2,x3)=(101).

Case 2: k > n: DL has r (= k/n) outputs, and each
output line realizes Fi (1< i <r) s.t., Fj+1 = x1yjn+1
+x1yjn+1+x2yjn+2+x2yjn+2+……+ xayjn+a + xayjn+a
where a = n for (0<j<r-1), and a=k-(r-1)n for j=r-1. If
a is found to be 1, then we replace Fj+1 by yjn+1.

(b) DL is universal: Design of DL is dependent only
on the number of PIs and flip-flops in the circuit, i.e.,
it is universal, not dependent on the circuit structure.
Thus, any fault in DL does not interfere with the
original circuit behavior.

(c) Use of Hold mode: It is used to identify a state. If
a state (y1,y2,…,yk) is expected at present state lines,
we activate hold mode and apply an input for case 1
(input sequence for case2) at PIs such that xi = yi ∀ i
(1<i<n). If the output of DL is 0, then the state of the
machine is identified as the expected state.

(d) Techniques to achieve low test application time:
As differentiating sequence is of length r = k/n, test
application time is greatly reduced, which is n in case
of full scan. To decrease it further, we adopt
following technique. Say, to detect a fault, the
machine is initialized to a state Si. Now, application
of the test vector may change the state to Sj. If Sj is a
test state, we use it as an initialization state of another
fault. If Sj is not a test state or there is no other fault
left to be detected with initialization state Sj, then we
attempt to initialize the machine to any other test
state. Compared with full scan, our method results
low test application time in benchmarks.

(e) Testing of CRIS and DL: Any fault in DL or CRIS
can be detected, by observing the output of DL.

(f) Hardware overhead: It equals to (2k+r) gates,
where is less than that of full scan for r < n-1.

3.3 The third technique
Drawback of second technique is that as observable
points use present state lines, we cannot use the same
justification sequence for different faults having same
initialization state. To avoid this, the third technique
is proposed, where a register R is used to load the
values of the next state lines and outputs of R are fed
into DL. The complete scheme is shown in Fig. 8.
Use of hold mode is similar to that of first technique.

4. Experimental Results
General performance of the DFT Design can be
described as in Table 1. Rows “scan”, “ATS-98”,
“case1”, “case2” and “case3” represent full scan, the
method in [9], technique-1, technique-2 and
technique-3 respectively. O(ISG) and O(CRIS)
indicate the overhead of invalid state generator (ISG)
in the paper of [9] and that of CRIS of this paper
respectively. It is found experimentally that O(CRIS)
< O(ISG). O(CRIS) was found to be maximum of
two two-input gates in MCNC benchmarks. The
value c denotes the number of control inputs needed
for CRIS and r equals to k/n, where n and k are the
number of PIs and flip-flops in the machine
respectively. In most cases of benchmarks, r is found
to be 1 and c is 1, except in two cases, where it is
found to be 2.

x1

y1

x2

y2

xk

yk

F

Fig. 6: Differentiating Logic (DL)

x1

x2

x3x3

 1 1 1 1 1 0 1 1
 1 1 1 1 0 1 1 1
 1 1 1 1 1 1 1 0
 1 1 1 1 1 1 0 1
 1 0 1 1 1 1 1 1
 0 1 1 1 1 1 1 1
 1 1 1 0 1 1 1 1
 1 1 0 1 1 1 1 1

