
Test Generation for Acyclic Sequential Circuits with Hold Registers

1 Introduction
Test generation for sequential circuits is generally considered

to be a hard problem. For such sequential circuits, design for testa-
bility (DFT) is an important approach to reducing the test gener-
ation cost [1, 2]. On the other hand, for combinational circuits,
efficient test generation algorithms were proposed, and hence we
can obtain a complete (100% fault efficiency) test set even if the
circuit size is large. Therefore, it is significant to apply DFT to a
sequential circuit so that the resultant circuit can be test-generated
using only a combinational test generator.

Full scan design referring to chaining all of memory elements
or flip-flops (FFs) into a shift register is such a traditional DFT
technique. In the full scan design, the portion of the circuit exclud-
ing the scan path, which is called the kernel, is a combinational
circuit, and consequently a combinational test generator can be
used. However, the full scan design requires large overhead. Al-
though partial scan designwhich makes a subset of FFs scannable
can avoid such a penalty, the kernel circuit is still sequential one
[3, 4], and hence it requires the use of sequential test generators in
general.
In order to obtain complete test sequences for sequential cir-

cuits efficiently with low hardware overhead, several classes of se-
quential circuits for which test generation can be performed by us-
ing only a combinational test generator were identified [5]–[11]. In
[11], we presented a method of test generation for acyclic sequen-
tial circuits using a time-expansion model (TEM). One can obtain
a complete test set for a given acyclic sequential circuit by apply-
ing combinational test generation to the TEM of the given circuit,
provided that the combinational test generator can deal with multi-
ple faults. Thus, for any sequential circuit, by selecting a sufficient
set of scan FFs so that the resultant kernel is acyclic, a complete
test sequence for the sequential circuit can be generated by using a
combinational test generator in spite of partial scan. In [11], how-
ever, a hold register which is a collection of FFs with hold mode is
regarded as a self-loop, and consequently it is always chosen as a
scan register.
In this paper, we propose a new TEM (time-expansion model)

for acyclic sequential circuits with hold registers. Even if an
acyclic sequential circuit has hold registers, test generation for the
circuit can be performed by applying combinational test genera-
tion to the new TEM. Hence, hold registers are not necessarily
chosen as scan registers, and consequently the hardware overhead
is smaller compared with that of the partial scan design in which
kernels have no hold register [11].
For an acyclic sequential circuit, a TEM is obtained from a se-

quence of load/hold controls. Since there exist many sequences
of load/hold controls, many TEMs are obtained from an acyclic
sequential circuit. Hence, in order to obtain a complete test se-
quence for an acyclic sequential circuit, we may have to perform
test generation for all TEMs of the circuit. However, that may
not be acceptable. Therefore, in order to reduce the number of
TEMs required for the test generation, we introduce a cover rela-
tion among TEMs for an acyclic sequential circuit, and show that
test generation for allmaximal (on the relation) TEMs is necessary

and sufficient to obtain a complete test sequence. Furthermore, we
present a class of acyclic sequential circuits for which the num-
ber of maximal TEMs is just one, i.e., the maximum TEM exists.
For a circuit in the class, a test sequence for any testable fault can
be generated by using only the maximum TEM of the circuit, and
therefore a complete test sequence for the circuit can be obtained
efficiently.
In the following discussion, all the proofs of propositions will

be omitted due to limitations of space. The proofs can be displayed
in the same way as [11].

2 Time-Expansion Model for Acyclic Se-
quential Circuits
In this section, we present a time-expansion model (TEM) for

an acyclic sequential circuit, and show that test generation for an
acyclic sequential circuit with hold registers can be performed by
applying combinational test generation to its TEMs.

