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Abstract This paper proposes a non-scan design-for-test-
ability method for register-transfer level circuits where a cir-
cuit consists of a controller and a data path. It achieves com-
plete fault efficiency with low hardware overhead and at-speed
testing.

1. Introduction
With the advance in semiconductor technology, the com-

plexity of VLSI designs is growing and the cost of testing is
increasing. Therefore, it is necessary to reduce the cost of test-
ing and to enhance the quality of testing. The cost of testing is
estimated by test generation time and test application time. The
quality of testing is estimated by fault efficiency1. Therefore,
we have to reduce test generation time and test application time
and to enhance fault efficiency. To ease the complexity of test
generation, design-for-testability (DFT) techniques have been
proposed. The most commonly used DFT techniques for se-
quential circuits are scan-based approaches[1]. These tech-
niques modify sequential circuits so that automatic test pattern
generation (ATPG) tools can achieve high fault efficiency in a
reasonable time. However, these techniques sacrifice the pos-
sibility of at-speed testing[2] for fault efficiency enhancement.
To avoid this disadvantage of scan techniques, several non-
scan approaches have been investigated. On the other hand,
since techniques of test generation and DFT at gate level face
the problems arising out of huge number of elements and high
complexities of the circuits at gate level, several techniques of
test generation and DFT at register-transfer level (RTL) have
been proposed recently.
In RTL design, a VLSI circuit is generally consists of two

separate parts, a controller part and a data path part. The for-
mer is represented by a state transition graph (STG) and the
latter is represented by hardware elements (e.g. registers, mul-
tiplexers and operational modules) and signal lines connecting
them. A controller and a data path are interconnected by in-
ternal signals: control signals and status signals. Most of the
DFT methods for RTL circuits were concerned with only ei-
ther data paths or controllers, on the assumption that the con-
trol signals and the status signals are directly controllable and
observable from the outside of the VLSI.
For controllers, Chakradhar et al.[3] proposed a non-scan

DFT method at RTL. This method can achieve high fault ef-
ficiency but cannot always guarantee complete (100%) fault
efficiency. Furthermore, it is applicable only to PLA-based se-
quential circuits. Our previous work [4, 5] proposed several
non-scan DFT methods which achieve 100% fault efficiency.
In these methods, given an STG, we first synthesize a sequen-
tial circuit from the STG. Then we generate test patterns, by

1Fault efficiency is the ratio of the number of faults detected and proved
redundant to the total number of faults.

a combinational ATPG tool, for the combinational part of the
synthesized sequential circuit. Most of the generated test pat-
terns can be applied to the combinational part of the sequential
circuit using state transitions of the STG. However, there may
exist some test patterns which cannot be applied using state
transitions of the STG. In this case, we append an extra logic
which provides extra transitions required for testing. Those
test patterns are applied using the extra logic.
For data paths, several non-scan DFT methods at RTL have

been reported, e.g. orthogonal scan[6, 7] and H-SCAN[8],
which use normal data path flow as scan path instead of tra-
ditional scan path flow. These methods can reduce hardware
overhead and test application time compared to the full-scan
design. However, test generation time cannot be reduced be-
cause the test generation approach is the same as the full-scan
design. To reduce test generation time, a hierarchical test gen-
eration approach was proposed by Murray and Hayes[9]. The
hierarchical test generation of a data path consists of the fol-
lowing two steps: for individual combinational hardware el-
ements, generate test patterns at gate level and generate test
plans at RTL, where a test plan is a control sequence to prop-
agate test patterns for a combinational hardware element from
the primary inputs to the inputs of the hardware element and
to propagate responses from the output of the hardware ele-
ment to the primary outputs. Genesis [10]–[13] is an approach
based on such a hierarchical test generation for data paths. Our
previous work [14] presented a DFT method based on such hi-
erarchical test generation and strong testability. Strong testa-
bility is a property of data paths which guarantees to generate
test plans for all combinational hardware elements of the data
path.
In our previous work [15], we proposed a DFT method for

an RTL circuit which consists of a controller part and a data
path part. Given an RTL controller/data path circuit, we apply
the DFT method of [4] to the controller part and apply that of
[14] to the data path part. Our previous experimental results
using benchmark circuits show that the hardware overheads of
[4] and [14] were 3.5% and 4.0% on average for benchmark
circuits, respectively. The test application times in [4] and [14]
were reduced on average to 25.4% and 17.6% of the full-scan
design, respectively. Furthermore, both of these DFT methods
can achieve 100% fault efficiency and allow at-speed testing.
In the above-mentioned DFT methods, we assumed that

both control signals and status signals between a controller and
a data path are directly controllable and observable from the
outside of circuits. However, if we consider a DFT method for
the whole circuit consisting of both a controller and a data path,
we have to remove this assumption by adding some extra logic
to provide both controllability and observability of those con-
trol and status signals. In our previous work [15], we resolved
this problem by (1) adding multiplexers on those control and
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Figure 1: An RTL controller/data path circuit.

status signals to connect directly from primary inputs and to
primary outputs and (2) embedding an extra circuit in the con-
troller side, called a test plan generator, which can generate
test plans for the data path of an RTL circuit.
The proposed DFT method for controller/data path circuits

has the following advantages:
100% fault efficiency can be achieved.
At-speed testing can be performed.

Furthermore, from our experimental results,
Test application time can be reduced significantly com-
pared to the full-scan design.
Test generation time can be reduced significantly com-
pared to the full-scan design.

However, the proposed method has the following disadvan-
tage:

The hardware overhead is larger than that of the full-scan
design.