y1

y2

y3

y3

Fig. 7: K-map of DL for k=3 and n > 3

 CC

SR
y1

yk

xn

x1

Z1

Zm

PI
PO

Fig. 7: DFT Design of Technique 3

Y′1

Y′k

C
R
I
S

Observable point

 DL

Y1

Yk

Register

Z1

Table 1: Overall comparison
 Method overhead TG TA At-speed

Pin Area time time

 scan 3 3k gates low high Not possible

 ATS-98 k+2 O(ISG) low low possible

 T-1 k+1+c O(CRIS) low low possible

 T-2 r+1+c O(CRIS)+ low higher than T-1, possible
 (2k+r) gates less than scan

 T-3 r+1 O(CRIS)+ low low possible
 (9k+r) gates

Table 2: STG characteristic
name #PIs #POs #States #FFs

bbara 4 2 10 4
bbsse 7 7 16 4
bbtas 2 2 6 3
beecount 3 4 7 3
cse 7 7 16 4
dk14 3 5 7 3
dk15 3 5 4 2
dk16 2 3 27 5
dk17 2 3 8 3
ex1 9 19 20 5
ex2 2 2 19 5
ex3 2 2 10 4
ex4 6 9 14 4
ex5 2 2 9 4
ex6 5 8 8 3
ex7 2 2 10 4
keyb 7 2 19 5
kirkman 12 6 16 4
lion 2 1 4 2
lion9 2 1 9 4
mc 3 5 4 2
opus 5 6 10 4
planet 7 19 48 6
planet1 7 19 48 6
pma 8 8 24 5
s1 8 6 20 5
s1488 8 19 48 6
s1494 8 19 48 6
s208 11 2 18 5
s27 4 1 6 3
s298 3 6 218 8
s386 7 7 13 4
s420 19 2 18 5
s510 19 7 47 6
s820 18 19 25 5
s832 18 19 25 5
sand 11 9 32 5
sse 7 7 16 4
styr 9 10 30 5
tav 4 4 4 2
tbk 6 3 32 5
tma 7 6 20 5
train11 2 1 11 4
train4 2 1 4 2

Experimental results on benchmarks are also shown.
Benchmark specifications are shown in Table 2.
AutoLogic II (Mentor Graphics) tool synthesizes the
circuits from MCNC benchmarks [10]. Columns
“name”, “#PIs”, “#POs”, “#states”, “#FFs” denote

the name, the number PIs, POs, states, and flip-flops
of the original sequential machines respectively. In
benchmark results, we show only those cases when
number of inputs (n) > 1. For n=1, we apply only the
first technique of our DFT designs.
Table 3: Hardware/pin overhead

Hardware Overhead (gates) Pin Overhead
name scan ATS98 case1 case2 case3 scan ATS98 case1 case2 case3

bbara 12 12 1 10 38 3 6 6 3 3
bbsse 12 12 1 10 38 3 6 6 3 3
bbtas 9 10 1 6 27 3 5 5 4 4
beecount 9 9 1 8 29 3 5 5 3 3
cse 12 0 0 9 37 3 5 5 2 2
dk14 9 9 1 8 29 3 5 5 3 3
dk15 6 0 0 5 19 3 3 3 2 2
dk16 15 31 1 11 46 3 7 7 5 5
dk17 9 0 0 5 26 3 4 4 3 3
ex1 15 15 1 12 47 3 7 7 3 3
ex2 15 34 2 12 47 3 7 8 6 6
ex3 12 20 1 11 39 3 6 6 4 4
ex4 12 12 1 10 38 3 6 6 3 3
ex5 12 20 1 11 39 3 6 6 4 4
ex6 9 0 0 7 28 3 4 4 2 2
ex7 12 20 2 12 40 3 6 7 5 5
keyb 15 15 1 12 47 3 7 7 3 3
kirkman 12 0 0 9 37 3 5 5 2 2
lion 6 0 0 5 19 3 3 3 2 2
lion9 12 20 1 11 39 3 6 6 4 4
mc 6 0 0 5 19 3 3 3 2 2
opus 12 12 1 10 38 3 6 6 3 3
planet 18 18 1 14 56 3 8 8 3 3
planet1 18 18 1 14 56 3 8 8 3 3
pma 15 15 1 12 47 3 7 7 3 3
s1 15 15 1 12 47 3 7 7 3 3
s1488 18 18 1 14 56 3 8 8 3 3
s1494 18 18 1 14 56 3 8 8 3 3
s208 15 15 1 12 47 3 7 7 3 3
s27 9 9 1 8 29 3 5 5 3 3
s298 24 165 1 20 76 3 10 10 5 5
s386 12 12 1 10 38 3 6 6 3 3
s420 15 15 1 12 47 3 7 7 3 3
s510 18 18 1 14 56 3 8 8 3 3
s820 15 15 1 12 47 3 7 7 3 3
s832 15 15 1 12 47 3 7 7 3 3
sand 15 0 0 11 46 3 6 6 2 2
sse 12 12 1 10 38 3 6 6 3 3
styr 15 15 1 12 47 3 7 7 3 3
tav 6 0 0 5 19 3 3 3 2 2
tbk 15 0 0 11 46 3 6 6 2 2
tma 15 15 1 12 47 3 7 7 3 3
train11 12 16 1 11 39 3 6 6 4 4
train4 6 0 0 5 19 3 3 3 2 2

