
A Non-Scan DFT Method at Register-Transfer Level
to Achieve Complete Fault Efficiency

Satoshi Ohtake, Hiroki Wada, Toshimitsu Masuzawa and Hideo Fujiwara
Graduate School of Information Science, Nara Institute of Science and Technology

8916-5, Takayama, Ikoma, Nara 630-0101, Japan

E-mail: ohtake, hiroki-w, masuzawa, fujiwara @is.aist-nara.ac.jp

Abstract — This paper presents a non-scan design-for-
testability (DFT) method for VLSIs designed at register-
transfer level (RTL) to achieve complete fault efficiency.
In RTL design, a VLSI generally consists of a controller
and a data path. The controller and the data path are con-
nected with internal signals: control signals and status sig-
nals. The proposed method consists of the following two
steps. First, we apply our DFT methods [1] and [2, 3] to
the controller and the data path, respectively. Then, to
support at-speed testing, we append a test plan generator
which generates a sequence of test control vectors for the
modified data path. Our experimental results show that
the proposed method can reduce significantly both of test
generation time and test application time compared with
the full-scan design, though the hardware overhead of our
method is slightly larger than that of the full-scan design.

I. INTRODUCTION

With the advance in semiconductor technology, the com-
plexity of VLSI designs is growing and the cost of testing is
increasing. Therefore, it is necessary to reduce cost of testing
and to enhance quality of testing. The cost of testing is esti-
mated by test generation time and test application time. The
quality of testing is estimated by fault efficiency1. Therefore,
we have to reduce test generation time and test application time
and to enhance fault efficiency. To ease the complexity of test
generation, design-for-testability (DFT) techniques have been
proposed. The most commonly used DFT techniques for se-
quential circuits are scan-based approaches[4]. These tech-
niques modify sequential circuits so that automatic test pat-
tern generation (ATPG) tools can achieve high fault efficiency
in a reasonable time. However, these techniques sacrifice the
possibility of at-speed testing[5] for fault efficiency enhance-
ment. To avoid this disadvantage of scan techniques, several
non-scan approaches have been investigated. Moreover, since
techniques of test generation and DFT at gate level face the
problems arising out of huge number of elements and high
complexities of the circuits at gate level, several techniques of
test generation and DFT at register-transfer level (RTL) have
been proposed recently.
In RTL design, a VLSI circuit is generally described by a

controller part and a data path part separately. The former is
represented by a state transition graph (STG) and the latter is
represented by hardware elements (e.g. registers, multiplexers
and operational modules) and lines. A controller and a data

1Fault efficiency is the ratio of the number of faults detected and proved
redundant to the total number of faults.

path are connected with internal signals: control signals and
status signals. Most of the DFT methods for RTL circuits
were concerned with only either data paths or controllers, un-
der assumption that the control signals and the status signals
are directly controllable and observable from the outside of the
VLSI.
For controllers, Chakradhar et al.[6] proposed a non-scan

DFT method at RTL. This method can achieve high fault ef-
ficiency but cannot always guarantee complete (100%) fault
efficiency. Furthermore, it is applicable only to PLA-based se-
quential circuits. Our previous work [1, 7] proposed several
non-scan DFT methods which achieve 100% fault efficiency.
In these methods, given an STG, we first synthesize a sequen-
tial circuit from the STG. Then we generate test patterns, by
a combinational ATPG tool, for the combinational part of the
synthesized sequential circuit. Most of the generated test pat-
terns can be applied to the sequential circuit using state transi-
tions of the STG. However, there may exist test patterns which
cannot be applied using state transitions of the STG. In this
case, we append an extra logic which provides extra transi-
tions required for testing. Those test patterns are applied using
the extra logic.
For data paths, several non-scan DFT methods at RTL have