The hardware overhead of the proposed method is domi-
nated by extra logic corresponding to test plan generators for
strongly testable data paths.
In this paper, we present a new property of circuit structure

of data paths called fixed-control testability. If a data path is
fixed-control testable, hierarchical test generation can be ap-
plied and each test plan of combinational hardware elements
can be composed of at most three control vectors. Therefore, a
design of a test plan generator which generates test plans of the
fixed-control testable data path is simpler than that of strongly
testable one.
In this paper, we also propose a DFT method for data paths

which makes a data path fixed-control testable and a test ar-
chitecture for a whole circuit consisting of both a controller
modified by [4] and a data path modified by the DFT method
based on fixed-control testability proposed in this paper.
This paper is organized as follows: Section 2 gives the def-

inition of controller/data path circuits and Section 3 shows
overview of our DFT method. In Section 4, we introduce the
DFT method of controllers reported in [4]. Section 5 presents
a DFT method of data paths based on fixed-control testability.
Section 6 presents a DFT method for whole circuits consisting
of both controllers and data paths. Section 7 shows experi-
mental results of the proposed method using some benchmark
circuits and shows that our method proposed in this paper can
reduce hardware overhead compared with that in [15].

2. Preliminaries
In RTL description, a VLSI circuit generally consists of a

controller and a data path as shown in Figure 1. The for-

mer is represented by an STG and the latter is represented by
hardware elements (e.g. registers, multiplexers and operational
modules) and signal lines connecting them. Each of the con-
troller and the data path has primary inputs from the outside
of the VLSI and primary outputs to the outside of the VLSI.
The controller also has status inputs from the data path and
control outputs to the data path. Similarly, the data path also
has control inputs from the controller and status outputs to the
controller. The signals from the controller to the data path are
called control signals, and the signals from the data path to the
controller are called status signals.

Data path

A data path consists of hardware elements and signal lines.
Hardware elements are primary inputs, primary outputs, con-
trol inputs, status outputs, registers, multiplexors, and opera-
tional modules. A signal line connects two hardware elements
with some bit width. Inputs of a hardware element in the data
path can be classified into data inputs and control inputs. Ex-
amples of the control inputs are load enable signals of registers,
selection signals of multiplexers and function selection signals
of operational modules. Similarly, outputs of a hardware ele-
ment of a data path can be classified into data outputs and sta-
tus outputs. Comparators are examples of hardware elements
having status outputs.
The following restrictions are introduced into our data path

architecture in order to simplify the discussion, though they
can be relaxed.
A1: All signal lines in the data path have the same bit width.
A2: An operational module has only one or two data inputs

and only one data output.
A3: For any data input, there exists a path from a primary in-

put. And for any data output, there exists a path to a pri-
mary output.

A4: Control inputs of a hardware element are connected di-
rectly to control inputs of the data path. And status out-
puts of a hardware element are connected directly to sta-
tus outputs of the data path.

3. Overview
In our DFT method, given a controller/data path circuit de-

scribed at RTL, we first apply the DFT method of [4] to the
controller and apply the DFT method proposed in Section 5 to
the data path of the circuit. In these DFT methods, we assume
that the control signals and the status signals are directly con-
trollable and observable from the outside of the circuit. How-
ever, these are internal signals between the controller and the
data path in the controller/data path circuit. Thus, for testing of
the controller, we have to enhance controllability of the status
inputs and observability of the control outputs. Similarly, for
testing of the data path, we have to enhance controllability of
the control inputs and observability of the status outputs. In the
DFT method proposed in this paper, we embed mechanisms to
enhance controllability and observability of the control signals
and the status signals in the same way as the method of [15]
so that the testing methods of controllers and data paths can be
applied. The test architecture of the controller/data path circuit
of our method is shown in Figure 2. The circuit is configured
by controlling test pins as shown in Table 1. Before explaining
the details of the test architecture, we briefly introduce the DFT
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Figure 2: Test architecture of a controller/data path cir-
cuit.

Table 1: Configurations of test architecture.
Test Pins

t0 t1 t2 t3 t4
Operation

0 0 0 0 0 Normal operation
1 0 1 Testing controller
0 1 Testing data path
: depend on test patterns or test plans

method for controllers in the next section and propose the DFT
method of data paths that is the basis of the test architecture in
Section 5.

4. DFT Method for Controllers [4]
In this section, we give an overview of the DFT method [4]

for a controller synthesized from an STG. The method achieves
100% fault efficiency with short test generation time and al-
lows at-speed testing. In order to generate a test sequence that
achieves 100% fault efficiency with short test generation time,
we generate test patterns for the combinational part of the se-
quential circuit using a combinational ATPG tool. Each of test
patterns consists of the values corresponding to primary inputs
(PIs), status inputs (SIs) and a state register (SR) of the sequen-
tial circuit. In order to apply a test pattern to the combinational
part, we have to set the corresponding value to the SR. If the
value corresponds to a state reachable from the reset state of
the STG, the value can be set to the SR using the original state
transitions of the STG. Otherwise, the value cannot be set to
the SR using the original state transitions of the STG. In order
to set such a value to the SR, we append an extra logic called
an invalid test state generator(I SG) to the controller as shown
in Figure 3. The ISG generates all the values (called invalid
test states) that appear in the test patterns but cannot be set to
the SR using state transitions of the STG. In Figure 3, t3 is used
to select inputs of the SR: the outputs of the original combina-
tional logic block or those of the ISG and t4 is a load/hold
signal and is utilized to reduce test application time.
The complete fault efficiency is preserved because the com-

binational logic block remains unchanged. Our experimental
results using benchmark circuits show that the average hard-
ware overhead of the ISG is only 3.5% and the average test

CC
PIs POs

SR

t out

t3
t4

R

ISG MUX

1

0
0

1

t3 : mode switching signal

t out : state output signals
t4 : load/hold signal

ISG : invalid test state genarator

CC: combinational logic block
SR: state register

SIs COs

Figure 3: A controller augmented with an extra logic
ISG .

application time of the method is 25.4% of that of the full-scan
design[4].

