IEEE European Test Workshop (ETW 2000), pp. 313-314, May 2000.

A New Data Structure for SAT-Based Static Learning with Impact on Test Generation'

Emil Gizdarski** and Hideo Fujiwara**
* Department of Computer Systems, University of Rousse, Bulgaria
** Graduate School of Information Science, Nara Institute of Science and Technology, Japan

Abstract. In this paper we propose a new data structure for the complete implication graph that allows efficient deriving and
performing static indirect A-implications. In this way, some hard-to-detect static indirect implications can be easily found during
static learning. In addition, the static indirect A-implications are used to perform (without spare operations) some dynamic indirect

implications during branch and bound search and dynamic learning.

1. Introduction

In recent years substantial progress has been achieved in
CAD using the Boolean satisfiability (SAT) method. The main
reason for this progress is development of efficient learning
techniques. Learning play a key role in avoiding backtracking
during branch and bound search by finding as many as possible
necessary assignments at the current level. Many indirect
implications can be easily derived during static learning, while
high level recursive learning has to be applied to find them
during branch and bound search. Previous works in test
generation also showed that with efficient preprocessing, it is
not necessary to perform dynamic learning for the vast majority
of faults. Therefore, low complexity static learning is an
important preprocessing phase for test generation.

2. Basic learning rules [1]

The contradiction and recursive learning are well-known
learning rules called here rule I and rule 3.N where N
determines the level of recursion. Using an unjustified line
concept, some necessary assignments can be derived as an
intersection of the conditions for satisfying a k-nary clause.
This is called here an indirect n-implication or learning rule 2.

Figure 1: Network examples 1 and 2

Figure 1(a) provides an example how the static learning
procedure based on rule 2 finds indirect implication (H=1 —
B=1). First, assignment H=1 binds variables D and G to 0 and
k-nary clause (E v F v D v G) is still unsatisfied. To satisfy this
clause either variable E or F must be set to 1, but both these
assignments imply that variable B should be set to 1. Therefore
B=1 is a necessary assignment. Thus, indirect implication (H=1
— B=1) is found. This implication cannot be found by rule 1.

A super gates extraction can be used to find some indirect
implications that cannot be found by rules 1 and 2. For the
circuit in Figure 1(b), gates D, E and G form a super gate. If we
replace these three gates by their super gate (3-input AND
gate), then indirect implications (I=0 — B=0) and (B=1 — I=1)
can be found by rule 1 (contradiction). In the original circuit,
these indirect implications can be found by rule 3.1.

3. New data structure of implication graph
A new data structure of the complete implication graph
represents each gate (k-nary clause) by 25 a-nodes, k direct -

! This paper was supported by JSPS under grant P99747.

2 Currently visiting at Nara Institute of Science and Technology

implications and one k-bit key dynamically calculated by the
binding procedure, see Figure 2(a). For the basic gates, each bit
of a k-bit key corresponds to one of the variables in a k-nary
clause. The bit is set to one if this variable is specified and the
clause is still unsatisfied. The k-bit key also has one extra bit,
not presented in Figure 2(a), set to 1 when the clause is
satisfied. This data structure can be easily manipulated and
allows a unified representation of all k-nary clauses.

- CONFLICT...
el b e |

111
b CONFLICT 10— " G=
4’@ - 1101 D=1
———{B=0] 7100——— [H=0]
10111 F=1:

j«— INITIALIZATION

0111 ——» E=1 |
00 11| —{B=1]
0000 }+ INTIALIZATION

(b)