been reported, e.g. orthogonal scan[8, 9] and H-SCAN[10],
which use normal data path flow as scan path instead of tra-
ditional scan path flow. These methods can reduce hardware
overhead and test application time compared with the full-scan
design. However, test generation time cannot be reduced be-
cause the test generation approach is the same as the full-scan
design. To reduce test generation time, a hierarchical test gen-
eration approach was proposed byMurray and Hayes[11]. The
hierarchical test generation of a data path consists of the fol-
lowing two steps: for individual combinational hardware el-
ements, generate test patterns at gate level and generate test
plans at RTL, where a test plan is a control sequence to prop-
agate test patterns from the primary inputs to the inputs of the
respective hardware elements and to propagate responses from
the output of the respective hardware elements to the primary
outputs. Genesis [12]–[15] is an approach based on such hier-
archical test generation for data paths. However, Genesis can-
not always guarantee 100% fault efficiency due to the back-
tracking in the test plan generation for large data paths. Our
previous work [2, 3] presented a DFT method based on such
hierarchical test generation and strong testability. Strong testa-
bility is a property of data paths which guarantees to generate
test plans for all combinational hardware elements of the data
path. In our method, test plans can be derived with complexity
O n2 where n is the number of hardware elements in a RTL
data path.

1

Asia and South Pacific Design Automation 2000 (ASP-DAC 2000), pp. 599-604, Jan. 2000.



Controller Data Path
Control Signals

(CSs)

Status Signals
(SSs)

Primary Inputs(PIs)

Primary Outputs(POs)

Primary Inputs(PIs)

Primary Outputs(POs)

COs CIs

SIs SOs

CIs: Control Inputs
SOs: Status Outputs

COs: Control Outputs
SIs: Status Inputs

Fig. 1. An RTL controller/data path circuit.

This paper presents a DFT method for an RTL circuit which
consists of a controller part and a data path part. Given an
RTL controller/data path circuit, we apply the DFT method of
[1] to the controller part and apply that of [2, 3] to the data
path part. Our previous experimental results using benchmark
circuits show that the hardware overheads of [1] and [2, 3] were
3.5% and 4.0% on average, respectively. The test application
times in [1] and [2, 3] were reduced on average to 25.4% and
17.6% of the full-scan design, respectively. Furthermore, both
of these DFT methods can achieve 100% fault efficiency and
allow at-speed testing.
In the above-mentioned DFT methods, we assumed that

both control signals and status signals between a controller and
a data path are directly controllable and observable from the
outside of circuits. However, if we consider a DFT method for
the whole circuit consisting of both a controller and a data path,
we have to remove this assumption by adding some extra logic
to provide both controllability and observability of those con-
trol and status signals. In this paper, we resolve this problem
by (1) adding multiplexers on those control and status signals
to connect directly from primary inputs and to primary outputs
and (2) embedding an extra circuit in the controller side, called
a test plan generator, which can generate test plans for the data
path of an RTL circuit.
The proposed DFT method for controller/data path circuits

has the following advantages:
100% fault efficiency can be achieved.
At-speed testing can be performed.

Furthermore, from our experimental results,
Test application time can be reduced significantly com-
pared with the full-scan design.
Test generation time can be reduced significantly com-
pared with the full-scan design.
The hardware overhead is slightly large compared with
the full-scan design and the difference between the over-
heads is small.

This paper is organized as follows: Section II gives the def-
inition of controller/data path circuits. In Section III, we intro-
duce the DFT methods of controllers reported in [1] and of data
paths reported in [2, 3] and propose a DFT method of whole
circuits consisting of both controllers and data paths. Section
IV shows experimental results of the proposed method.

II. PRELIMINARIES
In RTL description, a VLSI circuit generally consists of a

controller and a data path as shown in Fig. 1. The former is rep-
resented by an STG and the latter is represented by hardware
elements (e.g. registers, multiplexers and operational modules)
and lines. Each of the controller and the data path has primary
inputs from the outside of the VLSI and primary outputs to the
outside of the VLSI. The controller also has status inputs from

the data path and control outputs to the data path. Similarly,
the data path also has control inputs from the controller and
status outputs to the controller. The signals from the control
outputs to the control inputs are called control signals, and the
signals from the status outputs to the status inputs are called
status signals.