5. DFT Method for Data Paths
In this section, we propose a new DFT method for RTL data

paths.

5.1 Fixed-Control Testability

The DFT method is based on fixed-control testability which
is a subclass of strong testability. Strong testability is proposed
as a characteristic of data paths that guarantees applicability of
hierarchical test generation[9]. Hierarchical test generation
is a promising way for testing very large sequential circuits.
In the hierarchical test generation, testing for each hardware
element M proceeds as follows.
Step 1: Test patterns are generated forM (a combinational cir-

cuit) using a combinational ATPG tool.
Step 2: The test patterns are applied to M: the values are fed

through primary inputs at appropriate times, so that the
desired test patterns can be applied toM.

Step 3: The responses ofM to the test patterns are propagated
to primary outputs for observation.

A test plan specifies the control signals so that the test pat-
terns and the responses can be propagated. Strong testability
of a data path is defined as follows.
Definition 1: Strong Testability [14]
A data path is strongly testable if there exists a test plan for
each combinational hardware elementM that makes it possible
to apply any pattern toM and to observe any response ofM.
A strongly testable data path has the following advantages.

Fast test pattern generation:
Test pattern generation time is short since a combinational
ATPG tool can be used for each combinational hardware
element separately.
Fast test plan generation:
Test plan generation time is short since test plans are gen-
erated at RTL (not at gate level).
100% fault efficiency:
100% fault efficiency can be achieved for the whole data
path, since each hardware elementM under consideration
is a combinational circuit of small size and strong testabil-
ity guarantees complete controllability and observability
of M in the data path.

Consider a test plan TP of a combinational hardware ele-
ment M in a strongly testable data path. The test plan TP can
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propagates any pattern of M along several paths CP from pri-
mary inputs to M. Similarly, TP propagates any response of
M along several paths OP fromM to primary outputs. The test
plan TP generally consists of three phases: a control phase, a
test phase and a observation phase. Here, let R CP be a set
of registers which are the nearest registers from M on paths in
CP and let R OP be a set of registers which are the nearest
registers fromM on paths in OP.
Control phase: The sequence of control vectors correspond-

ing to the control phase in TP propagates any pattern from
primary inputs of the data path to every register in R CP
if R CP φ. Otherwise, the control phase is not neces-
sary.

Test phase: The control vector corresponding to the test
phase in TP propagates any pattern from primary inputs
and/or every register in R CP and any response from data
outputs of M to every register in R OP and/or primary
outputs.

Observation phase: The sequence of control vectors corre-
sponding to the observation phase in TP propagates re-
sponses from every register in R OP to primary outputs
if R OP φ. Otherwise, the observation phase is not
necessary.

For a controller/data path circuit, test plans of the data path
must be applied to control signals. In the test architecture of
[15], we generate the test plans from inside of the circuit by ap-
pending extra logic called a test plan generator (T PG) which
generate test plans. For a strongly testable data path, a test plan
for a hardware element of the data path can be generally com-
posed of not fixed control vectors such that control vectors of
the test plan varies moment by moment. Therefore an T PG
must be designed as a sequential circuit. If control vectors of a
test plan do not vary, the T PG becomes combinational circuit
and hence area overhead can be reduced. We introduce such a
testability defined as follows.
Definition 2: Fixed-Control Testability
A data path is fixed-control testable if the following conditions
hold.
C1: The data path is strongly testable.
C2: For each combinational hardware elementM in the data

path, a control sequence of each phase in a test plan of
M is composed of only one control vector.

In addition to advantages of strongly testable data paths, a
fixed-control testable data path has the following advantages.

Simple test plans:
A test plan of a combinational hardware element is com-
posed of at most three control vectors.

5.2 DFT Method for Data Paths
Overview
In our approach, for a data path, as many test patterns and

responses of each hardware element as possible are propagated
along existing data path flows in the data path. If test patterns
and responses cannot be propagated along existing data path
flows, the DFT method appends DFT elements (e.g. masks,
multiplexers and bypass registers) to the data path to guarantee
that the test patterns and the responses can be propagated along
existing data path flows. We first provide a brief explanation
of the DFT method.
Consider testing of a combinational hardware element M

with two data inputs, x and y, in the data path. To test M, a

thru

Thru

(a) using a mask element (b) using a multiplexer

thru

Thru

ADDER

X1 X2
Unknown
Operation

X1 X2

MUX 10

Figure 4: Examples of realizing thru function.

value specified by a test pattern should be fed into x. We prop-
agate the value along a path p from a primary input to x. If
an operational moduleM appears on p, the output value ofM
will depend on the function and the input value(s) of M .
In order to guarantee that the output ofM is completely con-

trollable by the input port on p, thru function between the input
port and the output is added to M . Most of the popular oper-
ational modules (e.g. adder) can realize the thru function by
using a mask element. The mask element generates a constant
which is required to realize the thru function. Figure 4(a) illus-
trates an example of such mask element. If we cannot realize
the thru function using the mask element, we realize the thru
function using a multiplexer as shown in Figure 4(b). In the
rest of this paper, we assume that, for every operational mod-
ule, thru function can be realized by mask element in order to
simplify the discussion.
However, we cannot achieve the fixed-control testability by

