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Abstract

Test sequences for acyclic sequential circuits can be
generated using a time expansion model. The test se-
quences have features that: (1) the length of each test se-
quence for each target fault is uniform, and (2) positions
of ‘don’t cares’ (X) of each test sequence for each target
fault are independent of any target fault. In this paper,
focusing on the features, we present two test sequence
compaction methods: static compaction and dynaemic
compaction. The static test sequence compaction method
uses a template . The dynamic test sequence compaction
method uses a reverse transformation fault simulation:
a fault simulation for a time expansion model with test
patterns into which test sequences are reversely trans-
formed after the static compaction. Erperimental results
for some acyclic sequential circuits show that the com-
paction methods reduce the number of test patterns by
66% to 81%.

1 Introduction

Automating test design for LSIs is required when it
comes to large and complex LSIs. Test cost for LSIs can
be divided into points of view of:

(1) Test pattern generation time to achieve high fault
efficiency,

and

(2) Test application time at automatic test equip-
ments.

Test generation for sequential circuits is generally
considered to be a hard problem. For such sequential
circuits, design for testability (DFT) such as full scan
design [1, 2] and partial scan design is an important ap-
proach to reduce the test cost of (1). It is an important

issue to select flip-flops(FFs) to be replaced with scan
FFs in partial scan design [3, 4, 5, 6] . It is well known
that acyclic sequential circuits can be generated test
sequences for using a combinational ATPG (automatic
test pattern generator) [6, 7, 8, 9, 10] . Thus, in partial
scan circuits, high fault efficiency can be achieved with
smaller hardware overhead than in full scan design cir-
cuits when FFs to be replaced with scan FFs are selected
so that the kernel circuit, which is the portion of the
circuit excluding the scan FFs, is the acyclic sequential
circuit. Especially, [9, 10] presented the test sequence
generation method using a time expansion model.

On the other hand, a test pattern compaction tech-
nique was proposed to reduce the test cost of (2). Re-
cently many papers [11, 12, 13, 14, 15, 16, 17] are pre-
sented on a test pattern compaction technique. Test
pattern compaction methods [11, 12, 13]for combina-
tional circuits and test sequence compaction methods
[14, 15, 16, 17] for sequential circuits were presented.
In this paper, we present the test sequence compaction
methods to reduce test sequences generated using a time
expansion model. We turn our attention to the rule that
the position of don’t cares(Xs) in any test sequence gen-
erated using a time expansion model is independent of
the values of the test sequence and present two com-
paction methods: static compaction method and dy-
namic compaction method.

This paper is organized as follows. Section 2 de-
scribes a test sequence generation method for acyclic
sequential circuits using a time expansion model. Sec-
tion 3 presents the static test sequence compaction
method. Section 4 presents the dynamic test sequence
compaction method. Section 5 provides experimental
results. Finally, Section 6 describes conclusions and fu-
ture works.
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Figure 2. Time expansion model of S : C(S).

2 Test Sequence Generation Method for
Acyclic Sequential Circuits Using a
Time Expansion Model

2.1 Test Sequence Generation

The test sequence generation method [9] for acyclic
sequential circuits using a time expansion model is
explained using an example. Fig.1 shows the exam-
ple of acyclic sequential circuit S. In this figure,
FF1,FF2,..., FF8 represent FFs, C1,C2,...,C7 rep-
resent combinational logic blocks, PI1, PI2, and PI3
represent primary inputs, and PO represents a primary
output.

Fig.2 shows C(S) which is the time expansion model
of S. C(S) is a combinational circuit into which com-
binational logic blocks of S are expanded in the input
direction from each primary output to primary inputs.
The combinational logic blocks, primary inputs, and pri-
mary output of C(S) have label ¢ (¢ is a set of integers).
Generally in a time expansion model, assuming that A
and B are combinational logic blocks and mutually con-
nected, and ¢(A4) and ¢(B) are labels of 4 and B, respec-
tively, |t(A) — ¢(B)| shows the number of FFs between
A and B in the corresponding acyclic sequential circuit.
In Fig.2, the number located at the top of each column
denotes the value of the labels of the combinational logic
blocks, primary inputs, and primary output in the col-
umn. Also a highlighted part in a combinational logic
block represents a portion of the lines and gates which
are not combinationally reachable to any primary out-
put and any input of other combinational logic blocks,
and they are removed in C(S).