2.1 Circuit Model
In this paper, we consider synchronous sequential circuits. A

sequential circuit consists of combinational logic blocks connected
with each other directly or through registers. A register is a col-
lection of D-type flip-flops (FFs) driven by the same clock signal.
The clock signals of all registers are assumed to be directly con-
trolled by primary inputs, and no clock signal feeds data input of
either a combinational logic block or a register.
A combinational logic block (or logic block, for short) in a se-

quential circuit is a region of connected combinational logic, ex-
cluding registers. A logic block may include primary inputs and
primary outputs.
Some registers may have a load enable control signals. A regis-

ter with an explicit load enable control signal is called H-register.
An H-register has two modes of operation: HOLD mode (in which
it retains its value across consecutive clock cycles) and LOAD
mode (in which it reads from the data input when a clock signal is
applied). A register without a load enable control signal is called
L-register, which always operates in the load mode during every
clock cycle. The control signal for each H-register is assumed to
be directly controlled by a primary input independent of that for
the others.
An input-pattern for a sequential circuit consists of a data input-

pattern and a control input-pattern, which are a collection of sig-
nals applied to combinational logics and that of signals applied to
H-registers, respectively.
Under this constraint, the topology of a sequential circuit can

be modeled by a topology graph defined as follows.

Definition 1 (Topology graph): A topology graph is a directed
graph G = (V,A,r), where a vertex v ∈ V denotes a logic block
and an arc (u,v)∈ A denotes a connection from u to v and each arc
has a label r : A→ Z+ (non-negative integers) ∪ {h}. When two
logic blocks u,v are connected directly or through one or more L-
registers, the label r(u,v) denotes the number of L-registers (i.e.,
r(u,v) ∈ Z+). When two logic blocks u,v are connected through
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Figure 1. Acyclic sequential circuit S.
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Figure 2. Topology graph of S: G.
one H-register 1, the label r(u,v) = h. ✷

Example 1: Consider a sequential circuit S illustrated in Fig. 1.
In this figure, 1,2, . . . ,7 are logic blocks, b,c, . . . , i are L-registers,
and a and j, which are highlighted, are H-registers. The topology
graph G of this circuit S is shown in Fig. 2. ✷

2.2 Time-Expansion Model (TEM)
A time-expansion model for an acyclic sequential circuit is de-

fined based on the following time-expansion graph.

Definition 2 (Time-expansion graph (TEG)): Let S be an acyclic
sequential circuit and let G= (V,A,r) be the topology graph of S.
Let E = (VE ,AE ,t, l) be a directed graph, where VE is a set of
vertices, AE is a set of arcs, t is a mapping from VE to a set of
integers, and l is a mapping from VE to the set of vertices V in G.
If graph E satisfies the following five conditions, graph E is said
to be a time-expansion graph (TEG) of G.
C1(Logic preservation) The mapping l is a surjective, i.e.,

∀v ∈V,∃u ∈VE s.t. v= l(u).
C2(Input preservation) Let u be a vertex in E. For any direct

predecessor v (∈ pre(l(u))) of u in G, there exists a vertex
u′ in E such that l(u′) = v and u′ ∈ pre(u). Here, pre(v)
denotes the set of direct predecessors of v.

C3(Time consistency) For any arc (u,v) (∈ AE), there exists
an arc (l(u), l(v)) such that r(l(u), l(v)) = t(v) − t(u) or
r(l(u), l(v)) = h.

C4(Time uniqueness) For any vertices u,v (∈VE), if t(u) = t(v)
and if l(u) = l(v), then the vertices u and v are identical, i.e.,
u= v.

C5(Hold consistency) For any pair of arcs (u1,v1), (u2,v2)
(∈ AE) such that (l(u1), l(v1)) = (l(u2), l(v2)) and
r(l(u1), l(v1)) = r(l(u2), l(v2)) = h, if t(u1) > t(u2), then
t(u1) ≥ t(v2).

✷

This definition is written by adding the last condition C5 to
that of the time-expansion graph for an acyclic sequential circuits
without H-registers [11]. The condition C5 denotes that an H-
register cannot read a new value while retaining a previous one.