adding only the thru functions. The thru functions guarantee
controllability of a single path. In case of a hardware ele-
ment which has two data inputs, a test pattern must be applied
to both the inputs simultaneously. Presence of re-convergent
paths in a data path can prevent such application of a test pat-
tern to a hardware element which has two data inputs. In par-
ticular, this can happen if the propagation paths to the two data
inputs of a hardware element start from the same primary in-
put and have the same sequential depth2. Such re-convergent
paths will cause a timing conflict, i.e. two different values are
required on a primary input at the same time. In the concept of
strong testability [14], such conflicts are resolved by using hold
functions of registers where a register originally has a hold
function or is augmented with a hold function. However, since
use of hold functions of registers spoils fixed-control testabil-
ity, we cannot use the hold functions. To resolve such conflicts,
in this DFT method, some registers are bypassed by multiplex-
ers and bypass registers are added to some signal lines.
In this DFT method, to control the thru functions, the mul-

tiplexers and the bypass registers, additional control inputs are
appended as shown in Figure 2.
The goal of the DFT method is to make a given data path

fixed-control testable with the minimum hardware overhead.
Practical implementation of an algorithm for the DFT method
also dictates that the computation time for the DFT insertion
and test plan generation algorithms be manageable. We next
describe a heuristic algorithm for the DFT method.

Procedure of DFT method
The heuristic algorithm for the DFT proceeds in the follow-

ing three steps.
(Step 1) Construct a control forest: To determine paths to prop-
agate any pattern, we construct a control forest. The control

2The number of registers on a path is called sequential depth of the path.
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Figure 5: An example of a data path.
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Figure 6: An example of a control forest.

forest is a spanning out-forest3 of the data path where primary
inputs are roots, and its paths are used to propagate test pat-
terns.
(Step 2): Construct an observation forest: To determine paths
to propagate any response, we construct an observation for-
est. The observation forest is a spanning in-forest4 of the data
path where primary outputs are roots, and its paths are used to
propagate responses.
(Step 3) Add DFT elements: To make the data path fixed-
control testable, we add DFT elements (extra logic for thru
function, multiplexer and bypass register) to the data path at
strategic locations.
Details of the algorithm are the following.
Step 1: Construct a control forest

A path used for propagating test patterns, from a primary
input to a data input of a hardware element, is called
a control path to the data input. To reduce the hard-
ware of DFT elements which will be added at the third
step, the control path should be carefully chosen among
all the paths from primary inputs to the data input. In
our method, to keep the number of added mask elements
where a mask element realizes thru function as small as

3A directed forest in which each data input is reachable from some primary
input.

4A directed forest in which there is path from each data output to some
primary output.
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Figure 7: An example of a observation forest.

possible, we choose the control paths for each data in-
put such that collection of all the chosen paths form an
out-forest of the data path. This choice guarantees that
a mask element is added to only one of the data input of
each two-input operational module. We call the resulting
out-forest a control forest. Since the smaller sequential
depth intuitively contributes to reduce the test application
time, we also pay attention to the the sequential depth
of the path while choosing a path. Thus, we construct
the control forest as a shortest5 spanning out-forest of the
data path. Here, for each two-input operational module
M, we call one of the data input which is not a leaf of
the control forest a propagation input of M and the other
not-propagation input of M.
Let us consider the data path of Paulin[12] shown in Fig-
ure 5. We show an example of control forest of the data
path in Figure 6. Propagation inputs of the example are
X2s of the adder ADD1, the multiplier MULT1 and the
subtracter SUB1, and X1 of the multiplier MULT2.

Step 2: Construct an observation forest
A path used for propagating any response of a hardware
element from its data output to a primary output is called
an observation path of the data output. In the observa-
tion path, we utilize control paths as much as possible
because control paths have the capabilities of propagating
any pattern. However, in most case, there exist no control
path from the data output port of a hardware element to a
primary output. In such a case, we construct an observa-
tion path by connecting the minimum number of control
paths. If there exist several observation paths each con-
sisting of a minimum number of control paths, we choose
an observation path such that the collection of all chosen
observation paths for all data outputs in the data path form
an in-forest. We call the in-forest an observation forest.
Here, for each two-input operational moduleM, if its not-
propagation input is on the observation forest, we call the
non-propagation input a junction input. If M has a junc-
tion input and no thru function between the junction input
and its data output, thru function may be added to M to
propagate any response from the junction input to the data
output. Therefore, we construct the observation forest as

5Any path from a primary input to a data input in the forest is shortest in
terms of the sequential depth among all the paths from primary inputs to the
port.
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a shortest6 spanning in-forest of the data path concerned
with the number of the not-propagation inputs.
We show an example of observation forest of the data path
of Paulin in Figure 7. Junction inputs of the example is
X1s of ADD1 and MULT1 and X2 of MULT2.

Step 3: Add DFT elements
DFT elements are added by the following three steps so
that test patterns and responses can be propagated along
the control paths and observation paths, respectively.

Step 3.1: Add thru function to some functional modules on
control paths
For each operational module M, if there exist no thru
function between its propagation input and its data out-
put, we augment M with thru function between them by
adding mask element on its not-propagation input.