A fault f, in C(S) corresponding to a fault f, in S
is a multiple fault which exists in the same line in each
combinational logic block in C(S) corresponding to a
combinational logic block in S where f, exists. For ex-
ample, a fault in C1 in S is dealt with as a two fold

fault in C(S) because two combinational logic blocks
(C1s) exist in C(S) as shown in Fig.2. Here, the follow-
ing theorem can be obtained [9] when let F, be the set

of faults in S, and let F, be the set of faults in C(S)
corresponding to faults in S.

(1) There exists only one fault f, € F, in C(S) corre-
sponding to each fault f, € F, in S.

(2) There exists a test pattern for a fault f, € F, cor-
responding to the f, € F, if and only if there exists
a test sequence for fault f,.

(3) A test pattern for a fault fo € F, can be trans-
formed into a test sequence for the fault f, € F,
corresponding to fault f,.

Thus a test pattern for a fault in C(S) can be trans-
formed into a test sequence for S and detect the fault
in S corresponding to the fault in C'(S) with the trans-
formed test sequence. Hence a combinational ATPG ca-
pable of dealing with multiple stuck-at-faults (denoted
by MC-ATPG) can be applied to C(S) and generate test
patterns. After that, test patterns generated for C(S)
are transformed into test sequences for S referring to
values of labels where each primary input exists.

Assuming that (PI1(0), PI2(0), PI3(0), PI3(1),
PI1(3), PI2(3)) = (0, 1, 0, 0, 1, 0) is the test pattern
for a fault in C(S), in S, the value of PI1 at time 0 is
0, the value of PI2 at time 0 is 1, the value of PI3 at
time 0 is 0, the value of PI3 at time 1 is 0, the value
of PI1 at time 3 is 1, and the value of PI2 at time 3
is 0. Hence the test pattern is transformed into the test
sequence as shown in Table 1(a). Here, PIi(t) is the
value of PIi which exists in label ¢.

2.2 Test Sequence Compaction

Ty and T, are test sequences for S transformed from
two test patterns for C(S) : ¢; = (0,1,0,0,1,0) and
to = (1,1,1,0,0,0). Table 1 (a) shows T; and Table
1 (b) shows T,. T can be placed at time 2 in Ty be-
cause some Xs exist in Ty. Thus 77 and T; is compacted
into the test sequence T shown in Table 2. Also in test
sequence transformed, the positions where 0s or 1s are
specified and the positions where Xs are specified are
uniform for every transformed test sequence. Whether
several test sequences are compatible or not can be de-
termined independently of values of test sequences from
this information. Thus a test compaction method can
be statically determined before a test sequence gener-
ation and test sequences can be compacted fast. The
static compaction method is described in section 3.

Some Xs remain in T as shown in Table 2 and 7" is
generated as eshown in Table 3 after 0s or 1s are set
to Xs in T at random. For example, in T, the test
sequence from time 1 to time 5 is different from 77 and



Table 1. Test Sequence for S.
(a) Test sequence Ty (b) Test sequence T

Time | PI1 PI2 PI3 Time | PI1 PI2 PI3
0 0 1 0 0 1 1 1
1 X X 0 1 X X 0
2 X X X 2 X X X
3 1 0 X 3 0 0 X
4 X X X 4 X X X

Table 2. Compacted
test sequence:T'.

Table 3. Compacted
test sequence: T".