Figure 2: The representation of static a-implications

Example 1: Let us consider how indirect implication (H=1
— B=1) in Figure 1(a) can be easily derived using the new
structure of the complete implication graph. First, assignment
B=0 binds variables E and F to 0 and k-nary clause (E v F v D
v Q) is still unsatisfied. To take into account this new relation,
the learning procedure adds static indirect A-implication B=1 to
a-node <0011> of gate G, see Figure 2(b). Next, assignment
H=1 binds variables D and G to 0 and the k-nary clause (E v F
v D v Q) is still unsatisfied. To take into account this new
relation, the learning procedure adds static indirect A-
implication H=0 to A-node <1100> of gate G, see Figure 2(b).
Clearly, the superposition of these two keys, <0011> and
<1100>, will result in <1111>, therefore these two assignments
are inconsistent, i.e., if both assignments are preformed then all
variables of this k-nary clause will be specified and the clause
will be still unsatisfied. In this way, the static learning
procedure easily finds indirect implication (H=1 — B=1).

Figure3: A network example 3 before and after super
gate extraction

Example 2: Figure 3 provides an example how the driving
of static indirect A-implications and super gate extraction affect
branch and bound search and dynamic learning. As a result of
static learning based on rule 2, only one indirect A-implication
is found for the iredundant circuit in Figure 3(a). After

assignment D=0, this static indirect A-implication becomes a
valid dynamic indirect implication (I=1 — B=1). Using this
dynamic implication, implication (J=1— B=1) can be found by
dynamic learning based on rule 3.1 (first level recursive
learning), otherwise dynamic learning based on rule 3.2
(second level recursive learning) must be applied. This
implication can be found without dynamic learning if super
gates are extracted before static learning. In this case, gates I
and J form super gate J, see Figure 3(b), and dynamic indirect
implication (J=1 — B=1) become valid after assignment D=0.

4. Experimental results

We implemented the new data structure in an implicit static
learning procedure and ran experiments on a 450MHz Pentium-
IIT PC. Table 1 shows the number of variables (V), constant
assignments (CA), direct implications (DI), static indirect
implications (INDI) and static indirect A-implications (INDAI)
before and after static learning by rule 1 and rule 2. The
contribution of learning rule 2 was 3708 static indirect
implications and 222904 static indirect A-implications. We
counted the implications as in [2]: (1) if a variable set itself and
X other variables then X+1 implications were counted; and (2)
the constant value assignments were not counted as
implications after static learning. An indirect A-implication was
countered if an assignment set at least two variables in a k-nary
clause. Columns (10) and (11) provide CPU time of the
implemented static learning procedure based on rule 2 with the
equivalent static learning procedure of Simprid [2] (ran on HP
9000 J200). Our learning procedure was about 20 times faster
than Simprid.

To evaluate the impact of the new data structure on test
generation, we used the combinational ATPG system
SPIRIT[3] for redundancy identification. SPIRIT is based on
the Boolean satisfiability method and the Single Path Oriented
Propagation (SPOP) method. Since SPIRIT processes a single
output circuit, it is necessary to prove that a fault is redundant
in respect to each primary output where the fault effect can be
observed. Therefore, more than one test session for some faults
had to be performed. As a criterion we chose three parameters:
(P1) the maximum number of value assignments within one test
session, (P2) the number of sensitized unjustifiable propagation
paths and (P3) the number of aborted test sessions/faults.
Columns (11-19) show the results in three cases: (case 1)

Table 1: Results static learning and redundancy identification

without static learning, (case 2) static learning based on rule 1
and (case 3) static learning based on rule 2. For learning rule 1
(learning rule 2), the maximum number of assignments was 430
(260) and the number of sensitized unjustifiable propagation
paths was 27 (25). For these two parameters, the contribution
of rule 2 was 40% and 7.4% respectively.

Let us assume that the preprocessing time is negligible in
respect to the time spend for branch and bound search. Since
we did not apply dynamic learning and search pruning
techniques in this experiment then the number of assignments
(the size of decision tree) can be associated with the complexity
for redundancy identification. Therefore with the above-
mentioned assumptions, the maximum number of assignments
(P1) gives an idea about impact of the precision of static
learning on the worst-case complexity for the redundancy
identification. We observed two cases where a reduction of 170
and 2 times in parameter P1 was achieved after applying rule 2,
for the circuit C432 and C1908. We also observed two cases
where the number of the sensitized unjustifiable propagation
paths were decreased after applying learning rule 2, for the
circuit C432. In all cases, the effect was from the performing
the static indirect A-implications (dynamic indirect
implications) during SPOP. All these results demonstrate the
efficiency of the new data structure of the complete implication
graph for deriving and performing the indirect A-implications.
We expect that the contribution of the new data structure will
be more visible when super gate extraction is also implemented.