1Even if there exist two H-registers or both of L and H-registers be-
tween two logic blocks, the topology graph can also represent such se-
quential circuits by supposing existence of a combinational logic block
consisting only of lines or buffers between the two logic blocks.
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Figure 3. TEG of G: E1.
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Figure 4. TEG of G: E2.
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Figure 5. TEG of G: E3.
Example 2: Figs. 3, 4 and 5 show TEGs of topology graph G.
In these figures, the number denoted in a vertex u is the label l(u),
and the number located at the top of each column denotes the value
of the labels t(u) of the vertices u in the column. ✷

As shown in the above example, there exist different TEGs for
a topology graph according to control input sequences.

Definition 3 (Time-expansion model (TEM)): Let S be an
acyclic sequential circuit, let G = (V,A,r) be the topology graph
of S, and let E = (VE ,AE , t, l) be a TEG of G. The combinational
circuitCE(S) obtained by the following procedure is said to be the
time-expansion model (TEM) of S based on E.
(1) For each vertex u∈VE , let logic block l(u) (∈V ) be the logic

block corresponding to u.
(2) For each arc (u,v) ∈ AE , connect the output of u to the in-

put of v with a bus in the same way as (l(u), l(v)) (∈ A).
Note that the connection corresponding to (u,v) has no reg-
ister even if the connection corresponding to (l(u), l(v)) has
a register (i.e., r(l(u), l(v)) ̸= 0).

(3) In each logic block, lines and logics that are reachable to
neither other logic blocks nor primary outputs are removed.

✷

Example 3: Fig. 6 shows the TEM of sequential circuit S (Fig.
1) based on TEG E1 (Fig. 3). In this figure, a highlighted part in a
logic block represents a portion of the lines and gates removed by
Step (3) in Def. 3. ✷

2.3 Test Generation with TEM
Here we consider the relationship between input/output se-

quences of an acyclic sequential circuit and input/output pat-
terns of its TEM. Let S be an acyclic sequential circuit, and let
G = (V,A,r) be the topology graph of S. Let E = (VE ,AE ,t, l)
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Figure 6. TEM of S based on E1: CE1(S).

Table 1. Input and output sequences for S ob-
tained by transformation procedure τS.

Time 0 1 2 3

x1 I10 I11 X X
Data Input

x2 X I2 X X
Reg. a L H X X

Control Input
Reg. j X X L X
z1 X X X O1Output
z2 X X X O2

be a TEG of G, let CE(S) be the TEM of S based on E, and let
tmin be the minimum of labels t in CE(S). An input pattern for
CE(S) can be transformed into an input sequence for circuit S by
the following procedure τS.
Definition 4 (Transformation procedure τS):
(1) Control input sequence IH . Let IH(v′,v, t) denote an input

value which is applied to an H-register (v′,v) (∈ A) at time t.
For each arc (u′,u) ∈ AE such that r(l(u′), l(u)) = h, let

IH(l(u′), l(u),t− tmin)

=
{

L (LOAD mode) (t = t(u′))
H (HOLD mode) (t(u′)+1≤ t ≤ t(u)−1)

Let the values IH(v′,v, t) which are not defined by the above
equation be X (don’t care).

(2) Data input sequence IS. For each logic block u ∈ VE in
CE(S), let

IS(l(u),t(u)− tmin) = IC(u),
where IS(v, t) denotes an input-pattern applied to logic block
v in S at time t, and IC(u) denotes an input-pattern applied to
logic block u inCE(S).