Time | PI1 PI2 PI3 Time | PI1 PI2 PI3
0 0 1 0 0 0 1 0
1 X X 0 1 1 0 0
2 1 1 1 2 1 1 1
3 1 0 0 3 1 0 0
4 X X X 4 1 0 1
5 0 0 X 5 0 0 0
6 X X X 6 0 1 1

T>. Undetected faults in S may be detected if fault
simulation is performed for S with this test sequence.
Also the test sequence is reversely transformed into the
test pattern, so that (PI1(0), PI12(0), PI3(0), PI3(1),
PI1(3), PI2(3)) = (1, 0,0, 1, 1, 0) is extracted. Fault
simulation can be also performed for C(S) with this test
pattern. This dynamic compaction method is described
in section 4.

3 Static Test Sequence Compaction
Method
3.1 Definitions

Definition 1 (Template): Let T be a test se-
quence for a sequential circuit with primary inputs
(Po, Py, ..., Py_1). Let w be the number of primary in-
puts. Let I be the length of T. The value of P; at time
t in T is denoted by T(t,z). A test sequence T ob-
tained by replacing every value such that T'(¢,7) = 0 or
1(0<t < 1,0 <¢<w)with b’ is called a template of
T. Also a test sequence which consists of Xs and/or ‘bs’
is simply called a template. The length of T is called
the length of a template or template length. Let Mazt
be maximum time in 7" where ‘b’ exists. Let Mint be
minimum time in 7' where ‘b’ exists. The value such
that Mazt — Mint + 1 is called the effective length of
T O

Definition 2 (Compatible): Let T1(T,) be a test
sequence for a sequential circuit with primary inputs
(Po, Py, ..., Py_1). Let w be the number of primary in-
puts. Let I; be the length of T7. Let I3 be the length of
T,. The values of P; at time t in Ty and T, are denoted
by Ti(t,%) and Ts(t,t), respectively. T, is called to be
compatible with Ty with skew k if there exists & (k is
non-negative integer) to satisfy one or both of conditions
following:

(1) k> 1.

Table 4. Operation N,

e | b X
b |¢ b
X |b X

(2) Ti(t,3) = X or Ty(t — k,3) = X for any t,7 such
that £ <t < min{l;, k + [3},and,0 <7 < w.

Also, T1(T3) is called to be compatible with skew &
if Ty =T, O

T into which Ty and T, are compacted can be repre-
sented by the following equations using operation N, as
shown in table 4 for any 7 such that 0 < 7 < w.

T(t. i) = T, (¢, )

T, ) =T, ) (), Ty (t-k, i)
T(t, i) = X

T(t. i) = T, (t-k, i)

for 0 £ t <min{l ;,k}, k+1, =
for k £ t <min{l; ,k+}h }
for ;2 t<k

for max{l, k} < t <k+}

t<l,

Example 1: Fig.3 shows 7" into which T is com-
pacted with skew 2 when T is compatible with skew 2.

Definition 3: (Primitive Template) Let S be an
acyclic sequential circuit. Let C(S) be the time expan-
sion model corresponding to S. Let ¢ be a test pattern
for C(S). Suppose that any X is not included in ¢. Let
T be a test sequence into which ¢ is transformed. Let T"
be the template of T'. T” is called a primitive template
of C(S).

Example 2: Table 5 shows the primitive template
of the time expansion model in Fig.2.

3.2 Problem Formulation

Assuming that the total number of test patterns
which are generated in a time expansion model C(S)
is n and n test patterns are transformed into n test se-
quences, to minimize a total length of test sequences by
compacting n test sequences is an ideal target. However,
it is difficult to minimize a total length of test sequences
by compacting n test sequences because a large amount
of its calculation is required. In this subsection, the opti-
mum problem to maximize the number of primitive tem-
plates which are compacted into a template with a fixed
length and minimize the effective length of the template
is formulated. Before this formulation, a compatibil-
ity graph which represents that a primitive template is
compatible with skew k is defined as follows.

T T T
b b b ISkewZ b
X X b X
X X X b b
b b X X b
X X X X = X

b b
X X

Figure 3. Example that T is compatible with skew
2.