Step 3.2: Add multiplexers and bypass registers on control
paths
In the step 3.1, it guarantees that any pattern can be prop-
agated from a primary input to a data input via a single
control path. However, for each two-input operational
module M, two patterns must be propagated from pri-
mary input(s) to both two data inputs of M by way of
two control paths simultaneously. If these control paths
are from the same primary input PI and have the same se-
quential depth, such re-convergent paths will cause a tim-
ing conflict. An example of such re-convergent paths are
PI1 MUX5 REG5 ADD1 MUX3 REG3
MUX6 and PI1 MUX5 REG5 ADD1 MUX1
REG1 MUX6 of Figure 6. To resolve such conflicts, we
add a multiplexer or bypass register to one of these paths
in the following two cases. Here, letM be the fanout ele-
ment in the re-convergent paths and let p be the path from
the data output of M to propagation input of M on the
control path from PI to the propagation input. Let d be
the sequential depth of p.

d 0
If a register on p can be bypassed by adding a multi-
plexer, the sequential depth of p becomes d 1 and
thus timing conflict can be resolved. Since such by-
passing a register may cause a combinational cycle,
the connection of the multiplexer should be care-
fully determined. Let R be a register which is the
nearest to data output ofM on p. We insert the mul-
tiplexer to the signal line just after the data output of
R. If there exists registers on the control paths be-
tween PI and M , the data input, which is not on
p, of the inserted multiplexer is connected to the
data output of the register which is the nearest toM
among these registers. Otherwise, the data input is
connected to PI. This way of connection makes no
combinational cycle. Consider testing of the mul-
tiplexer. For justification of test patterns, although
control paths of the multiplexer form re-convergent
paths, it is guaranteed that sequential depths of these
paths are different from each other. For propagation
of responses, since a multiplexer is added to path
p whose end is a propagation input, a observation
path for the multiplexer can be constructed without
DFT elements. An example of insertion of a mul-

6A path from a data output to a primary output in the forest is shortest if
the number of not-propagation inputs on the path is smallest among all paths
from the data output to primary outputs.

tiplexer TM is shown in Figure 8. The multiplexer
is inserted to the signal line just after the data out-
put of REG3 and the right data input is connected
to the data output of REG5. To test the multiplexer
MUX6, we use TM so that paths PI1 MUX5
REG5 ADD1 MUX1 REG1 MUX6 and
PI1 MUX5 REG5 TM MUX6 are used as
control paths of MUX6.
d 0
We insert a bypass register to the signal line just af-
ter the data output of M . Testing of the bypass reg-
ister is also possible in the way as in step 3.1.

Here, we consider the possibility of reusing the DFT el-
ements. It is generally conceivable that DFT elements
which are nearer to primary input are more reusable than
those which are nearer to primary outputs. Therefore,
we first process two-input operational module which are
nearer to primary input and whose control paths start
from the same primary input and have the same sequential
depth.

Step 3.3: Add thru function to some functional modules on ob-
servation path
If there exist junction inputs on the observation path of
M, timing conflicts may occur while propagating any re-
sponse from the data output z of M to the primary output
using the observation path as follows. Any response can
be easily propagated along the control path parts using
the thru functions. However, it is more complicated to
propagate any response through a junction input j of an
operational moduleMj on the observation path. IfMj has
a thru function between j and its data output l, any re-
sponse can be propagated through j using the thru func-
tion. However, if Mj has no thru function between j and
l, any response can not be propagated through j. In this
case, we consider use of a constant c which is applied
to the propagation input k of Mj by way of the control
path of k and realizes thru function between j and l. We
call the control path of k the support path of k. This may
cause a timing conflict between the support path of k and a
control path used for propagating either any pattern to M
or a similar constant to a preceding operational module
on the observation path. The timing conflict is checked
and mask elements are added by the following way. No-
tice that operational modules which have junction inputs
are considered in the order of the data path flow. Let Mj
be the nearest operational module to j on the observation
path part between z and j such that Mj has junction input
on the path and thru function between the junction input
and its data output can be realized by using the support
path of its propagation input. Notice that if such module
does not exist, we assume that Mj is M. Let I be a set
of primary inputs which are used for propagating test pat-
terns from primary inputs in I to M and responses from
M to j. We assume that control timing of every primary
input of I are determined by the preceding processing. In
this situation, no timing conflict occur on the following
three conditions.
C1: The primary input which is the start of the support

path of k is different from every primary input of I.
C2: Although C1 does not hold, control timing of the pri-

mary input for the support path of k is different from
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Figure 8: An example of a fixed-control testable data
path.

the other required control timing for the primary in-
put.

C3: Although C1 and C2 do not hold, control timing of
the primary input for the support path of k can be
changed to control timing which is different from
the other required control timing for the primary in-
put by using multiplexers or bypass registers added
at the above steps on the support path or the other
required control timing for the primary input can be
changed by using multiplexers or bypass registers
added at the above steps on the observation path part
from the data output of Mj to j.

If none of these conditions hold, Mj is augmented with
thru function between j and l by adding mask element on
k.

An example of application of the DFT method is shown in
Figure 8. In this example, a mask element is added to data
inputs X1 and X2 of ADD1, X1 of MULT1, X2 of MULT2
and X1 of SUB1. A multiplexer is added to the signal line just
after the register REG3 and the right input of the multiplexer is
connected to the data output of the register REG5. Additional
control inputs arose to control these DFT elements are th1 to
th5 and tm.

5.3 Test Plan Generation for Data Paths
Primary and preliminary tests
To test a hardware element M, test vectors for M are prop-

agated to the input ports along the control paths of the data
inputs of M. If M has two data inputs and is included in a cy-
cle in the data path, then the control paths of its data input x
may go thru M itself. For example, in Figure 6, the control
path of X1 of ADD1 goes thru ADD1 itself. In such a case,
a fault of M affect the value propagated thru M and prevent
the desired values from reaching x. Thus, we first observe the
value propagated through M using the observation path of the
data output ofM. If the observed value is not the expected one,
a fault is detected. We call this test a preliminary test. Notice
that we execute the preliminary test for each test vector of M,
since affect of a fault depends on the vector value. If no fault
is detected in the preliminary test, the test vector is applied to
the two data inputs of M and the response of M is observed.
We call this test a primary test. However we have to generate

Table 2: Coordinate intersection of C and O.
C

0 1
0 0 1 0

O 1 0 1 1
0 1

= don’t care

Table 3: An example of a test plan.
t PI1 PI2 m1 m2-4 m5 m6 m7-11 l1 l2-4 l5 th1 th2 th3-5 tm PO1 PO2 Phase
1 C - -
2 C

0 0 1 1 1 1
- -

Cont.

