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Abstract

This paper presents a new BIST method for RTL data
paths based on single-control testability, a new concept of
testability. The BIST method adopts hierarchical test. Test
pattern generators are placed only on primary inputs and
test patterns are propagated to and fed into each module.
Test responses are similarly propagated to response analyz-
ers placed only on primary outputs. For the propagation of
test patterns and test responses, paths existing in the data
path are utilized. The DFT method for the single-control
testability is also proposed.
The advantages of the proposed method are high fault

coverage (for single stuck-at faults), low hardware over-
head and capability of at-speed test. Moreover, test patterns
generated by test pattern generators can be fed into each
module at consecutive system clocks, and thus, the BIST can
also detect some faults of other fault models (e.g., transition
faults and delay faults) that require consecutive application
of test patterns at speed of system clock.

1 Introduction

Built-in self-test (BIST) is one of the most important
techniques for testing large and complex VLSI circuits. In
this technique, test pattern generators (TPGs) are added
to primary inputs (PIs) and response analyzers (RAs) are
added to primary outputs (POs). However, adding these
TPGs and RAs is not sufficient to achieve high fault cover-
age (for single stuck-at faults), if the VLSI circuit contains
cycles in its structure. Thus, several techniques of design
for testability (DFT) have been proposed[1].
BIST methods are classified into test-per-scan scheme

and test-per-clock scheme. In the test-per-scan scheme,
(some) registers are modified into scan registers so that test

The author is currently with Software Division, Hitachi, Ltd.

patterns and test responses can be shifted into and out using
a scan path. A major drawback of this scheme is long test
application time caused by the scan. Another major draw-
back is difficulty in applying test patterns at the operational
speed of the circuits (at-speed test). At-speed test is impor-
tant since it can detect more defective circuits than the same
test sequence applied at a lower rate in scan mode[6].
In the test-per-clock scheme, some registers are en-

hanced so that they can generate test patterns and/or com-
pact test responses. Examples of these registers are BILBO
(built-in logic block observer)[5] and CBILBO (concurrent
BILBO). The advantages of this scheme is that at-speed test
is possible and thus test application time is short. However,
the test-per-clock scheme generally requires higher hard-
ware overhead than the test-per-scan scheme.
Stroele and Wunderlich [8] proposed a DFT method for

BIST of the test-per-clock scheme. The DFT method mod-
ifies a data path so that every cycle in the data path contains
at least two BILBOs or one CBILBO.
In this paper, we consider BIST of register-transfer-level

(RTL) data paths. We introduce a new concept, single-
control testability of a data path, that guarantees high fault
coverage by BIST of the test-per-clock scheme. The BIST
is based on hierarchical test: each combinational module
(i.e., an operational module or a multiplexor) is tested in-
dependently from other modules. The single-control testa-
bility guarantees that, for each combinational module, test
patterns generated by TPGs can be fed into the module at
consecutive system clocks and its test responses can be con-
secutively propagated to an RA. In other words, we can
realize a configuration equivalent to that where TPGs are
placed immediately before the inputs of the module and
an RA is placed immediately after the output of the mod-
ule. Thus, the single-control testability guarantees high
fault coverage (for single stuck-at faults) since most of com-
binational modules in actual data paths are random-pattern
testable or can be modified into random-pattern testable one
by adequate test point insertion[2]. Moreover, the BIST can
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also detect some faults of other fault models (e.g., transition
faults and delay faults) that require consecutive application
of test patterns at speed of system clock.
We also present a DFT method for modifying a data path

to a single-control testable one with low hardware overhead.
To reduce the hardware overhead, the DFT method adds
TPGs and RAs on only PIs and POs. To guarantee prop-
agation of test patterns and test responses, some operational
modules are augmented with thru function and some multi-
plexors are added.
The advantages of our BIST are summarized as follows.
high fault coverage
low hardware overhead
At-speed test is possible. Moreover, test patterns gen-
erated by TPGs can be applied to each module at con-
secutive system clocks.