Data Path
A data path consists of hardware elements and lines. A hard-

ware element is a primary input, a primary output, a control in-
put, a status output, a register, a multiplexor, or an operational
module, and a line connects two hardware elements with some
bit width. Inputs of a hardware element of a data path can
be classified into data inputs and control inputs. Data inputs
of a hardware element are connected directly/indirectly from
primary inputs of the data path. Control inputs of a hardware
element are connected directly from control inputs of the data
path. Examples of the control inputs are load enable signals
of registers, selection signals of multiplexers and function se-
lection signals of operational modules. Similarly, outputs of
a hardware element of a data path can be classified into data
outputs and status outputs. Data outputs of a hardware element
are connected directly/indirectly to primary outputs of the data
path. Status outputs of a hardware element are connected di-
rectly to status outputs of the data path. An Example of hard-
ware elements which have status outputs is a comparator.

III. A METHOD OF DFT FOR RTL CONTROLLER/DATA
PATH CIRCUITS

In this section, we propose a DFT method for controller/data
path circuits.

A. Overview
In our DFT method, given a controller/data path circuit de-

scribed at RTL, we first apply the DFT method of [1] to the
controller and apply that of [2, 3] to the data path of the circuit.
In these DFT methods, we assume that the control signals and
the status signals are directly controllable and observable from
the outside of the circuit. However, these are internal signals
between the controller and the data path in the controller/data
path circuit. Thus, for testing of the controller, we have to en-
hance controllability of the status inputs and observability of
the control outputs. Similarly, for testing of the data path, we
have to enhance controllability of the control inputs and ob-
servability of the status outputs. In the DFT method proposed
in this paper, we embed mechanisms to enhance controllability
and observability of the control signals and the status signals
so that the testing method of [1, 2, 3] can be applied. The test
architecture of the controller/data path circuit of our method is
shown in Fig. 2.
Before explaining the details of the test architecture, we briefly
introduce the DFT methods for controllers and data paths that
are basis of the test architecture.

B. DFT of Controllers [1]
In this section, we give an overview of the DFT method [1]

for a controller synthesized from an STG. The method achieves
100% fault efficiency with short test generation time and al-
lows at-speed testing. In order to generate a test sequence that
achieves 100% fault efficiency with short test generation time,
we generate test patterns for the combinational part of the se-
quential circuit using a combinational ATPG tool. Each of test
patterns consists of the values corresponding to primary inputs

2



PIs

POs

PIs

POs

TMR

TPR
Test Controller

Controller

ISG

MUX
Data Path

Hold
Mask

T PG

ACSs

CSs

SSs

t0 t1

t2

t3t4

Mask

REG Hold
REG

Hold
REG

MUX1

MUX2

MUX3t out

Reset

t1

COs

SIs

CIs

SOs

ACIs

T PG : Test Plan Generator

ACSs: Additional Control Signals TPR: Test Pattern Register
TMR: Target Module RegisterACIs: Additional Control Inputs

ti: Test Pin

Fig. 2. Test architecture of a controller/data path circuit.

CC
PIs POs

SR

t out

t3
t4

R
ISG MUX

1

0
0

1

t3 : mode switching signal

t out : state output signals
t4 : load/hold signal

ISG : invalid test state genarator

CC: combinational logic block
SR: state register

SIs COs

Fig. 3. A controller augmented with an extra logic ISG .

(PIs), status inputs (SIs) and a state register (SR) of the sequen-
tial circuit. In order to apply a test pattern to the combinational
part, we have to set the corresponding value to the SR. If the
value corresponds to a state reachable from the reset state of
the STG, the value can be set to the SR using original state
transitions of the STG. Otherwise, the value cannot be set to
the SR using state transitions of the STG. In order to set such a
value to the SR, we append an extra logic called an invalid test
state generator(I SG) to the controller as shown in Fig. 3. The
ISG generates all the values (called invalid test states) that ap-
pear in the test patterns but cannot be set to the SR using state
transitions of the STG. In Fig. 3, t3 is used to select inputs of
the SR: the outputs of the original combinational logic block
or those of the ISG and t4 is a load/hold signal and is utilized
to reduce test application time.
The complete fault efficiency is preserved because the com-

binational logic block remains unchanged. Our experimental
results using benchmark circuits show that the average hard-
ware overhead of the ISG is only 3.5%[1] and the average test
application time of the method is 25.4% of that of the full-scan
design[1].
Notice that, in this method, we assume that the status inputs

and the control outputs of the controller are directly control-
lable and observable from the outside of the circuit, respec-
tively. However, these are internal signals in the controller/data
path circuit. Thus, in the DFT proposed in this paper, the con-
troller/data path circuit is modified so that the status signals
and the control signals can be directly controlled and observed
from the outside of the circuit. A straight forward solution is
to introduce additional test pins and to connect them directly to
the status inputs and the control outputs. However, this solu-
tion introduces unacceptable pin overhead for practical design.