✷

Note that in the above procedure, a control input sequence is
obtained only from a TEG E independent of an input-pattern for
TEM CE(S).
Lemma 1: Let IC be an arbitrary input-pattern for TEM CE(S),
and let IS and IH be a data input sequence and a control input
sequence obtained by τS, respectively. The output pattern OC(u)
obtained from a logic block u ∈VE by applying input pattern IC to
CE(S) is equal to the output pattern OS(l(u),t(u)− tmin) obtained
from the corresponding logic block l(u) at time t(u)− tmin by ap-
plying data input sequence IS with control input sequence IH . ✷

Example 4: Consider a TEM CE1(S) (Fig. 6) of a sequen-
tial circuit S shown in Fig. 1. Suppose an input-pattern IC =
(x10,x11,x2) = (I10, I11, I2) applied to CE1(S) and the correspond-
ing output-pattern is OC = (z1,z2) = (O1,O2). According to the

labels t in TEG E1 (Fig. 3), the patterns IC andOC are transformed
into the sequences shown in Table 1 by procedure τS. Here, X de-
notes a don’t-care value. ✷

Note that the length of the sequence obtained from a pat-
tern for TEM CE(S) by procedure τS becomes maxu∈VE {t(u)}−
minu∈VE {t(u)}+1.
Let IS and IH be a data input sequence and a control input se-

quence for acyclic sequential circuit S such that the sequences de-
termine the output pattern OS(v,t) of a logic block v (∈V ) in S at
time t, respectively. Here, a pattern that does not affect OS(v,t) in
the input sequences IS and IH is considered as don’t-care. Input
sequences IS and IH for S can be transformed into a TEG E and
an input-pattern IC for the TEMCE (S) by the following procedure
τC.

Definition 5 (Transformation procedure τC):
(1) TEG E. Construct a TEG E = (VE ,AE , t, l) in which there ex-

ists a vertex u ∈VE that satisfies the following conditions.
(1) l(u) = v∧ t(u) = t, and
(2) For the control input value IH (v1,v2,t ′) applied to an H-
register (v1,v2) (r(v1,v2) = h) at time t ′,
if IH (v1,v2, t ′) = L, then there exists a vertex u1 ∈ Pre(u)
such that l(u1) = v1∧ t(u1) = t ′,
if IH (v1,v2,t ′) = H, then there exists an arc (u1,u2) (∈ AE)
such that u1,u2 ∈ Pre(u) ∧ t(u1) < t ′ ∧ t(u2) > t ′. Here,
Pre(u) denotes the set of all predecessors of u.

(2) Input-pattern IC . For every input pattern IS(v′,t ′) applied to
each logic block v′ at time t ′, if IS(v′,t ′) affects output
OS(v,t), then for the logic block u′ that satisfies u′ ∈ l−1(v′)
and t(u′) = t ′, let IC(u′) = IS(v′, t ′).

✷

Lemma 2: Let v (∈ V ) be an arbitrary logic block in acyclic
sequential circuit S, and let IS and IH be a data input sequence
and a control input sequence that are required to set the output of
v to a pattern OS(v,t) at time t, respectively. Let E and IC be a
TEM and an input-pattern obtained from IS and IH by procedure
τC, respectively. Let u (∈VE) be the logic block that corresponds
to v by the first step (1) in procedure τC. The output pattern OC(u)
obtained from the logic block u by applying the input pattern IC to
TEM CE(S) is equal to the output pattern OS(v, t). ✷

Note that as shown in the above procedure τC , a TEG (or TEM)
is obtained from a control input sequence applied to H-registers in
a sequential circuit, independent of data input sequences.
Next, let us consider the relationship between faults in an

acyclic sequential circuit and those in its TEMs. Here we con-
sider single stuck-at faults only in logic blocks as those in an orig-
inal sequential circuit. The stuck-at faults on lines between logic
blocks and in registers can be considered to be equivalent to those
on input/output lines of logic blocks.

Definition 6 (Fault in TEM): Let S be an acyclic sequential
circuit. Let G = (V,A,r) be the topology graph of S, let E =
(VE ,AE , t, l) be a TEG of G, and let CE(S) be the TEM of S based
on E. Let F be the set of faults in S, and let FE be the set of faults
inCE(S). Suppose a fault f ∈ F in a logic block u in circuit S. Let
fe ∈ FE be the fault corresponding to fault f . Fault fe is a multiple
fault that consists of all the faults existing on the same line in ev-
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Figure 7. TEM of S based on E3: CE3(S).
ery logic block u ∈ l−1(v). That is, if the number of logic blocks
u such that l(u) = v is just one, then the fault fe is a single fault,
otherwise, fe is a multiple fault. ✷

From the above discussion, we have the following theorem.