Table 5. Primitive template for Fig.2.

Time | PI1 PI2 PI3
0 b b b
1 X X b
2 X X X
3 b b b
4 X X X

Definition 4 (Compatibility graph): A compat-
ibility graph is an undirected graph G(V, E,t), where
a vertex v € V denotes a primitive template. Each
vertex has a label ¢ : V' — Z+4 (Z+ denotes a set of
non-negative integers). For any vertices u,v(€ V,u #
v),t(u) # t(v). An edge(u,v) € E denotes that a primi-
tive template is compatible with skew [t(u)—t(v)|. O

A set of vertices which form clique (subcomplete
graph) is extracted from a compatibility graph and a
template for test sequence compaction is generated by
compacting primitive templates of the number of ver-
tices with the value of skew which is label t of each ver-
tex. Let m be the number of vertices in a clique and let
k be the effective length of a template. The total test
length of test sequences compacted by using the tem-
plate is kXT” when n is multiples of m, and the template
generated by maximizing m and minimizing k is effec-
tive for test sequence compaction. Thus this problem is
dealt with as maximum clique extraction problem [18].
Maximum clique extraction problem
Given: A compatibility graph G(V, E,t)

Solution: An optimal clique C which minimizes
|maxt(v) — mint(u)| in maximum cliques which
maximize the size of a clique, where u,v € C,v #
u,maxt(v) is the maximum value of a label, and
mint(u) is the minimum value of a label.

Example 3:The primitive template is shown in Table
6. Fig.4 shows the compatibility graph which is consid-
ered whether the primitive template of Table 6 is com-
patible or not with the values of skew from 1 to 7. In
Fig.4, three cliques, C'1,C2, and C3 are considered. In
this figure, a vertex with label £ is denoted by V;. The
vertices included in C'1 are Vy, Vi,and V5. The vertices
included in C2 are Vg, Vi, and V;. The vertices included
in C3 are Vp and V3. C1 and C2 are maximum cliques.
The template for test sequence compaction is generated
from C'1. Three primitive templates are compacted into
the template with skew 1 and 7, and the effective length
of that is 13. Here, assuming that the total number of
test patterns which are generated for a time expansion
model is 7, the length of total test sequences is 13n/3 by
using the template. The effective length of the template
which is generated from C2 is 8, and the length of total
test sequences is 8n/3, the effective length of the tem-
plate which is generated from C3 is 7, and the length of
total test sequences is 7n/2. Compared with the length

Figure 4. Compatibility graph for Table 6

Table 6. Primitive template
Time | PI1 PI2 PI3
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of total test sequences of C'1 and that of C2, the length
of total test sequences of C2 is shorter than that of C'1.
Also compared with the length of total test sequences
of C2 and that of C3, the length of total test sequences
of C2 is shorter than that of C3. The template which
is effective for test sequence compaction can be gener-
ated by extracting the maximum clique such that | the
maximum value of a label of a vertex in a clique — the
minimum value of a label of a vertex in a clique | is
minimized.

3.3 Heuristic Algorithm

In this subsection, we present a heuristic algorithm
for finding an optimal template for test sequence com-
paction. Any edge (u,v) of a compatibility graph is
weighted as heuristics. The weight is denoted by w(u, v).
Let nbr(u) and nbr(v) be sets of adjacent vertices of
u and v, respectively. Let 4 and B be nbr(u) — {v}
and nbr(v) — {u}, respectively. w(u,v) is defined as
|A U B| — |AN B|. The number of this weight is the
number of adjacent vertices of v and u which can not be
added to the clique when v and u are added to a clique.