TABLE I
CONFIGURATIONS OF TEST ARCHITECTURE

Test Pins
t0 t1 t2 t3 t4 Operation
0 0 0 0 0 Normal operation
1 0 1 Testing controller
0 1 Testing data path
: depend on test patterns or test plans

Instead, in proposed DFT, the pin overhead is avoided as fol-
lows: the status inputs of the controller are directly controlled
from primary inputs of the data path by adding a multiplexer
“MUX1” as Fig. 2, and the control outputs of the controller
are directly observed from primary outputs of the data path by
adding a multiplexer “MUX3”. This approach is acceptable
because it generally conceivable that the status inputs (resp.
the control outputs) of the controller have smaller bit-width
than the primary inputs (resp. the primary outputs) of the data
path, and we need not use function of the data path at testing
of the controller. In testing of the controller, these multiplexers
“MUX1” and “MUX3” are configured as shown in TABLE I.

C. DFT of Data Paths [2, 3]
In this section, we give an overview of the DFT method of

[2, 3] for a data path described at RTL.

Strong Testability
The DFTmethod is based on hierarchical test generation and

strong testability.
Hierarchical test generation is an efficient technique for

generating test patterns of very large data paths. In hierar-
chical test generation, test generation of each combinational
hardware element M proceeds as follows:
Step 1: ExtractM from the data path and generate test patterns

of M at logic level using a combinational ATPG tool .
Step 2: Generate a test plan which is a sequence of control

vectors of control inputs of the data path for propagating
the test patterns obtained at the first step from primary in-
puts to the data inputs ofM and for propagating responses
of M from the data outputs of M to primary outputs. The
test patterns and the responses are propagated using orig-
inal data path flows of the data path.

Strong testability is proposed as a characteristic of data paths
that guarantees applicability of the hierarchical test genera-
tion.
Definition 1: Strong Testability [2, 3]
A data path is strongly testable iff there exists a test plan for
each combinational hardware elementM that makes it possible
to apply any pattern toM and to observe any response ofM.
A strongly testable data path has the following advantages.

Fast test pattern generation:
Test pattern generation time is short since a combinational
ATPG tool can be applied to each combinational hardware
element separately.
Fast test plan generation:
Test plan generation time is short since test plans are gen-
erated at RTL (not at gate level).
100% fault efficiency:
100% fault efficiency can be achieved for the whole data
path, since each hardware element M is a combinational
circuit of small size and strong testability guarantees com-
plete controllability and complete observability of M.

3



thru

Thru

(a) using a mask element (b) using a multiplexer

thru

Thru

ADDER

X1 X2
Unknown
Operation

X1 X2

MUX 10

Fig. 4. Examples of realizing thru function.

REGY
lyREGXlx

0 1m2

SUB

01 m3

0 1 m4

REGO lo

0 1m1

PIY

PO

PIX

ZERO ZERO

ZERO

c15c10c9

mask

3

4
5

8 9 10

12

11

MUT

Justification
Propagation

Fig. 5. An example of strongly testable data path.

The DFT Method
In the DFT method, we add no special path for propagating

test patterns and responses. Instead, test patterns and responses
are propagated along existing data path flows. To propagated
test patterns and responses along existing data path flows, the
DFT method appends thru functions to operational modules
and hold functions to registers. Below we provide a brief ex-
planation of the DFT method.
Consider testing of a combinational hardware element M

with two data inputs, x and y, in the data path. To test M, a
value specified by a test pattern should be fed into x. We prop-
agate the value along a path p from a primary input to x. If an
operational module C appears on p, the output value of C will
depend on the function and the input value(s) of C.
In order to propagate the value of the test pattern along p,