Theorem 1: Let S be an acyclic sequential circuit, and let F be
the set of faults in S. Let G = (V,A,r) be the topology graph of
S.
(1) A fault f ∈ F is testable (or irredundant) in S if and only

if there exists a TEG E of G such that the fault fe (∈ FE)
corresponding to f is testable in the TEMCE(S) based on E.

(2) A test pattern for a fault fe (∈ FE) obtained using a TEM
CE(S) can be transformed into a test sequence for the fault
f (∈ F) corresponding to fault fe.

✷

From this theorem, we can see that test generation for an
acyclic sequential circuit can be performed by using several dif-
ferent TEMs. Furthermore, since TEMs are fully combinational,
a combinational test generator can be used for the test generation
provided that the test generator can deal with multiple faults.

3 Cover Relation
From Theorem 1, we can have the following corollary.

Corollary 1: Let S be an acyclic sequential circuit. Let F be a set
of faults in S. A fault f ∈ F is untestable (or redundant) in S if and
only if the fault corresponding to fe is untestable in every TEM for
S. ✷

This corollary may imply that if a fault is untestable in an
acyclic sequential circuit, in order to identify it, we must apply
test generation to all the TEMs of the circuit, and identify the cor-
responding fault as untestable in every TEMs. However, as men-
tioned in the following discussion, all TEMs are not necessary for
each identifying untestable fault.
Let us consider two TEMs CE1(S) (Fig. 6) and CE3(S) (Fig. 7)

for sequential circuit S (Fig. 1). Suppose, in CE1(S), an output-
pattern O2 obtained from primary output z2 by applying an input-
pattern (Ia, Ib,Ic) to primary inputs (x10,x11,x2). This input/output
relationship can be simulated by another TEMCE3(S) (Fig. 7) with
four primary inputs x10, x11, x12 and x2: by applying an input-
pattern (Ia, Ia,Ib, Ic) to (x10,x11,x12,x2), the same output-pattern
O2 is obtained from z2 inCE3(S). For such a relationship between
two TEMs, we sayCE3(S) covers CE1(S), and define it as follows.
Definition 7 (Cover relation): Let S be an acyclic sequential
circuit. Let G = (V,A,r) be the topology graph of S, and let
E1 = (V1,A1,t1, l1) and E2 = (V2,A2,t2, l2) be arbitrary TEGs of
G. TEG E1 is said to cover TEG E2 if, for any vertex v2 ∈ V2,
there exists a vertex v1 ∈V1 which satisfies the following two con-
ditions, and it is denoted by E1 ≽ E2.

(1) l(v1) = l(v2), and
(2) for any pair of u1 ∈ Pre(v1) and u2 ∈ Pre(v2), if l1(u1) =

l2(u2) and LE1(u1,v1)∩LE2 (u2,v2) ̸= φ, then LE1(u1,v1) ⊆
LE2(u2,v2).

Here Pre(v) denotes the set of all predecessors of v and LE(u,v)
denotes the set of paths (l(u), ..., l(v)) (in G) corresponding to
paths (u, ...,v) whose tail and head are u and v in E, respectively.

✷

Example 5: Consider TEGs E1 (Fig. 3) and E3 (Fig. 5). Here,
let ab denote a vertex v such that l(v) = a and t(v) = b. Sup-
pose a pair of vertices 10 and 73 in TEG E1. There are two paths
between 10 and 73: LE1(10,73) = {(1,2,3,7),(1,6,7)}. In the
other TEG E3, vertex 74 corresponds to vertex 73 in E1 uniquely,
and there are two vertices u3 that satisfy lE3(u3) = lE1(10) and
LE3(u3,74)∩LE1(10,73) ̸= φ: vertices 10 and 11. LE3(10,74) =
{1,6,7}⊆ LE1(10,73) and LE3(11,74) = {1,2,3,7}⊆ LE1(10,73).
By checking such a relationship as mentioned above, we can see
that E3 covers E1. Note that E1 does not cover E3. ✷

