
Abstract
     We introduce a new class of sequential circuits with
combinational test generation complexity which we call
internally balanced structures.  It is shown that sequential
circuits can be classified by their structure as follows:
{sequential circuits of acyclic structure} ⊃  {sequential
circuits of internally balanced structure} ⊃  {sequential
circuits of balanced structure} and that internally balanced
structures allow test generation with combinational test
generation complexity.  On the other hand, if finite state
machines (FSMs) are classified by their realization
possibility, it can be shown that {FSMs which can be
realized as a sequential circuit of acyclic structure} =
{FSMs which can be realized as a sequential circuit of
internally balanced structure} ⊃  {FSMs which can be
realized as a sequential circuit of balanced structure}. In
addition, we discuss the definition of test generation
possibility with combinational test generation complexity
and introduce a new definition which covers the previous
narrow definition.

1.  Introduction

     Test generation for a sequential circuit is, in general, a
difficult and intractable task which may be unsolvable
within a reasonable time for a large-scale circuit [1, 2].
Methods of solution include design for testability like the
scan design method in which some or all of the flip-flops
are replaced with scan flip-flops so that they are chained
into a shift register during test mode and hence they can
be directly controlled and observed [1, 2].  When all the
flip-flops of a circuit are replaced with scan flip-flops (full
scan design), all the scan flip-flops are treated as
equivalents to external I/O terminals and hence the test
generation can be performed for the remaining circuit
(called the "kernel circuit") with the exclusion of all flip-
flops, i.e.,  for the combinational part of the sequential
circuit.  Therefore, the full scan design method can reduce
the test generation problem for a sequential circuit to the
problem of test generation for a combinational circuit.
     If the test generation problem for a sequential circuit
can be reduced to the problem of test generation for a
combinational circuit where all the flip-flops of the
sequential circuit can be replaced by wires, then such a
sequential circuit is called a sequential circuit allowing
test generation with combinational test generation
complexity, or simply a sequential circuit with

combinational test generation complexity, and this
transformation is called combinational transformation (C-
transformation).  For example, balanced structures [3]
are one class of circuit structures with this feature.  A
sequential circuit is a balanced structure if, for any pair of
primary input and primary output, all paths between them
have the same number of flip-flops.  In [4], a sub-class of
balanced structure called strongly balanced structures is
introduced.
     In this paper, we first introduce an extended
combinational transformation (C*-transformation) and a
wider class of sequential circuits with combinational test
generation complexity which we call internally balanced
structures.  It is shown that sequential circuits can be
classified by their structure as follows:  {sequential
circuits of acyclic structure} ⊃  {sequential circuits of
internally balanced structure} ⊃  {sequential circuits of
balanced structure}.  Sequential circuits of acyclic
structure do not necessarily allow test generation with
combinational test generation complexity.  However, it
can be shown that sequential circuits of internally
balanced structure allow test generation with
combinational test generation complexity as well as
balanced structure.  On the other hand, if finite state
machines (FSMs) are classified by their realization
possibility, it can be shown that {FSMs which can be
realized as a sequential circuit of acyclic structure} =
{FSMs which can be realized as a sequential circuit of
internally balanced structure} ⊃  {FSMs which can be
realized as a sequential circuit of balanced structure}.
From this result, we can see that any FSM realizable with
acyclic structure can be also realized with internally
balanced structure which is capable of test generation
with combinational test generation complexity.   In
addition, in this paper, we discuss the definition of test
generation possibility with combinational test generation
complexity and introduce a new definition which covers
the narrow definition by [3].

2.  Sequential Circuits with Combinational
Test Generation Complexity

     A sequential circuit with combinational test generation
complexity must be a circuit without feed-back, i.e., of
acyclic structure.  Therefore, we shall first limit the
subject to sequential circuits of acyclic structure.  Further,
for simplicity, we shall limit flip-flops (referred to
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hereafter as FFs) to DFFs.  FFs of another kind can be
handled similarly.
     At a fanout point, the signal line at the input side is
called the fanout stem and the signal lines at the output
side are called fanout branches.  The number of FFs
included in a path is called the sequential depth of the
path.  The largest sequential depth over the paths from the
primary inputs of a sequential circuit to its primary
outputs is regarded as the sequential depth of the
sequential circuit.  Suppose x is a primary input, and xi
and xj are branches of x.  If no path exists such that a

primary output zk can be reached from xi and xj over

equal depth paths, then xi and xj are called separable.