References:

[1] E.Gizdarski and H.Fujiwara, "A New Data Structure for
Complete Implication Graph with Application for Static
Learning," technical report NAIST-01, Jan.2000, pp.18.
http://isw3.aist-nara.ac jp/IS/TechReport2/report/2000001 ps

[2] J.Zhao, E.Rudnick and J.Patel, "Static Logic
Implication with Application to Redundancy Identification,"
Proc. IEEE VLSI Test Symposium, 1997, pp. 288-293.

[3] E.Gizdarski and H.Fujiwara, "SPIRIT: Satisfiability
Problem Implementation for Redundancy Identification and
Test Generation," technical report NAIST-05, Apr.2000, pp.11.
http://isw3.aist-nara.ac jp/IS/TechReport2/report/2000005 ps

Before learning After static learning based on rule 1 and 2 Redundancy identification
Circuit #V JCA DI JCA #INDI #INDI #INDAI | Time, | Time [2], P Without learning rule 1 rule 2

rule 1 rule 2 rule 2 sec. sec. P1 P2 P3 P1 P2 P1 P2 P3

1 2 3 4 bl 6 7 8 9 10 11 12 13 14 15 16 17 18 19
C432 196 0 2218 0 236 +4 +137 0.03 04 4 1899 3 1/1 170 2 1 0 0/0
C499 243 0 6526 0 648 +0 +48 0.03 14 8 1 0 0/0 1 0 1 0 0/0

C880 443 0 5957 0 261 +0 +468 0.04 0.5 0 - - - - - - - -
C1355 587 0 27574 0 3904 +0 +64 0.11 29 8 1 0 0/0 1 0 1 0 0/0
C1908 913 0 37777 0 8935 +0 +1201 0.19 4.8 9 126 2 0/0 2 0 1 0 0/0
C2670 1426 3 50459 10 7577 +0 +2292 0.20 12.3 117 4769 22 12/11 115 9 115 9 0/0
C3540 1719 1 272849 1 38511 +0 +23972 0.85 715 137 64 14 0/0 34 0 34 0 0/0
C5315 2485 1 75721 1 23561 +954 +10301 0.45 250 59 4 0 0/0 4 0 4 0 0/0
C6288 2448 17 20977 17 8633 +0 +0 0.37 11.0 34 3 0 0/0 1 0 1 0 0/0
C7552 3719 2 182713 4 113645 +68 +10567 1.41 131.3 131 690 13 0/0 11 0 11 0 0/0
S9234 5844 14 723350 14 237752 +320 +16931 1.7 - 452 602 227 0/0 20 0 20 0 0/0
S13207 8651 23 1116646 23 262618 +106 +36509 54 - 151 51 16 0/0 50 16 50 16 0/0
S15850 10383 34 1401941 34 255081 +1186 +46498 29 - 389 12 0 0/0 12 0 12 0 0/0
$35932 17828 0 9124712 0 451216 +0 +0 320 - 3984 3 0 0/0 3 0 3 0 0/0
S38417 23843 6 1516297 6 201649 +0 +10290 33 - 165 52 8 0/0 2 0 2 0 0/0
S38584 20717 160 20622207 168 381493 +1070 +63626 33.5 - 1506 31 128 0/0 4 0 4 0 0/0
Total: 101445 261 35187924 278 1995720 +3708 +222904 82.5 267.1 7154 | 8308 | 433 13/12 430 | 27 | 260 | 25 | 0/0