When a TEG E1 covers a TEG E2, we denote that E1 ≽ E2.
Further, it is also said that TEM CE1(S) covers TEM CE2(S)
(CE1 (S) ≽CE2 (S)).
Let IE2 be an input-pattern for TEM CE2(S) (covered by

TEM CE1(S)) such that the pattern determines the output-pattern
OE2(v2) of a logic block v2 (∈ V2). Based on Def. 7, input-
pattern IE2 can be transformed into an input-pattern IE1 for TEM
CE1(S) (≽CE2(S)) by the following procedure τR.
Definition 8 (Transformation procedure τR): Let v1 (∈ V1)
be a logic block corresponding to v2 that satisfies the condi-
tions in Def. 7. Let IE2(u2) denote an input-pattern applied
to a logic block u2 (∈ Pre(v2)∪ {v2}). For every logic block
u1 (∈ Pre(v1)∪ {v1}) corresponding to u2 (l1(u1) = l2(u2) and
LE1(u1,v1)∩LE2(u2,v2) ̸= φ), let IE1(u1) = IE2(u2). Note that the
number of logic blocks u1 corresponding to one logic block u2 is
one or more. ✷

Lemma 3: Suppose two TEMsC1 andC2 of an acyclic sequential
circuit such that C1 ≽ C2. Let v2 be an arbitrary logic block in
C2. Let I2 be an input-pattern required to set the output of v2 to
a pattern O2. Let I1 be an input-pattern obtained by procedure τR
from I2. The output-pattern O1 obtained from v1 corresponding
to v2 by applying the input-pattern I1 to C1 is equal to the output-
pattern O2. ✷

As mentioned above, if a TEM C1 covers another TEM C2,
C1 can ‘simulate’ C2. On the other hand, by definition Def. 6, for
any fault in an acyclic sequential circuit, the corresponding fault
is defined in either TEM of C1 and C2. Thus, we can form the
following theorem.
Theorem 2: Let S be an acyclic sequential circuit. Let C1 and
C2 be TEMs of S. Let F1 and F2 be the set of faults in C1 and C2,
respectively (Def. 6). If TEM C1 covers TEM C2, the following
holds: If a fault f2 (∈ F2) in C2 is testable, fault f1 (∈ F1) in C1
corresponding to f2 is also testable. ✷

From the theorem, we can see that test generation for all the
TEMs that are not covered by any other TEMs, i.e., maximal
TEMs of an acyclic sequential circuit is necessary and sufficient
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Figure 8. Example of max-testable circuit.

to obtain a complete test sequence for all testable faults in the cir-
cuit. For example, sequential circuit S has two maximal TEMs
CE2(S) and CE3(S), i.e., any TEM is covered by either CE2 (S) or
CE3(S).
Thus, we can reduce the number of TEMs for complete test

generation of sequential circuits, even though the number of con-
trol sequences for H-registers is unlimited.

4 Max-testable structure
In general, an acyclic sequential circuit has several maximal

TEMs, e.g., the maximal TEMs of sequential circuit S (Fig. 1) are
CE2(S) and CE3(S). However, if the number of maximal TEMs is
just one for an acyclic sequential circuit i.e., the circuit has the
maximum TEM, a complete test set for the circuit can be gen-
erated only by performing combinational test generation for the
maximum TEM. If a sequential circuit has the maximum TEM,
the sequential circuit is called max-testable.