Fig.5 shows a heuristic algorithm to extract a maxi-
mum clique from a given compatibility graph. Function
Extract_max_clique in Fig.5 is described. First of all,
vertex v which has label 0 is added to clique C. Next,
the product set of adjacent sets for each u in C is found
and let S be the product set (function Candidates). Pro-
cessing that S is found, v is selected from S, and v is
added to C is iterated until S becomes an empty set.
The following three heuristic measures are calculated
when only one vertex v in S is selected. Heuristic mea-
sure (1) is taken of heuristic measure (2) and heuristic
measure (2) is taken of heuristic measure (3) when v in



Extract_max_clique(G) *G=(V, E, t)*

C={vstt(v)==0};
while((S = Candidates(C)) ! = ¢ {
v=Best_vertex(S,C) ;

c=CcU {vh
¥
return C ;
}
Candidates (C)
{
S={vIvEV-C ANVYu€ C, 3 u,v)E E};
/* S is a set of vertices s.t. any vertex in C is compatible with them */
return S;
}
Best_vertex(S, C) /* heuristics */
{
V1={vIZ w(u,v)is minimumin S,u € C};
V2 = { vlInbr(v)l is maximum in V1};
V3 = {vIt(v) is minimum in V2};
return (one vertex selected from V3);
}

Figure 5. Heuristic algorithm of a template gener-
ation.

Figure 6. Compatibility graph for Table 5

S is selected (function Best_vertex).

Heuristic measure (1): v in S such that the sum to-
tal of w(u,v)(u € C) is minimized is selected and
added to a set vertices V1, so that the number
of vertices in C may increase. Thus, the num-
ber of primitive templates which is compacted into
the template for test sequence compaction may in-
crease.

Heuristic measure (2): v in V1 such that |nbr(v)| is
maximized is selected and added to a set vertices
V2, so that the number of vertices in C' may in-
crease. Thus, the number of primitive templates
which is compacted into the template for test se-
quence compaction may increase.

Heuristic measure (3): v in V2 such that ¢(v) is min-
imum is selected and added to a set vertex V'3, so
that the effective length of generated template may
be short.

After extraction of C, a template for test sequence
compaction is generated by compacting primitive tem-
plates which are as many as vertices in C with the skews
equal to labels of vertices in C. The generated template
is iteratively used in ATPG. Also a template can be

bbb ISkewZ bbb
XXb XXb
XXX bbb Skew 4 Skew 6 |PBD
bbX m XXb bbb
XXX ¢l xxX bbb bbb | |Eeffective
bbX mc XXb bbb length
XXX XXX m bbb bbb 10
bbX L[ xXb bbb
XXX XXX | _ | XXX
bbX|— |bbX
XXX XXX

Figure 7. Template generated from Fig.6.

placed at the time corresponding to effective length of
the previous template.

Example 4: Fig.6 shows the compatibility graph
which is considered whether the primitive template of
Table 5 is compatible or not with the values of skew from
1 to 6. In this figure, a vertex with label t is denoted by
V;i. Also the set of vertices in the clique which is found
by applying the heuristic algorithm shown in Fig.5 is
{Vo, V2, Va, Vs } and the template for test sequence com-
paction is generated as shown in Fig.7.

4 Dynamic Test Sequence Compaction
Method

Fig.8 shows the test sequence generation algorithm
for acyclic sequential circuits including the static test
sequence compaction method using a template and the
dynamic test sequence compaction method by a reverse
transformation fault simulation.

First of all, the time expansion model is generated for
a given acyclic sequential circuit. Next, the template for
the static test sequence compaction is generated from
the compatibility graph. Here, suppose that the tem-
plate is generated by compacting N primitive templates.
Thus, N test patterns in the time expansion model can
be unconditionally transformed into N test sequences
referring to the template (the static test sequence com-
paction). However, in the template, fault simulation
is not performed with test sequences except N trans-
formed test sequences. The processing that the test
pattern is generated for a undetected fault f in the time
expansion model, fault simulation is performed for the
time expansion model with the test pattern, detected
faults are removed from a set of undetected faults F', and
the test pattern is transformed into the test sequence, is
iterated. After the N iterations (n is equal to N), the
test patterns for the time expansion model are extracted
by reversely transforming test sequences with the length
of a primitive template which fault simulation has not
been performed with yet. More specifically, the head of
the primitive template is placed on the head of a test
sequence in the template with which fault simulation
has not been performed and a test pattern is generated
by extracting the values at ‘bs’ in the placed primitive



Test_generation_acyclic(S)

{

Generate a time expansion model corresponding to S.