Table 3 shows hardware and pin overhead. Hardware
overhead of first technique is lowest and significantly
small. Hardware overhead of both first and second
technique is smaller than that of full scan. The third
technique needs more hardware as an additional
register of k flip-flops (k= # of flip-flops) are used.
We have considered 7 gates per flip-flop in third
technique. In the techniques 2 & 3, number of gates
are decreased by 3 from that given in the formula of
Table 1, if the remainder in dividing k by n be 1. Pin
overhead of proposed second and third techniques are
same and in most cases it equals to that of full scan
technique which is always 3. The first technique,
requires more number of pins and it is same as that in
the method of [9]. Test generation and application
time for different methods are shown in Table 4. A
combinational/sequential test generation tool

TestGen (Sunrise) is used. Results show that test
generation time is almost equal in five cases. Test
application time is highest in case of full scan
method. This time is almost equal in the method of
[9], first technique and third technique. Second
technique requires larger test application time in
comparison to those of first and third techniques, but
this time is short in comparison to that of full scan.
Table 4: Test generation/application time

Test Generation Time (sec.) Test Application Time (cycles)
name scan ATS98 case1 case2 case3 scan ATS98 case1 case2 case3

bbara 0.32 0.32 0.36 0.39 0.37 339 88 86 171 89
bbsse 0.58 0.58 0.60 0.63 0.63 399 101 106 250 105
bbtas 0.06 0.06 0.05 0.06 0.06 71 27 29 43 54
beecount 0.19 0.19 0.21 0.19 0.26 199 60 63 69 79
cse 1.08 1.08 1.16 1.13 1.19 584 144 142 323 153
dk14 0.13 0.13 0.15 0.15 0.16 199 60 69 56 68
dk15 0.10 0.10 0.05 0.09 0.12 110 42 37 35 35
dk16 0.35 0.35 0.43 0.41 0.46 593 148 151 408 376
dk17 0.06 0.06 0.09 0.09 0.14 127 47 46 74 90
ex1 4.58 4.58 5.07 5.18 5.14 1679 323 335 838 340
ex2 0.27 0.27 0.29 0.24 0.35 461 119 107 196 307
ex3 0.12 0.12 0.12 0.14 0.17 249 72 61 84 133
ex4 0.31 0.31 0.32 0.33 0.29 294 76 77 212 83
ex5 0.11 0.11 0.10 0.15 0.15 244 71 64 90 116
ex6 0.46 0.46 0.45 0.50 0.47 243 70 71 69 69
ex7 0.08 0.08 0.13 0.18 0.12 194 60 61 33 123
keyb 4.90 4.90 5.18 5.20 5.47 1481 282 307 634 316
kirkman 13.88 13.88 12.79 12.89 12.76 2409 499 499 2796 508
lion 0.07 0.07 0.09 0.05 0.07 56 24 23 23 22
lion9 0.21 0.21 0.21 0.19 0.20 259 69 67 180 139
mc 0.06 0.06 0.06 0.06 0.10 44 20 19 22 23
opus 0.39 0.39 0.36 0.42 0.43 394 106 105 289 110
planet 4.14 4.14 4.13 4.25 4.38 1539 400 392 2002 407
planet1 4.28 4.28 4.02 4.18 4.12 1539 400 392 2002 407
pma 1.30 1.30 1.36 1.38 1.40 971 204 204 428 208
s1 5.19 5.19 5.14 5.23 5.05 1283 269 291 889 288
s1488 20.27 20.27 20.35 20.66 20.88 3051 615 660 5571 647
s1494 21.60 21.60 22.07 21.87 20.91 3065 645 677 4379 650
s208 9.35 9.35 7.85 8.11 7.80 1535 289 313 1645 319
s27 0.24 0.24 0.28 0.35 0.38 191 59 66 44 74
s298 82.40 82.40 79.58 83.91 86.98 9746 2429 2516 25924 5031
s386 1.23 1.23 1.31 1.27 1.29 554 131 144 404 134
s420 9.42 9.42 7.70 8.38 7.83 1439 273 305 1896 305
s510 1.06 1.06 1.13 1.22 1.21 930 195 194 1899 201
s820 16.09 16.09 16.39 16.24 16.26 2273 450 507 3010 484
s832 17.25 17.25 17.63 17.95 18.01 2225 438 516 2443 525
sand 9.26 9.26 8.87 8.72 9.12 1547 308 301 691 324
sse 0.61 0.61 0.58 0.60 0.58 399 101 106 250 105
styr 5.60 5.60 5.44 5.52 5.51 1385 296 319 793 309
tav 0.24 0.24 0.24 0.29 0.24 119 45 42 52 46
tbk 51.75 51.75 49.86 49.64 50.14 4469 793 780 1864 783
tma 0.85 0.85 0.88 0.90 0.99 623 151 157 252 162
train11 0.23 0.23 0.26 0.23 0.24 264 74 83 76 140
train4 0.05 0.05 0.05 0.05 0.07 41 19 18 12 21