     A set composed of subsets of a state set Q is called a
decomposition  of Q, with each subset constituting a
block.  A decomposition whose blocks are mutually
disjoint is called a partition.  For a decomposition
Π={B1, B2, ..., Bk}, where the blocks are denoted by Bi
and inputs by Ij, if the state set obtained by transition at

each input Ij from the state belonging to Bi is denoted by

Bij, then decomposition composed of blocks Bij will be

expressed by m(Π).  If Q itself is considered a partition,
then it is expressed by I, and, in addition, a partition with
each block constituting one state is expressed by O.
     C o m b i n a t i o n a l  T r a n s f o r m a t i o n  ( C -
Transformation):    Given a sequential circuit S of
acyclic structure, we define its combinational equivalent
C(S) as the combinational circuit formed by replacing
each FF in S by a wire  (for the case of negative FF
output, a NOT gate is added, see Fig. 1).  Such a
transformation is called the combinational transformation
(C-transformation).

DFF

Q

Q
Q

Q
Figure 1.  Deletion of flip-flops

X(1)

X

X(k)
Figure 2.  Primary input separation

     Extended Combinational Transformation
(C*-Transformation):    A transformation based on
the following two operations with a sequential circuit S of
acyclic structure is called the extended combinational
transformation (C*-transformation), and the resulting
combinational circuit is denoted by C*(S).
     (1)  For a primary input with fanout branches, the set
of fanout branches of that primary input is denoted by X.
Let us obtain the smallest partition Π of X which satisfies
the following statement:  If branches xi and xj belong to

different blocks X(i), X(j) of partition Π ( xi ∈  X(i), xj ∈
X(j), X(i) ≠  X(j) ), then  xi and xj are separable.  As

shown in Fig. 2, each partitioned block is provided with a
new primary input separated from the original primary
input.  (Note: while separating the primary inputs, branch
faults are treated as a multiple fault present
simultaneously in all these branches).
     (2)  FFs are replaced by wires as shown in Fig. 1.
     Possibi l i ty  of  test  generation with
combinational test generation complexity:  If it
is true that by assuming S denotes an acyclic sequential
circuit and C*(S) denotes the C*-transformed
combinational circuit, the necessary and sufficient
condition for testing a fault f in S is that the fault fc in

C*(S) corresponding to f can be tested in C*(S), then the
sequential circuit S allows test generation with
combinational test generation complexity.  Such a
sequential circuit is called a sequential circuit allowing
test generation with combinational test generation
complexity, or simply a sequential circuit with
combinational test generation complexity.
     Acyclic Structure:  When a sequential circuit S
does not contain any closed path, S is regarded as an
acyclic structure.
     Even an acyclic circuit may not necessarily allow test
generation with combinational test generation complexity.
Fig. 3 shows an example of such a circuit.

AND
FF

OR
X

AND OR
X

       s-a-0 (detectable fault)                s-a-0 (redundant fault)
Figure 3.  Circuit example and C*-transformation

     Balanced Structure[3]:  If, for any pair of
primary input and primary output in a circuit S, the
sequential depths of all paths connecting these two points
are equal, then S is regarded as a balanced structure.
Therefore, since in a sequential circuit of balanced
structure none of its primary inputs is separable, the C*-
transformation is performed only by operation (2) and
hence C*(S) = C(S) (see Fig. 4).

R1

R3

C1

R2

C2

C3

R4
C4

Figure 4.  Example of balanced structure

     Internally Balanced Structure:  If a circuit S*
resulting from the operation (1) of the C*-transformation
on a circuit S is a balanced structure, then S is regarded as
an internally balanced structure.
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     The circuit shown in Fig. 5 is an internally balanced
structure but is not a balanced structure.  The relation
among three structures is shown in Fig. 6.