Generate a template for a test sequence compaction.
(compacted N primitive templates)

n= 0.

for (undetedcted fault f & F)

{

Select a fault f from undetected fault set F.
Generate a test pattern for f in the time expansion model.
Perform fault simulation for the time expansion model

with the test pattern.
Remove detected faults from F.

Transform the test pattern into a test sequence with a test
sequence compaction using the template.
n++;
if (n==N)
{
Extract test patterns by a reverse transformation.
Perform fault simulation for the time expansion
model with the test patterns.
Remove detected faults from F.
n=0;

}

Figure 8. Test sequence generation algorithm in-
cluding static and dynamic compaction

Time | PI1 PI2 PI3 | Simulation
0 0 1 0 |OK
1 X X 1
2 1 1 1 | OK
3 0O 1 0
4 0 0 0 |OK
5 0 0 1

Effective | ¢ 1 1 0 |OK
length 7 111 Effective length of

8 X X X primitive template -1

YO_LO_1_ X |y
0] X X X

Figure 9. Example of compaction using the tem-
plate of Fig.7.

template from the test sequence. Next, fault simulation
is performed for the time expansion model with the ex-
tracted test patterns and detected faults with the test
patterns are removed from the set of undetected faults
F (reverse transformation fault simulation). Here, sup-
pose that before the reverse transformation fault simu-
lation, 0 or 1 is set to each X in test sequences at random
after the static test sequence compaction. Final test se-
quences are generated by iterating the processing that
a template is placed at the time corresponding to the
value of effective length of the previous template. Thus,
the processing that N test patterns are generated and
the reverse transformation fault simulation is performed,
is iterated until the set of undetected faults F' becomes
empty.

Example 5:Fig.7 shows a template for the static

Time | PI1 PI2 PI3 Simulation
0 0 1 0 OK
1 (0] [of
2 1 1 /oﬁ
3 0 1 0 Extract 101100
4 |[[lo] [o] o || oK
Effective| 5 0 0 1
length |6 | 1 __1__ 0 | OK ____
7 1 1 1 Extraction boundary
8 0 1 0
I I T TS T
10 X X X

Figure 10. Example of extraction of a test pattern
for a time expansion model.

test sequence compaction. Four primitive templates
shown in Table 5 are compacted into the template
shown in Fig.7. There are four test patterns generated
in a time expansion model, (PI1(0), PI2(0), PI3(0),
PI3(1), PI1(3), PI2(3)) = (0, 1, 0, 1, 0, 1), (1, 1, 1,
0,0,0),(0,0,0,1,1,1), (1, 1,0, 1,0, 1). The test
sequence shown in Fib.9 is obtained so that four test
sequences into which four test patterns are transformed
are compacted using the template. The next template
will be placed at time 10 because the effective length of
the template is 10. Thus, 0 or 1 is set to each X from
time 0 to time 9 in the test sequence at random. The
test pattern (1,0,1,1,0,0) is extracted by transform-
ing the test sequence from time 1 to time 5 reversely
as shown in Fig.10. In Fig.10, the extracted values are
boxed in small squares. The test pattern (0,1,0,0,1,1)
is extracted by transforming the test sequence from time
3 to time 7 reversely and test pattern (0,0,1,0,0,1) is
extracted by transforming the test sequence from time
5 to time 9 reversely in like manner.