3 0 0 T 1 1 1 1 1 - - Test
4 0 1 O - Obs.

C : apply test pattern to PI : don’t care
O : observe responce at PO - : need not observe
T : apply test pattern to control input

test plans for preliminary tests as well as for primary tests, we
consider test plan generation for only primary tests. Test plans
for preliminary tests can be generated similarly.

Test plans
In the DFT procedure, for each hardware element M, we

determine control paths and an observation path of M. In the
steps 3.1 and 3.2 of the DFT, we guarantee controllability of
the control paths of M by using DFT elements. Similarly, in
the step 3.3 of the DFT, we also guarantee observability of the
observation path ofM and controllability of support paths cor-
responding to modules which have junction input on the obser-
vation paths with paying attention to timing conflicts between
the support paths and the control paths by using DFT elements.
Therefore, for testing of M, the collection of the control paths
and the support paths can be activated by applying a control
vector C to control inputs (including control inputs appended
by the DFT) of the data path. Similarly, the collection of the
observation path and the support paths can be activated by ap-
plying a control vector O to the control inputs.
First, we consider the control sequences of the control phase

and the observation phase of the test plan ofM. The control se-
quence of the control (resp. observation) phase in the test plan
of M is composed of only C (resp. O). Consider the lengths
of the control sequences of the control phase and the obser-
vation phase. Here, let dc and do be the maximum sequen-
tial depth among the control paths and the sequential depth
of the observation path, respectively. Let ds be the maximum
sequential depth among paths in the collection of the observa-
tion path and the support paths. The length of the control se-
quence of the control phase and that of the observation phase
are max dc ds do and do, respectively.
Next, we consider the control vector T of test phase in the

test plan. The control vector of test phase in the test plan is
basically obtained by the intersection of C and O formed from
the respective coordinate intersection in Table 2. If M has a
control input, since a test pattern corresponding to the control
input have to be applied to the control input, it is needed to
modify the obtained control vector to a control vector whose
coordinate corresponding to the control input is the test pat-
tern. The way to apply the test pattern to the control input is
presented in the next section.
The test plan is composed of at most three vectors C, T and

O. The length of the test plan is max dc ds do do 1.
For example, a test plan of MUX6 of Figure 8 is shown in

Table 3.
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6. A Method of DFT for RTL Controller/Data
Path Circuits

In this section, we propose a DFT method for a whole cir-
cuit which consists of both a controller and a data path. In
the DFT method, we adopt our DFT method [4] to the con-
troller part and our DFT method proposed in Section 5 to the
data path part. In these DFT methods for the controller part
and the data path part, we assumed that internal signals, con-
trol signals and the status signals, are directly controllable and
observable from outside of the circuit. Here, we remove this
assumption. The goal of the DFT method proposed in this sec-
tion is to provide complete controllability and observability of
these internal signals (control and status signals) required for
applying test patterns and observing responses.

6.1 Testing of Controllers

For testing of a controller part in a circuit, let us consider
to provide complete controllability and observability of status
signals and control signals, respectively. It is achieved by ap-
pending additional test I/O pins (primary inputs and outputs)
and connecting them directly to the status inputs and the con-
trol outputs of a controller of the circuit. However, the pin
overhead becomes large and it may be unacceptable for practi-
cal designs. Instead, the pin overhead is avoided as follows: the
status inputs of the controller are directly controlled from pri-
mary inputs of the data path by adding a multiplexer “MUX1”,
and the control outputs of the controller are directly observed
from primary outputs of the data path by adding a multiplexer
“MUX3” as shown in Figure 2. This approach is acceptable be-
cause it is generally conceivable that the status inputs (resp. the
control outputs) of the controller have smaller bit-width than
the primary inputs (resp. the primary outputs) of the data path,
and we need not use the data path part at testing of the con-
troller. In testing of the controller, these multiplexers “MUX1”
and “MUX3” are configured as shown in Table 1.

6.2 Testing of Data Paths

For a data path in a circuit, let us consider a hardware ele-
mentM which has data inputs, control inputs, data outputs and
status outputs. Each test pattern of M consists of patterns for
the data inputs of M and that for the control inputs. We call
the former a data input pattern and the latter a control input
pattern. Notice that, for testing such a hardware element, we
must apply test patterns to both the data inputs and the control
inputs. A test plan of M propagates the data input pattern to
the data inputs of M from primary inputs. The test plan also
applies control input pattern to the control inputs. The test plan
also propagates the responses appeared on the data outputs of
M to the primary outputs. The response appeared on the status
outputs ofM is observable from status outputs of the data path.
Control vectors of the test plan of M and the control input

patterns forM must be applied to the control inputs (including
control inputs appended by the DFT) of the data path. Sim-
ilarly, the responses of M must be observed from the status
outputs of the data path. If we use additional test I/O pins to
make these control inputs and status outputs directly control-
lable and observable, respectively, from the outside of the cir-
cuit, the pin overhead becomes large. The problem of the pin
overhead can be avoided by the following way. Here, we first