A

B C
D

R1

R2 R3

Figure 5.  Example of internally balanced structure

Sequential circuits of
internally balanced structure

Sequential circuits of
 balanced structure

Sequential circuits of
acyclic structure

Figure 6.  Classification of sequential circuits by structure

      Theorem 1 [5]:  The necessary and sufficient
condition for realization of an FSM M   as an acyclic

structure is mk(I ) = O  for any constant k, such that for k

> 1 we have mk(I) = m(mk-1(I )) and m1(I ) = m(I ).
    Lemma 1:  The statement that an FSM M   is

expressed as mk(I ) = O    for any k is equivalent to the
statement that M  can be realized by a finite input memory
machine of length k (see Fig. 7).  In addition, it is
equivalent to the statement that any input sequence of
length k becomes a synchronizing sequence [1] of M.
     Therefore, we can obtain the following corollary.
     Corollary 1:   The necessary and sufficient
condition for realization of an FSM M   as an acyclic
structure is that M   can be realized by a finite input
memory machine.
     Proofs for Theorem 1 and Corollary 1 are given in [5].
A different proof can be done by using the following
Lemma 2 and Corollary 2.
     Lemma 2:  Any sequential circuit of acyclic
structure (Fig. 8) can be transformed into an equivalent
circuit allowing realization with a finite input memory, by
operations of retiming (Fig. 9) and logic duplication (Fig.
10).
     Corollary 2:  Any FSM allowing realization as an
acyclic structure can be realized as an internally balanced
structure.
     Proof:  A circuit allowing realization by a finite input
memory (Fig. 7) can be transformed into an equivalent
circuit of the type shown in Fig. 11 by retiming.  This
statement and Corollary 1 (or Lemma 2) constitute a
theorem.

     Theorem 3:  An FSM exists which can be realized
as an acyclic structure, but which cannot be realized as a
balanced structure.
     P r o o f :  If, for any input x, an output z varies
depending on the values of x in different time frames,
then for the circuit realizing z, a number of paths exist
which are characterized by different sequential depths
required to reach z from x.  Therefore, it cannot be
realized as a balanced structure.    QED
     For example, in Fig. 12, output  is determined by input
x in the current time frame and by input x at some
previous time frame.  Therefore, there are two paths of
different depth leading from x to z.

Combinational
      Circuit

Figure 7.  Finite input memory realization
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Figure 8.  General acyclic structure

logic FF logicFF
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Figure 9.  Retiming
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Figure 10.  Logic duplication

Combinational
      Circuit
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Figure 11.  Internally balanced structure
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Figure 12.  Circuit example
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     From Theorems 2 and 3 we can conclude the following
(see Fig. 13):
        {FSMs which can be realized as a sequential circuit

of acyclic structure}
     = {FSM which can be realized as a finite input

memory machine}
     = {FSMs which can be realized as a sequential circuit

of internally balanced structure}
     ⊃  {FSMs which can be realized as a sequential circuit

of balanced structure}.

FSMs realizable as acyclic structue
FSMs realizable as finite input memory machine
FSMs realizable as internally balanced structure

FSMs realizable as balanced structure

Figure 13.  Classification of finite state machines
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Figure 14.  (a) Acyclic structure; (b) time expansion

3.  Test Generation Complexity

3.1  Acyclic Structure

     Fig. 14(a) illustrates an example of a sequential circuit
with acyclic structure.  For this circuit, the test pattern can
be obtained by applying the test generation algorithm for
combinational circuits to the time-expanded
combinational circuit illustrated in Fig. 14 (b).   Since
there are several sub-circuit duplicates, we must consider
the same fault in each sub-circuit, i.e., a kind of multiple
faults.   Assuming a sequential depth d, the time-
expanded circuit will include in the worst case d+1 sub-
circuit duplicates.  After obtaining the test pattern for the

time-expanded combinational circuit, we can generate a
test sequence (for the sequential circuit) corresponding to
the test pattern.  The length of the test sequence is d+1 in
worst case.

3.2  Balanced Structure

     Theorem 4 [3]:  If a sequential circuit S is a
balanced structure, S allows test generation with
combinational test generation complexity.
     The sequential circuit S shown in Fig. 4 is a balanced
structure.  Replacing all flip-flops in S by wires,  a
combinational circuit C(S) as shown in Fig. 15 is
obtained.  The test pattern is obtained by applying to this
combinational circuit a combinational test generation
algorithm (ATG).  From the test pattern generated by the
combinational ATG, we obtain the corresponding test
sequence, taking time into account.  Assuming a
sequential depth d, the length of the test sequence is d+1
in worst case.  In this test sequence, the same input values
are applied to each primary input during d+1 clocks.
     An advantage of the sequential circuit with balanced
structure is that it has time expansion to d+1, similarly for
the acyclic structure, but there are no duplicates in the
time-expanded circuit.