5 Experimental Results

Table 7 shows the properties of practical circuits (#1-
#4) used on these experiments. In Table 7, #PI shows
the numbers of primary inputs, #PO shows the num-
bers of primary outputs, #FF shows the numbers of
FFs, SR shows the ratios of scan FFs to all FFs which
are necessary to make circuits acyclic sequential circuits,
and #GATE shows the numbers of gates (the conver-
sion to NAND gates with 2 inputs) in the circuits. Ta-
ble 8 shows the experimental results of templates gen-
eration using presented heuristic algorithm. In order
to see the effectiveness of the number of vertices in a
compatibility graph in a template generation, we made
experiments on finding the maximum cliques for each
circuit with different numbers of vertices in a compat-
ibility graph. In Table 8, NV shows the numbers of
vertices in the compatibility graphs, CPU shows times
(unit: second) consumed to make compatibility graphs
and to find cliques on SUN Ultra2 platform (frequency:



Table 7. Properties of experimental circuits.
CIR | #PI | #PO | #FF | SR(%) | #GATE

#1 97 16 176 0 4687
#2 113 16 272 0 4706
#3 342 11 1150 61.9 11682
#4 673 487 | 3744 72.5 51135

Table 8. Experimental results: Template genera-
tion.

CIR | NV | CPU | VL | NP | TL | CR
#1 8 0.01 12 3 984 | 4.00
15 0.02 18 5 864 | 3.60

114 1.16 | 119 37 738 | 3.22

171 6.54 | 176 56 720 | 3.14

200 8.35 | 205 66 708 | 3.11

#2 11 0.01 16 3 | 1616 | 5.33
21 0.02 29 5 | 1762 | 5.80

153 1.50 | 162 30 | 1635 | 5.40

200 4.66 | 209 39 | 1622 | 5.36

304 | 25.70 | 314 58 | 1638 | 5.41

296MHz, SPECint95:12.1, SPECfp: 18.3), VL shows the
effective lengths of the generated templates, NP shows
the numbers of primitive templates which are compacted
into the templates, TL shows the lengths of total test se-
quences, CR shows the ratio of VL to NP (compaction
efficiency). As CR decreases, a compaction efficiency
becomes high. This table shows only the results for cir-
cuits #1 and #2. For circuits #3 and #4, optimal tem-
plates can be obtained independently of the numbers of
vertices NV, i.e., the global optimal templates are the
same as the local ones. In the concrete, the optimal
templates for these circuits can be generated by using a
compatibility graph which consists of two vertices con-
nected with the shortest edge (i.e., [t(v) — t(u)| is the
minimum). As the number of vertices in the compat-
ibility graph increases, CPU also increases. We found
that the templates are generated in small computation
time, especially for NV < 200. The number NV of ver-
tices in a compatibility graph used in all the experiments
reported in the following is 200. The consideration be-
tween compaction efficiency and the number of vertices
in a compatibility graph remains future works.

Table 9 shows the experimental results of the heuris-
tic algorithm compared with maximum cliques obtained
by calculating all cliques exhaustively in order to evalu-
ate the efficiency of the heuristic algorithm. In Table 9,
HVL shows the effective lengths of the templates gen-
erated using the heuristic algorithm, HNP shows the
numbers of compacted primitive templates, HCR shows
the compaction efficiencies (HLV/HNP), OVL shows the
effective lengths of the templates generated from max-
imum cliques, ONP shows the numbers of compacted
primitive templates, OCR shows the compaction effi-
ciencies (OVL/ONP). The results in Table 9 show that
the compaction efficiencies of templates generated us-

Table 9. Experimental results: Heurisitic algo-

rithm.
CIR | HVL | HNP | HCR | OVL | ONP | OCR

#1 206 66 3.12 205 67 3.06
#2 209 39 5.35 208 39 5.33

Table 10. Experimental results: Compaction

method using a template.

3TC
CPU [ TL | TR

CIR | NC | TC |
[ TL [ CPU [ TL | TR

£1 1589 8.85 708 | 44.56 6.08 910 57.27

£2 3030 4.58 1622 53.53 5.86 1821 60.10

9.98 572 50.18

%
ki
#3 1140 13.17 584 51.23
%

t4 13740 8.86 7573 55.12 5137.75 6791 49.43

ing the heuristic algorithm are almost the same as those
generated from the maximum cliques.