Table 4: Configuration of test controllers.
Mode
t3 t4

Function

0 0 Setting TPR and TMR
0 1 Generating a vector of justification phase
1 0 Generating a vector of test phase
1 1 Generating a vector of observation phase

consider the observability of status outputs of the data path. In
general, since the bit-width of primary outputs of a controller
of the circuit is smaller than that of the status outputs, we can-
not use the primary outputs for observing the status outputs.
However, the bit-width of the primary outputs of the data path
is larger than the status outputs. While testing the data path, it
is sufficient to observe the response of a test vector either from
primary output or from status outputs. The status outputs and
the primary outputs need not to be observed simultaneously.
Therefore, we can observe the status outputs using the primary
outputs of the data path. In the test architecture of Figure 2,
this is achieved by a multiplexer MUX3.
We next consider the controllability of control inputs of the

data path. In general, the number of primary inputs of the con-
troller is smaller than that of control inputs of the data path.
Therefore, we cannot use the primary inputs for applying test
plans and control input patterns of hardware elements to the
control inputs of the data path. Moreover, in testing of data
path, since the primary inputs of the data path are used to ap-
ply data input patterns of hardware elements, we cannot use
them to apply the test plans and the control input patterns to
the control inputs of the data path simultaneously. Therefore,
we append an extra circuit called a test controller to generate
control input patterns as shown in Figure 2.

Test controller
Test plans are generated for all the combinational hardware

elements in a data path of a circuit. In our test architecture
shown in Figure 2, all the test plans of the data path are gen-
erated by a test controller. The test controller consists of a
test plan generator(T PG), a test pattern register(TPR) and a
target module register(TMR). Let us consider the testing of a
combinational hardware elementM, which has data inputs and
control inputs, in the data path. The TMR is used to store the
index of a test plan either for a preliminary test or a primary
test of M. The bit width of the TMR is log2m where m is the
number of test plans for all the combinational hardware ele-
ments in the data path. The T PG generates the test plan of M
if the index of the test plan is stored in the TMR. The T PG
is designed as a combinational circuit and controlled by t3 and
t4 as shown in Table 4. The T PG generates a control vector
for a phase of the test plan. The control input pattern of a test
pattern forM is pre-stored in the TPR before entering the con-
trol phase and is applied to the control inputs by way of T PG
in the test phase. The load enable signal for TPR and TMR
is controlled from the t3 and t4 by way of TMR as shown in
Table 4. That is, if t3 t4 0 0 is applied, test patterns for
control inputs and an index of a test plan is loaded into TPR
and TMR from some primary inputs of the data path, other-
wise, they hold their values. The mode switching signal t1 is
used to disable DFT elements of the data path in the normal
operation mode of the circuit.
We evaluate hardware overhead of T PGs of controller/data

path circuits in the next section. Although the hardware over-
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head depends on data path designs, for controller/data path cir-
cuits dominated data flow, it is conceivable that hardware over-
head of the T PG is low.
We also consider testing of a T PG . Since the T PG is not

used at the normal operation, we test the T PG only to confirm
that the test plans are generated correctly. It is performed by
observing primary outputs of a data path (see Figure 2).

7. Experimental Results
In this section, we evaluate effectiveness of our proposed

method by experiments. Circuit characteristics of RTL bench-
mark circuits used in the experiments is shown in Table 5. The
circuits GCD, JWF, LWF and PAULIN are popularly used ex-
amples and the circuit RISC is a practical and large design. In
our experiments, we used a logic synthesis tool AutoLogicII
(Mentor Graphics) with its sample libraries to synthesize these
benchmark circuits. In this table, column “Area” denotes the
total areas after synthesis. Here, areas are estimated using
gate equivalent of the library cell area. Columns “Controller”
and “Data path” denote the characteristics of controller parts
and data path parts, respectively: columns “#PI”, “#PO” and
“Area” denote the numbers of primary inputs and primary out-
puts and circuit area of respective parts. Columns “#State”,
“#Status” and “#Control” in “Controller” denote the numbers
of states, of status inputs and of control outputs. Columns
“ bit ”, “#Reg.” and “#Mod.” in “Data path” denote the bit
width of data paths and the numbers of registers and of opera-
tional modules in data paths. In the row “RISC”, the number
of the status signals is larger than that of the primary inputs
of the data path. In our DFT, twenty-two primary output pins
are changed to primary input/output pins by appending tri-state
buffers. However, the hardware overhead of this modification
is negligible.
Test generation results are shown in Table 6. The sequen-

tial/combinational ATPG tool TestGen (Synopsis) is used in
this experiments on Ultra60 model 2360 (Sun Microsystems).
Columns “Test generation time”, “Test application time” and
“Fault efficiency” denote test generation time in second, test
application time in clock cycles and fault efficiency. In each of
these columns, columns “Original”, “Full-scan”, “Prev. work”
and “This work” denote the results of the original circuits
(without DFT), of the circuits modified by the full-scan de-
sign, of the circuits modified by the method of our previous
work[15] and of the circuits modified by our proposed method
in this work. Test generation time of the proposed method is
almost the same as the method of [15]. Test generation time of
the proposed method is shorter than that of the full-scan. Espe-
cially, for the circuit RISC, the proposed method can reduce to
1/700 of the full-scan design and can enhance fault efficiency
compared with the full-scan design. For the circuit, fault effi-
ciency is 99.99% because the combinational ATPG tool can not
generate a test pattern for a fault in a multiplier of the circuit in
the method of [15] and the proposed method. Test application
time of the proposed method is shorter than the method of [15].
Test application time of the proposed method is drastically re-
duced compared with that of the full-scan design.
The area and pin overheads of the full-scan design, the

method of [15] and the proposed method are shown in Table
7. Columns “C”, “DP”, “T PG”, “TMR,TPR” and “MUX”
in columns “Prev. work” and “This work” of column “Area
overhead” denote the area overhead of controllers, data paths,