C1

C2

C3

C4

time frame 1 time frame 2 time frame 3

Figure 15.  C-transformed combinational circuit C(S)

3.3  Internally Balanced Structure

     Theorem 5:  If a sequential circuit S is an internally
balanced structure, S allows test generation with
combinational test generation complexity.
     Proof:  First, we shall prove that if a fault f in S can be
tested, then the fault fc in C*(S) corresponding to f can be

tested in C*(S).  It is sufficient to prove that a test pattern
Tc for fc in C*(S) can be generated from the test sequence

T for f in S.  Here, we shall treat a fault at a primary input
with fanout as a multiple fault which exits simultaneously
in all the fanout branches of the input.
     If the sequential depth of S is d, the length of T is d+1.
Assume that f can be detected in a time frame t at primary
output zk (1<t<d+1).  From this test sequence T we can

define the primary input value xi in C*(S) for the test

pattern Tc as shown below.

     (1)  Case of xi not being a primary input resulting from

separation:
     The sequential depth from xi to zk is uniquely

determined.  Let the depth be dik.  The value of xi
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required to detect f in T at zk is the value of the primary

input xi in time frame t–dik.  Therefore, the primary input

value xi in time frame t–dik in T  can be set to define the

primary input value xi of the test pattern Tc.

     (2) Case of xi  being a primary input resulting from

separation:
     Suppose that the original primary input value of xi in S

is denoted x.  Although x is a primary input in S, xi is not

a primary input.  In C*(S), xi is a primary input.  Since

this is the case of an internally balanced structure, we can
uniquely determine the sequential depth from xi to zk,

which is denoted as dik.  The value of xi required to

detect f in T at zk equals the x value in time frame t–dik.

The x value in time frame t–dik in T is set to define the

primary input value xi in the test pattern Tc.

     It is evident that the test pattern Tc defined as

described above will detect the fault fc in C*(S).  Next,

we prove that if the fault fc in C*(S) can be tested, then

the fault f in S corresponding to fc can be tested in S.  It is
sufficient to prove that the test sequence T for f in S can
be generated from the test pattern Tc in C*(S).  Suppose

fc can be detected at the primary output zk in the test

pattern Tc.  The primary input value xi of the test

sequence T such that the fault f corresponding to fc can be

detected at the primary output zk in time frame t is

determined as follows.
     (1) Case of xi not being a primary input resulting from

separation:
     The sequential depth from xi to zk is uniquely

determined.  Let the depth be dik. The primary input

value in the test pattern Tc is set to the primary input

value xi at the time frame t–dik of the test sequence T.

     (2) Case of xi  being a primary input resulting from

separation:
     Assume that the primary input xi in S was separated to

obtain the primary inputs xi1, xi2, ..., xin in C*(S).  Since

this is the case of an internally balanced structure, we can
uniquely determine each sequential depth from xij to zk,

which is denoted by dijk.  Since these are separable, all

d ijk (j=1,2,...,n) are different sequential depths.

Therefore, all time frames (t–dijk) (j=1,2,...,n) are

different, and can be set to n time frames in the test
sequence T as described below.  That is, the primary input
values xij (j=1,2,..., n) of test pattern Tc are set to define

the primary input value xi in time frames (t–dijk)

(j=1,2,...,n) in the test sequence T.
     It is evident that the test sequence T defined above can
detect the fault f in S.        QED
     In Fig. 5, consider the C*-transformation of the
sequential circuit S with internally balanced structure.

Since in S the input fanout branches which are fan outed
at primary input x1 are separable, we separate them.
Then, on replacing the flip-flops by wires, we obtain the
combinational circuit C*(S) as shown in Fig. 16.
     We can then obtain the test pattern for each fault in
this C*-transformed combinational circuit by using a
combinational ATG.  Taking the time frame into account,
we can construct the test sequence for the original
sequential circuit.  Assuming that the sequential depth of
the circuit is d, the length of the test sequence is d+1 at
most.
     An advantage of sequential circuits with internally
balanced structure is that there are no duplicates in the
circuit which was time expanded to d+1, similarly for the
case of balanced structures.