thru function is added to C. Most of the popular operational
modules (e.g. adder) can realize the thru function by using a
mask element. The mask element generates a constant what is
required to realize the thru function. Figure 4(a) illustrates an
example of such mask element. If we cannot realize the thru
function using the mask element, we realize the thru function
using a multiplexer as in Fig. 4(b).
However, we cannot achieve the strong testability by adding

only the thru functions. The thru functions guarantee controlla-
bility of a single path. In case of a hardware element which has
two data inputs, a test pattern must be applied to both the inputs
simultaneously. Presence of reconvergent paths in a data path
can prevent such application of a test pattern to a hardware ele-
ment which has two data inputs. In particular, this can happen
if the propagation paths to the two data inputs of a hardware
element start from the same primary input and have the same
sequential depth. Such reconvergent paths will cause a timing
conflict, i.e. two different values are required on a primary in-
put at the same time. To resolve such conflicts, in the DFT
method, some registers are augmented with hold function.
In this DFT, to control the thru functions, and the hold func-

tions, additional control inputs are appended as shown in Fig.
2.

TimePIXPIYm1m2m3m4 lx ly lomask c9c10c15PO
1 C X 0 0 X X 1 X X X - - - - Justification
2 X C X X T X X 1 X X - - - -
3 X X 1 0 X X 1 X X 1 - - - - Propagation
4 X X X X X 0 XX 1 X - - - -
5 X X X X X X XXX X - - - O

C :apply test pattern to PI X : don’t care
O :observe PO and/or status output - : need not observe
T : apply test pattern to control input

Fig. 6. An example of test plan.

An example of application of the DFT method is shown in
Fig. 5. In this example, a mask element is added to an data
input of subtracter “SUB” and an additional control input is
“mask”. Time complexities of the DFT algorithm and the test
plan generation algorithms are O n and O n2 , respectively,
where n is the number of hardware elements in the data path.
Our experiments using benchmark circuits show that the aver-
age hardware overhead is only 4.0% and the average test ap-
plication time is 17.6% of that of the full-scan design[2, 3].

Test Plans
For every combinational hardware element of a data path, a

test plan can be generated by the algorithm of [2, 3]. Consider
a combinational hardware element M which has data inputs,
control inputs, data outputs and status outputs in the data path.
Each test pattern ofM consists of a value corresponding to the
data inputs and a value corresponding to the control inputs. We
call the former a data input value and the latter a control input
value. Notice that, for testing such a hardware element, we
must apply test patterns both the data inputs and the control in-
puts. The test plan propagates the data input value to the data
inputs of M from primary inputs. The test plan also applies
control input value to the control inputs at the time when the
data input value is justified to the data inputs. The test plan
also propagates the responses appeared on the data outputs of
M from the data outputs to the primary outputs. The response
appeared on the status outputs of M is observable from status
outputs of the data path. For example, a test plan of the multi-
plexer marked MUT in Fig. 5 is shown in Fig. 6.
Computation time of the test plan generation algorithm is

O n2 where n is the number of hardware elements in the data
path, and on experimental results show that the average test
application time of the method is 17.6% of that of the full-scan
design[2, 3].
Notice that, the test plans and control input values of hard-

ware elements must be applied to the control inputs (including
control inputs appended by the DFT) of the data path. Simi-
larly, the responses on the status outputs of the data path must
be observed from the status outputs. If we use additional test
pins to make these such control inputs and status outputs di-
rectly controllable and observable, respectively, from the out-
side of controller/data path circuits, pin overhead is unaccept-
able for practical designs. The problem of the pin overhead can
be avoided by the following way. Here, we first consider ob-
servability of the status outputs. In general, since the bit-width
of the primary outputs of the controller is smaller than that of
the status outputs, we cannot use the primary output for observ-
ing the status outputs. However, the bit-width of the primary
outputs of the data path is larger than the status outputs. Since
observation of a response of a test pattern only from either the
status outputs or the primary inputs is sufficient, the status out-
puts and the primary outputs need not observed simultaneously
at testing of the data path. Therefore, we can observe the status

4



outputs using the primary outputs of the data path. In our test
architecture, this is achieved by a multiplexer “MUX3” (see
Fig. 2).
We next consider controllability of the control inputs. In

general, since the number of primary inputs of the controller is
smaller than that of control inputs of the data path, we cannot
use the primary inputs for applying test plans and control input
values of hardware elements to the control inputs. Moreover,
in testing of data path, since the primary inputs of the data path
are used to apply data input values of hardware elements, we
cannot use them to apply the test plans and the control input
values to the control inputs of the data path simultaneously.
Therefore, we append an extra circuit called a test controller to
generate control input values as shown in Fig. 2. The detail of
the test controller is presented in the next subsection.