T PGs, registers TMR and TPR and multiplexers on control
signals, status signals and primary outputs of data paths. In
the proposed method, area overhead of T PG is less compared
to the method of [15]. Furthermore, for data paths, however a
fixed-control testable data path can achieve simpler test plans
compared to strong testable one, the difference between the
area overhead of the proposed method and that of the method
of [15] is not large. Especially, for RISC, the proposed method
can reduce the area overhead compared with the method of
[15]. In these results, area overhead of the proposed method is
less than that of the method of [15] for all circuits except JWF.
The area overhead of the proposed method is larger than that of
the full-scan design but the difference between the area over-
head of the proposed method and that of the full-scan design
is not large. The pin overhead of the proposed method is the
same as the method of [15] and larger than that of the full-scan
design. For the circuit RISC, the pin overhead of the method
of [15] and the proposed method are larger than the other be-
cause two select signals for concatenation of two multiplexers
are needed on the primary outputs of the data path to observe
the control signals and the status signals from the primary out-
puts. In return for these disadvantages, the proposed method
allows at-speed testing.
In the proposed method, masks, multiplexers and bypass

registers are appended to a controller/data path circuit. First,
let us consider performance degradation of the circuit caused
by multiplexers appended to the controller, the signals between
the controller and the data path, and the primary outputs of the
data path. Multiplexers are appended in front of the state reg-
ister of the controller in the circuit, on control signals between
the controller and the data path in the circuit, and in front of
the primary outputs of the data path. The multiplexer in front
of the state register is the same as the full-scan design. The
multiplexer on the control signals does not affect performance
of the circuit because the control signals are not generally in-
cluded in the critical path of the circuit [11]. The multiplexer
in front of the primary outputs of the data path does not also
affect performance of the circuit because, in general, there ex-
ist registers in front of the primary outputs of the data path and
delay of multiplexers are less than operational modules.
For the data path, the performance might be degraded by

appended masks, test multiplexers and multiplexers of bypass
registers. In the full-scan design, multiplexers are added to
all registers to make each register a scannable register. On the
other hand, in the method proposed here, masks and multiplex-
ers are added to some (not all) operational modules and com-
binational paths between two registers, respectively. Further-
more, delays of masks is less than that of multiplexers for scan
and multiplexers added in the proposed method is the same as
multiplexers for scan. Therefore, performance degradation of
the proposed method is not so much compared to that of full-
scan design.

8. Conclusion

This paper presented a non-scan DFT method for con-
troller/data path circuits designed at RTL and that for data path
based on fixed-control testability. The proposed method can
achieve 100% fault efficiency and allows at-speed testing. We
reduced the hardware overhead in the presented method com-
pared to the method of our previous work [15]. The hardware
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Table 5: Circuit characteristics.
Controller Data pathCircuit Area(gate)

#PI #PO #State #Status #Control Area(gate) #PI #PO bit #Reg. #Mod. Area(gate)
GCD 1524.50 1 1 4 3 7 169.40 32 16 16 3 1 1350.90
JWF 6875.40 1 0 8 0 38 199.50 80 80 16 14 3 6671.70
LWF 1986.20 1 0 4 0 8 57.70 32 32 16 5 3 1924.30
PAULIN 24965.60 1 0 6 0 16 123.50 64 64 32 7 4 24833.70
RISC 62287.60 1 2 11 54 62 3986.90 32 96 32 40 4 58157.90

Table 6: Test generation results.
Test generation time(sec.) Test application time(cyc.) Fault efficiency(%)Circuit

Original Full-scan Prev. work This work Original Full-scan Prev. work This work Original Full-scan Prev. work This work
GCD 18055.53 171.51 0.69 0.69 9 6629 504 504 4.92 100.00 100.00 100.00
JWF 2348.24 2.88 0.37 0.27 488 20519 1497 1621 98.14 100.00 100.00 100.00
LWF 171.68 0.47 0.27 0.27 322 4066 517 443 99.64 100.00 100.00 100.00
PAULIN 20362.55 4.68 2.11 2.20 283 16187 2193 2172 97.01 100.00 100.00 100.00
RISC 288102.05 51740.92 71.50 72.29 4298 1006154 9674 7768 62.31 99.97 99.99 99.99

Table 7: Hardware overheads.
Area overhead(%) Pin overhead(#)

Circuit Prev. work This workFull-scan C DP T PG TMR,TPR MUX C DP T PG TMR,TPR MUX Full-scan Prev. work This work

GCD 26.6 39.7 1.1 2.6 19.1 4.1 12.8 32.8 1.1 2.6 12.2 4.1 12.8 3 5 5
JWF 26.7 37.1 0.4 5.2 20.5 1.4 9.7 41.9 0.4 9.3 20.7 1.4 10.0 3 5 5
LWF 33.4 48.6 0.8 18.1 17.2 3.9 8.6 44.6 0.8 18.1 13.2 3.9 8.6 3 5 5
PAULIN 7.4 8.1 0.2 1.2 4.9 0.4 1.4 7.1 0.2 2.5 2.6 0.4 1.4 3 5 5
RISC 16.7 27.3 0.1 10.9 12.3 0.2 3.6 21.0 0.1 9.6 7.4 0.2 3.7 3 6 6

overhead of the method is slightly more than that of the full-
scan design. Since the hierarchical test generation can be ap-
plied to the data path part of the circuits, test generation time
of the proposed method is shorter than that of the full-scan
design. Furthermore, since the proposed method uses no tradi-
tional scan path, test application time is very low.
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