4.1 Path-Adjustable Structure
Consider sequential circuit S (Fig. 1), again. Recall that TEG

E3 (Fig.5) covers another TEG E1 (Fig. 3). Focus on an arc (6,7)
which corresponds to an H-register j (called hold arc, for short) in
S, we can consider that TEG E3 is obtained from E1 by adjusting
the length of the arc (6,7) (i.e., the difference of t(6) and t(7)) so
that the tail 1 of a path (1,6,7) is separated from that of another
path (1,2,3,7) that has the same head 7. In this way, if a common
tail of different paths that have the common head can be divided
into distinct vertices as respective tails of the paths under Condi-
tion C5 in Def. 2, another TEG covering the original TEG can be
obtained.
Here, as a sufficient condition for the maximum TEM, we have

the following lemma.

Lemma 4: Let G = (V,A,r) be the topology graph of an acyclic
sequential circuit S. Let E = (VE ,AE , t, l) be a TEG for G. A TEG
is maximum if for any pair of vertices u,v ∈ VE , the following
holds.

∀p,q ∈ PE(u,v)[HE(p) =HE(q)],
where PE(u,v) denotes the set of paths whose head and tail are
u and v in E, respectively, and HE(p) denotes the set of hold
arcs (u′,v′), such that the corresponding arc (l(u′), l(v′)) is an H-
register (i.e., (l(u′), l(v′)) = h). on path p. ✷
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Figure 9. Sequential circuit S2.

Example 6: Consider a TEG Em for a topology graph Gm (Fig.
8). For any pair of paths p,q whose tail and head are severally the
same in Em, the set HEm (p) of hold arcs is equal to that HEm (q).
Hence, TEG Em is the maximum, and consequently the circuit
represented by topology graph Gm is max-testable. ✷

Although TEG Em shown in the above example is the max-
imum, it seems to be hard to derive the maximum TEG for G
because adjustability of each hold arc depends on resultant ad-
justment of the other hold arc. From the practical point of view,
An acyclic sequential circuit whose maximum TEG (TEM) can be
derived easily is interesting and important. Here, recall that Con-
dition C5 in Def. 2 is for more than one hold arcs that correspond
to a certain H-register in an acyclic sequential circuit. Such arc
duplication for an H-register is possible in a TEG when there exist
more than one paths from the H-register to an primary output in the
circuit. Hence, here we consider a sequential circuit whose maxi-
mum TEG can be derived by adjusting each hold arc independent
of the others as follows.

Definition 9 (Path-adjustable structure): Let S be an acyclic
sequential circuit. LetG= (V,A,r) be the topology graph of S. Let
P(u,v) denote a set of paths from u to v (u,v ∈ V ). If G satisfies
the following condition, sequential circuit S is said to be path-
adjustable.
(CPA) Let V ′ (⊆V ) be a set of vertices which are reachable from
some arc ah(∈ A) such that r(ah) = h (H-register). Let u,v be any
pair of vertices in V ′. For any pair of paths p,q ∈ P(u,v),
(1) if H(p) = H(q), then d(p) = d(q), else
(2) if H(p) ̸= H(q), then

H(p)∩H(q) ̸= φ⇒ H(p) ⊂ H(q)∨H(p) ⊃ H(q).
Here d(p) denotes the sum of labels r(a) of arcs a (∈ A) such that
r(a) ∈ Z+ (L-register) in a path p, and H(p) denotes the set of
arcs a such that r(a) = h (H-register) in a path p. ✷

Example 7: Consider a sequential circuit S2 shown in Fig. 9.
In this figure, a,b,d and i are H-registers, and the others are L-
registers. For example, let us focus on an H-register a. There
exist four paths to be considered for a: p1 = (2,d,4, f ,6), p2 =
(2,b,3,e,4, f ,6), p3 = (2,b,3,g,5,h,6) and p4 = (2,b,3, i,6).
Then, H(p1) = {d},H(p2) = {b},H(p3) = {b} and H(p4) =
{b, i}. For p1 and p2, H(p1)∩H(p2) = φ, this is in neither case.
For p2 and p3, H(p2) = H(p3) = {b} and d(p2) = d(p3), i.e.,
case (1). For p2 and p4, H(p2) ⊂ H(p4), i.e., case (2). Sim-
ilarly, all the other pairs of paths in this circuit S2 also satisfy
Condition CPA, and hence S2 is path-adjustable. Note that a
sequential circuit S (Fig. 1) is not path-adjustable. As a result,
we can obtain the maximum TEM for S2 as shown in Fig. 10.
The control input sequence obtained from the TEM (by procedure
τS) is IH (a) = (L,L,L,H,X ,X ,X), IH(b) = (X ,X ,L,H,L,X ,X),
IH(d) = (X ,L,H,H,H,X ,X), IH(h) = (X ,X ,X ,X ,X ,L,X). ✷