D. Test Plan Generator
Test plans are generated for the all combinational hardware

elements in a data path of a controller/data path circuit. In our
test architecture, all the test plans of the data path are generated
by a test controller (Fig. 2). The test controller consists of
a test plan generator(T PG), a test pattern register(TPR) and
a target module register(TMR) as shown in Fig. 2. Consider
testing of a combinational hardware elementM, which has data
inputs and control inputs, in the data path. The TMR is used
to store the index of M. The bit width of the TMR is logm
where m is the number of combinational hardware elements in
the data path. The T PG generates the test plan of M from
the index stored in the TMR. When the a data input value of a
test pattern ofM is justified to the data inputs, if some primary
inputs of the data path are not used, the control input value is
applied from such primary inputs by way of T PG . Otherwise,
the control input value is pre-stored in the TPR and is applied
to the control inputs by way of T PG . The load enable signal
for TPR and TMR is directly connected from the reset signal of
the controller. That is, if reset is applied, TPR and TMR load
values from some primary inputs of the data path, otherwise,
they hold their values. The mode switching signal t1 is used
to disable DFT elements of the data path in normal operation
mode.
In testing of the data path, the advantage of using the T PG

is that test patterns of each combinational hardware element
of the data path can be applied to the combinational hardware
element at operational speed of the circuit because we can run
the T PG using the system clock of the circuit. Notice that,
it is conceivable that the largest delay of paths in the T PG is
much less than that of the critical path in the data path.
We estimate hardware overhead of a T PG of a controller

/data path circuit. From our experiments, the area of the T PG
is almost the same as the area of the original controller of the
circuit. For controller/data path circuits dominated data flow,
it is conceivable that hardware overhead of the T PG is low.
We also consider testing of a T PG . Since the T PG is not

used at the normal operation, we test the T PG only to confirm
that the test plans are generated correctly. It is performed by
observing primary outputs of a data path (see Fig. 2).

IV. EXPERIMENTAL RESULTS
In this section, we evaluate effectiveness of our method by

experiments. Circuit characteristics of RTL benchmark cir-
cuits used in the experiments is shown in TABLE II. The cir-
cuits GCD, JWF, LWF and PAULIN are popularly used exam-
ples and the circuit RISC is a more practical and large proces-
sor designed by a semiconductor company. In our experiments,

we used a logic synthesis tool AutoLogicII (MentorGraphics)
with its sample libraries to synthesize these benchmark cir-
cuits. In this table, column “Area” denotes the total areas after
synthesis. Here, areas are estimated using gate equivalent of
the library cell area. Columns “Controller” and “Data path” de-
note the characteristics of controller parts and data path parts,
respectively: columns “#PI”, “#PO” and “Area” denote the
numbers of primary inputs and primary outputs and circuit area
of respective parts. Columns “#State”, “#Status” and “#Con-
trol” in “Controller” denote the numbers of states, of status
inputs and of control outputs. Columns “ bit ”, “#Reg.” and
“#Mod.” in “Data path” denote the bit width of data paths and
the numbers of registers and of operational modules in data
paths. In the row “RISC”, the number of the status signals is
larger than that of the primary inputs of the data path. In our
DFT, twenty-two primary output pins are changed to primary
input/output pins by appending tri-state buffers. However, the
hardware overhead of this modification.
Test generation results are shown in TABLE III. Sequen-