Table 10 shows the experimental results of the static
test sequence compaction method using a template. In
order to see the effectiveness of our static compaction
method, we also made the static test sequence com-
paction based on three values (0, 1, and X) [8, 15]. The
results based on three values, shown as 3TC in Table
10, are derived as follows:

(1) Let T be a set of all the generated test patterns.
Select a test pattern t from T, and transform t into
a test sequence (denoted by s).

(2) Select a new test pattern t’ and transform t’ into a
test sequence (denoted by s’).

(3) Compact s’ into s with the minimum skew, i.e.,
search a time in s where s’ can be placed from the
head of s. Let s be a resultant test sequence ob-
tained from s and s’.

(4) Repeat (2) and (3) until all the generated test pat-
terns are compacted.

Also, in Table 10, NC shows the experimental re-
sults without a test sequence compaction and TC shows
the experimental results with the static test sequence
compaction using templates. CPU shows times (unit:
second) consumed to compact test sequences on SUN
Ultra2 platform (frequency: 296 MHz, SPECint95:12.1,
SPEC{p: 18.3), TL shows the lengths of the total test
sequences, and TR shows the ratios of TL of TC and
3TC to TL of NC. TC shortened the lengths of test se-
quences compared with NC by 45 to 55%. The lengths
of test sequences of TC is shorter than those of 3TC
for #1 and #2. The lengths of test sequences of 3TC is
shorter than those of TC for #3 and #4. We found that
the static test sequence compaction method is effective
for the length of test sequences when the global optimal
template is not the same as the local one. As for test se-
quence compaction time, the computation times of TC
are almost same as those of 3TC for #1, #2, and #3.
However, the computation time of TC is almost 57 times



Table 11. Experimental results: Compaction
method using reverse transformation fault simu-
lation.

CIR TC TCRF

CPU TL CPU TL TR1 TR?2
#1 215.88 708 136.92 287 | 40.53 18.06
#2 138.24 1622 74.57 803 49.51 26.50
#3 44.32 584 51.54 351 60.10 | 30.79
#4 1150.23 7573 1525.21 4792 63.28 | 34.88

as fast as that of 3TC for #4 which is a large circuit.
From this table, we can see that the static test sequence
compaction method using a template can faster compact
than three-value-based compaction method.

Table 11 shows the experimental results of the dy-
namic test sequence compaction method by reverse
transformation fault simulation. In Table 11, TC shows
the experimental results of the static test sequence com-
paction method using a template, TCRF shows the ex-
perimental results of the combination of the static test
sequence compaction method and the dynamic test se-
quence compaction method, CPU shows times (unit:
second) consumed to generate test sequences including
test sequence compaction on SUN Ultra2 platform (fre-
quency: 296MHz, SPECint95:12.1, SPECfp: 18.3), TL
shows the lengths of the total test sequences, TR1 shows
the ratios of TL of TCRF to TL of TC, and TR2 shows
the ratios of TL of TCRF to TL of NC. TCRF short-
ened the lengths of test sequences compared with TC by
37 to 59%, and shortened the lengths of test sequences
compared with NC by 66 to 81%. The combination of
the static test sequence compaction method and the dy-
namic test sequence compaction method could further-
more enhance the compaction efficiency.

6 Conclusion

In this paper, we presented the static test sequence
compaction method using a template and the dynamic
test sequence compaction method by reverse transfor-
mation fault simulation for acyclic sequential circuits.
We could obtain the following conclusions from the ex-
perimental results for practical circuits.

(1) Presented heuristic algorithm is effective.

(2) The static test sequence compaction method us-
ing a template could shorten the lengths of test
sequences by 45 to 55%.

(3) The combination of the static test sequence com-
paction method and the dynamic test sequence
compaction method could furthermore shorten the
length of test sequences by 37 to 59%.

Our future work is that we will consider the relation
between the compaction efficiency and the number of
vertices in compatibility graph.
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