A

B C D
x1(1)

x1(2)

x2

time frame 1 time frame 2 time frame 3

Figure 16.  C*-transformed circuit C*(S).

     We have introduced a new class of sequential circuits
(internally balanced structures) with combinational test
generation complexity  (Theorem 5) which is larger than
the class of sequential circuits of balanced structure. On
the other hand, sequential circuits of acyclic structure do
not necessarily allow test generation with combinational
test generation complexity as illustrated in Fig. 3.   From
Theorem 3, it is not always possible for a FSM realizable
as acyclic structure to be realized as balanced structure.
However, from Corollary 2, any FSM realizable as
acyclic structure can be also realized as internally
balanced structure.  Therefore,  any sequential circuit of
acyclic structure can be transformed or modified into an
function-equivalent sequential circuit of internally
balanced structure which is capable of test generation
with combinational test generation complexity.  In this
sense, the class of sequential circuits of internally
balanced structure might be one of the largest classes of
sequential circuits with combinational test generation
complexity.

4.  New Definition of Possibility of Test
    Generation with Combinational Test
    Generation Complexity

     In [3] the possibility of test generation with
combinational test generation complexity was defined as
follows:  If the test generation problem for S can be
reduced to the test generation problem of C-transformed
combinational equivalent C(S), the sequential circuit S is
said to be in a class of sequential circuits with
combinational test generation complexity.  In Section 2
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we extended the definition of possibility of test generation
with combinational test generation complexity by
introducing an extended combinational transformation
(C*-transformation).
     Here we further extend the concept and introduce a
new definition of the possibility of test generation with
combinational test generation complexity by extending
those transformations.
Pc:  Combinational Test Generation Problem

     Instance:  A combinational circuit C and a fault f.
     Question:  Is there a test pattern to detect f in C?
Ps:  Sequential Test Generation Problem

     Instance:  A sequential circuit S and a fault f.
     Question:  Is there a test sequence to detect f in S?
Pα:  Class α Test Generation Problem
     Instance:  A sequential circuit S in α and a fault f.
     Question:  Is there a test sequence to detect f in S?
Let Tc(n) and Tα (n) be the time complexity of test

generation problems Pc and Pα, respectively, where n is

the size of a problem instance.
     Reducibility:  Problem A is reducible to problem B
if there exits a transformation τ such that for any instance
a ∈  A the solution of a is the same as the solution of τ(a)
∈  B.
   Combinational Test Generation Complexity:
     A class of sequential circuits, α, is called to have
combinational test generation complexity if there exists a
transformation τ such that
     (1)  Pα is reducible to Pc by transformation τ, and

     (2)  for each S∈α ,  Tτ(size of S) ≤ Tc(size of S) and

           Tc(size of τ(S)) ≤ Tc(size of S),

        where Tτ is the time complexity of transformation τ.

     From this definition, Tτ(size of S) +Tc(size of τ(S)) ≤
Tc(size of S).  Therefore, the test generation problem of a

sequential circuit S with combinational test generation
complexity can be solved by first transforming S to τ(S)
and then applying a combinational ATG to the
transformed combinational circuit τ(S).  The total time
complexity is less than Tc(size of S), i.e., the time

complexity of combinational test generation problem.
     As for the complexity of transformation Tτ, it must be

less than the combinational test generation complexity Tc.

However, by reason of the NP-completeness of the
combinational test generation problem Pc, if one

considers Tc might be O(2n) in worst case, where n is the

number of gates in the circuit, then almost all circuits are
in the class of sequential circuits with combinational test
generation complexity, and our discussion becomes
meaningless.  Fortunately, it is known that Tc seems to be

O(nk) for some constant k (less than 2) empirically.
Therefore, when we devise a new transformation method
to further expand the class of sequential circuits with
combinational test generation complexity, we could

consider Tτ to be less than O(nk) for practical use.

5.  Conclusion

     We have defined classes for sequential circuits
allowing test generation with combinational test
generation complexity, and have identified their
characteristics.  The acyclic structures do not exhibit these
characteristics.  We introduced a new class of internally
balanced structures as a class that exhibits these
characteristics.  The FSMs that can be realized with
acyclic structures can be also realized with internally
balanced structures.  Further, we introduced a new
definition of test generation possibility with
combinational test generation complexity.
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