tial/combinational ATPG tool TestGen (Synopsys) is used in
this experiments on Ultra60 model 2360 (SunMicrosystems).
Columns “Test generation time”, “Test application time” and
“Fault efficiency” denote test generation time in second, test
application time in clock cycles and fault efficiency. In each
of these columns, columns “Original”, “Full-scan” and “Our
method” denote the results of the original circuits (without
DFT), of the circuits modified by full-scan design and of cir-
cuits modified by our method. Test generation time of our
method is shorter than that of the full-scan design except LWF.
Especially, for the circuit RISC, our method can reduce to
1/700 of the full-scan design and can enhance fault efficiency
compared with the full-scan design. For the circuit, fault ef-
ficiency is 99.99% because the combinational ATPG tool can
not generate a test pattern for a fault in a multiplier of the cir-
cuit. Test application time of our method is drastically reduced
compared with that of the full-scan design.
The area and pin overheads of the full-scan design and our

method are shown in TABLE IV. In this results, for all circuits
except PAULIN, the area overhead of our method is larger than
that of the full-scan design but the difference between the hard-
ware overhead of our method and that of the full-scan design
is not large. The pin overhead of our method is larger than that
of the full-scan design. In the result of the circuit RISC of our
method, the pin overhead is larger than the other because two
select signals of concatenation of two multiplexers are needed
on the primary outputs of the data path to observe the control
signals and the status signals from the primary outputs. In re-
turn for this disadvantage, our method allows at-speed testing.
In our method, hardware for thru and hold functions and

multiplexers are appended to a controller/data path circuit.
First consider performance degradation of the circuit caused
by these appended multiplexers. Multiplexers are appended
in front of the state register of the controller in the circuit, on
control signals between the controller and the data path in the
circuit and in front of the primary outputs of the data path.
The multiplexer in front of the state register is the same as the
full-scan design. The multiplexer on the control signals does
not affect performance of the circuit because the control sig-
nals are not generally included in the critical path of the circuit
[13]. The multiplexer in front of the primary outputs of the
data path does not also affect performance of the circuit be-
cause, in general, there exist registers in front of the primary
outputs of the data path and delay of multiplexers are less than
operational modules.
For the data path, the performance might be degraded by

5



TABLE II
CIRCUIT CHARACTERISTICS.

Controller Data path
Circuit Area(gate) #PI #PO #State #Status #Control Area(gate) #PI #PO bit #Reg. #Mod. Area(gate)
GCD 1524.50 0 1 4 3 7 169.40 32 16 16 3 1 1350.90
JWF 6875.40 0 0 8 0 38 199.50 80 80 16 14 3 6671.70
LWF 1986.20 0 0 4 0 8 57.70 32 32 16 5 3 1924.30
PAULIN 24965.60 0 0 6 0 16 123.50 64 64 32 7 4 24833.70
RISC 62287.60 0 2 11 54 62 3986.90 32 96 32 40 4 58157.90

TABLE III
TEST GENERATION RESULTS.

Test generation time(sec.) Test application time(cyc.) Fault efficiency(%)
Circuit Original Full-scan Our method Original Full-scan Our method Original Full-scan Our method
GCD 18055.53 171.51 0.69 9 6629 504 4.92 100.00 100.00
JWF 2348.24 2.88 0.98 488 20519 1497 98.14 100.00 100.00
LWF 171.68 0.47 0.81 322 4066 517 99.64 100.00 100.00
PAULIN 20362.55 4.68 2.11 283 16187 2193 97.01 100.00 100.00
RISC 288102.05 51740.92 72.55 4298 1006154 9674 62.31 99.97 99.99

TABLE IV
HARDWARE OVERHEADS.

Area overhead(%) Pin overhead(#)
Circuit Full-scan Our method Full-scan Our method
GCD 26.6 39.7 3 5
JWF 26.7 28.4 3 5
LWF 33.4 42.3 3 5
PAULIN 7.4 6.3 3 5
RISC 16.7 21.4 3 6

appended hardware for thru and hold functions. In the full-
scan design, multiplexers are added to all registers to make
each register a scannable register. On the other hand, in our
method, thru and hold functions are added to some (not all)
operational modules and registers, respectively. Furthermore,
delays of hardware for thru and hold functions are less than
that of multiplexers. Therefore, performance degradation of
our method is smaller than that of full-scan design.