5. Conclusions
The paper suggests three new techniques on non-scan
DFT. As state initialization is a major problem in
testing of sequential circuits, it solves that problem
by using an additional hardware called as CRIS
(circuit to reach invalid states). It is found
experimentally that hardware overhead of CRIS is
also low. The techniques use combinational ATPG
tool to find the test sequences of the machine. Among
the three techniques, hardware overhead of the first
technique is the lowest, but it requires k additional
observable points. To decrease the number of
observable points, a notion of differentiating logic
(DL) is proposed in technique 2. Even with the use of
this DL, hardware overhead is less than that of full
scan. Use of this DL increases test application time in
comparison to that of first technique, but this time is

less than that of full scan. To achieve the test
application time, same as that of first technique, an
additional register is used in third technique. The
novelty of these techniques is that they guarantee
complete fault efficiency with at-speed testing.
Hardware overhead, test generation time and test
application time compare favorably with those of
earlier designs. Future work includes the application
of the same technique for larger circuits.

Acknowledgement: Debesh Kumar Das is supported
by JSPS-INSA fellowship during the preparation of
this work. Satoshi Ohtake is under JSPS research
fellowship. This work was supported in part by
Semiconductor Technology Academic Research
Center (STARC) under the Research Project and in
part by the Ministry of Education, Science, Sports
and Culture, Japan under Grant-in-Aid for Scientific
Research B(2) (no.09480054). Authors would like to
thank Toshimitsu Masuzawa, Tomoo Inoue, and
Michiko Inoue of Nara Institute of Science and
Technology for their helpful discussion.

References:
1. H. Fujiwara, Logic Testing and Design for Testability,

The MIT Press, 1985.
2. M. Abramovici, M. A. Breuer and A. D. Friedman,

Digital Systems Testing and Testable Design, W. H.
Freeman & Co., New York 1990.

3. S. T. Chakradhar, A. Balkrishnan and V. D. Agrawal,
“An exact algorithm for selecting partial scan flip
flops,” Proc. DAC-94, pp. 81-86.

4. P. S. Parikh and M. Abramovici, “A cost based
approach to partial scan,” Proc. DAC-93.

5. S. Devadas and K. Keutzer, “A unified approach to
the synthesis of fully testable sequential machines,”
TCAD, vol.10, pp. 39-50, 1991.

6. V. Chickermane, E. M. Rudnick, P. Banerjee and J.
H. Patel, “Non-scan design-for-testability techniques
for sequential circuits,” Proc. DAC-93, pp. 236-241.

7. I. Pomeranz and S. M. Reddy, “Design for testability
for sequential circuits using locally available lines,”
Proc. DATE-98, pp. 983-984.

8. D. K. Das and B. B. Bhattacharya, “Testable design of
non-scan sequential circuits using extra logic,” Proc.
ATS-95, pp. 176-182.

9. S. Ohtake, T. Masuzawa and H. Fujiwara, “A non-
scan DFT method for controllers to achieve complete
fault efficiency,” Proc. ATS-98.

10. S. Yang, “Logic synthesis and optimization
benchmarks user guide,” Technical Report 1991-
IWLS-UG-Saeyang, Microelectronics Center of North
Carolina.

11. S. T. Chakradhar, S. Kanjilal, V. D. Agrawal, “Finite
state machine synthesis with fault tolerant test
function,” Journal of Electronic Testing: Theory and
Applications, pp. 57-69, 1993.