For a path-adjustable circuit, a TEG that satisfies the condition
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Figure 11. Sequential circuit S3.
in Lemma 4. Therefore, we have the following theorem.
Theorem 3: A path-adjustable sequential circuit is max-testable.

✷

4.2 Application to Partial Scan Design
From Theorem 3, we can see that for any sequential circuit,

by selecting a sufficient set of scan registers so that the resulting
kernel is path-adjustable, a complete test sequence for the circuit
can be obtained by using a combinational test generator for only
the maximum TEM of the kernel (provided that the test generator
can deal with multiple faults). On the other hand, from Def. 9, we
have the following corollary.
Corollary 2: All the following sequential circuits are path-
adjustable.
(1) balanced structures [5],
(2) internally-balanced structures [7], and
(3) acyclic sequential circuits without H-registers. ✷

Therefore, for a sequential circuit, the hardware overhead of
the partial scan based on path-adjustable structure is smaller than
that based on the structures mentioned in Corollary 2.
Example 8: Consider a sequential circuit S3 shown in Fig. 11.
In this figure, a,b,d and i are H-registers, and the others are
L-registers. In the partial scan design based on path-adjustable
structure, the minimum number of scan registers is two, e.g., by
scanning L-registers j and k, the resulting kernel becomes path-
adjustable. Note that there is an alternative DFT solution: if one
L-register j is scanned and another L-register k is replaced with an
H-register, then the resultant circuit is also path-adjustable.
On the other hand, in the partial scan design based on balanced

structure, the minimum number of scan registers is five, e.g., the
set of registers to be scanned is {b,c,e, f ,k}. When the kernel is
made an acyclic structure without H-registers, the minimum num-
ber of scan registers is also five, e.g., {a,b,d,h, i}. ✷

Therefore, it is seen that we can obtain complete test sequences
for sequential circuits with low hardware overhead based on max-
testable structure.

5 Conclusions and Future Works
In this paper, we presented a method of test generation for

acyclic sequential circuits with hold registers. A complete test set

for an acyclic sequential circuit can be obtained by applying a com-
binational test generator to all themaximal time-expansion models
(TEMs) of the circuit. As a class of max-testable sequential cir-
cuits, referring to acyclic sequential circuits for which the number
of maximal TEMs is one, i.e, the maximum TEM exists, we intro-
duced path-adjustable structure. The class of path-adjustable se-
quential circuits properly includes several known classes of acyclic
sequential circuits such as balanced structures and acyclic sequen-
tial circuits without hold registers for which test generation can be
also performed by using a combinational test generator. There-
fore, the hardware overhead for partial scan based on our path-
adjustable structure is substantially smaller than that based on bal-
anced or acyclic sequential structure without hold registers.
As future works, several issues are remaining.
• The condition in the definition of path-adjustable structure
is a sufficient one for existence of the maximum TEM for
acyclic sequential circuit. We believe that there exists a lager
class of max-testable sequential circuits, and hence the hard-
ware overhead of DFT for complete test sequences can be
reduced further.

• We are now investigating an algorithm for finding an optimal
partial scan / hold register insertion based on max-testable
structure with minimum hardware overhead.

• The length of test sequences obtained from test generation
using TEMs depends on the structure of the TEMs. Hence, it
is also important to find optimal TEMs which minimize the
length of resulting test sequences.
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