V. CONCLUSION
This paper presented a novel non-scan DFT method for

controller/data path circuits designed at RTL. The proposed
method can achieve 100% fault efficiency and allows at-speed
testing. The hardware overhead of the proposed method is
slightly larger than that of the full-scan design but the differ-
ence between the overheads is small. In return for the small
increase of hardware overhead, since the hierarchical test gen-
eration can be applied to the data path part of the circuits, test
generation time of the proposed method is shorter than that of
the full-scan design. Furthermore, since the proposed method
uses no traditional scan path, test application time is very low.
Our future work is to reduce hardware overhead of test con-
trollers.

ACKNOWLEDGMENTS
This work was supported in part by Semiconductor Technol-

ogy Academic Research Center (STARC) under the Research
Project. Authors would like to thank Tomoo Inoue of Hi-
roshima City University and Michiko Inoue of Nara Institute
of Science and Technology for their valuable discussions.

REFERENCES
[1] S. Ohtake, T. Masuzawa and H. Fujiwara: “A non-scan DFT method for

controllers to achieve complete fault efficiency,” in Proc. of the 7th Asian
test symposium, pp. 204–211, 1998.

[2] T. Masuzawa, H. Wada, K. K. Saluja and H. Fujiwara: “A non-scan
DFT method for RTL data paths to achieve complete fault efficiency,”
Technical report, Information Science Technical Report: TR98009, Nara
Institute of Science and Technology, 1998.

[3] H. Wada, T. Masuzawa, K. K. Saluja and H. Fujiwara: A DFT method
for RTL data paths achieving 100% fault efficiency under hierarchical
test environment, European Test Workshop, 1999.

[4] H. Fujiwara: Logic Testing and Design for Testability, The MIT Press,
1985.

[5] P. C. Maxwell, R. C. Aitken, V. Johansen and I. Chiang: “The effect of
different test sets on quality level prediction: when is 80% better than
90%?,” in Proc. of International Test Conference, pp. 358–364, 1991.

[6] S. T. Chakradhar, S. Kanjilal and V. D. Agrawal: “Finite state machine
synthesis with fault tolerant test function,” Journal of Electronic Testing:
Theory and Applications, Vol. 4, pp. 57–69, February 1993.

[7] D. K. Das, S. Ohtake and H. Fujiwara: “New DFT techniques of non-
scan sequential circuits with complete fault efficiency,” in Proc. of the
8th Asian test symposium, 1999 (to appear).

[8] R. B. Norwood and E. J. McCluskey: “Orthogonal scan: Low overhead
scan for data paths,” in Proc. of Int. Test Conf., pp. 659–668, 1996.

[9] R. B. Norwood and E. J. McCluskey: “High-level synthesis for orthogo-
nal scan,” in Proc. of 15th VLSI Test Symp., pp. 370–375, 1997.

[10] S. Battacharya and S. Day: “H-SCAN: A high-level alternative to full-
scan testing with reduced area and test application time,” in Proc. of the
IEEE VLSI Symp., pp. 74–80, 1996.

[11] B. T. Murray and J. H. Hayes: “Hierarchical test generation using pre
computed tests for modules,” IEEE Trans. on CAD, Vol. 9, No. 6, pp.
594–603, June 1990.

[12] S. Bhatia and N. K. Jha: “Genesis: A behavioral synthesis system for
hierarchical testability,” in Proc. of European design and test conference,
pp. 272–276, 1994.

[13] I. Ghosh, A. Raghunath and N. K. Jha: “Design for hierarchical testabil-
ity of RTL circuits obtained by behavioral synthesis,” in Proc. of IEEE
Int. Conf. on Computer Design, pp. 173–179, 1995.

[14] I. Ghosh, A. Raghunath and N. K. Jha: “A design for testability tech-
nique for RTL circuits using control/data flow extraction,” in Proc. of
IEEE/ACM Int. Conf. on CAD, pp. 329–336, 1996.

[15] I. Ghosh, A. Raghunath and N. K. Jha: “Hierarchical test generation and
design for testability methods for ASPP’s and ASIP’s,” IEEE Trans. on
CAD, Vol. 18, No. 3, pp. 357–370, March 1999.

6