The paper is organized as follows. In Section 2, we intro-
duce a data path and its graph model. Section 3 introduces
the single-control testability. Section 4 presents the DFT
method for the single-control testability. We present exper-
imental results in Section 5 and the conclusions in Section
6.

2 Data Path

A data path consists of hardware elements and lines. A
hardware element is a primary input (PI), a primary out-
put (PO), a register, a multiplexor (MUX), or an opera-
tional module. An operational module is a combinational
circuit and includes no register. In the rest of this paper,
operational modules and MUXs are simply called (combi-
national) modules. We introduce ports as interface points
of each hardware element in a natural fashion: values en-
ter into a hardware element through its input ports, and exit
through its output port. For convenience, we regard a PI
(resp. a PO) as an output port (resp. an input port). A line
connects an output port with an input port. Any number of
lines can connect to an output port (i.e., fanout is allowed),
but only one line can connect to an input port.
We use a data path digraph to represent

structure of a data path:
where

is the set of all hardware elements in the data
path, and
is the set of all ports in the data path.

where
output port is con-

nected to input port by a line ,
is an input port of ,

and
is an output port of .
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(a) a data path (b) a data path digraph

Figure 1. A data path and its data path digraph

Figure 1 illustrates a data path and its data path digraph.
This figure also demonstrates the correspondence between
a data path and its data path digraph.
We use some graph terms (e.g., path, cycle etc.) to a data

path digraph. We also use the graph terms to a data path,
since there is a straightforward correspondence between a
data path and its data path digraph.
The data paths considered in this paper are fairly general

and satisfy most of the standard assumptions applicable to
data path designs. We assume that all input and output ports
have the same bit width. We also assume, for simplicity,
that each module has exactly two input ports and only one
output port.
Further, a hardware element may have a control port to

feed control signals in and/or a status port to report results
to the controller.

3 Single-Control Testability

Most of modules (e.g., adders, subtracters, multipliers,
shifters and multiplexors) in actual data paths are random-
pattern testable and other modules (e.g., comparators)
not random-pattern testable can be changed into random-
pattern testable ones by adequate test point insertion[2].
Thus, we can achieve high fault coverage of the whole data
path by BIST if random test patterns generated by TPGs
are propagated to each module and its test responses are
propagated to an RA. We formalize this condition as single-
control testability of a data path.

Definition 1 A data path is single-control testable if there
exist three disjoint paths , and for each module
such that

(a) any value can be propagated along each of and
,



(b) each of and is a path from a TPG to an input port
of (remark that, from disjointness requirement, the
TPGs and the input ports of and are respectively
different from each other), and

(c) is a path from the output port of to an RA.
Paths and are referred to as control paths of

and is referred to as an observation path of .

The BIST method proposed in this paper is based on hi-
erarchical test: each module is tested independently from
other modules. The single-control testability guarantees
that, for each module, test patterns generated by TPGs can
be propagated to the module at consecutive system clocks
using the control paths and and its test responses can
be consecutively propagated to an RA using the observation
path .
During test of each module , modules on and
are controlled by a BIST controller so that random test

patterns and test responses of can be propagated along
these paths. Since these paths are mutually disjoint, the con-
trol for the modules is fixed during test of . Thus, we refer
to the condition of Definition 1 as single-control testability.
The single-control testability implies testability with

BIST, while it is closely related to weak testability[9],
strong testability[10] and fixed-control testability[7] intro-
duced for testability with external test.

4 DFT for Single-Control Testability

This section presents a design for testability (DFT)
method that transforms a given data path to a single-control
testable one. In the DFT, TPGs and RAs have to be added
to the given data path. To reduce hardware overhead, we
impose a restriction on addition of TPGs and RAs: TPGs
and RAs can be added only on primary inputs and outputs
respectively. The only exception of the restriction is addi-
tion of a TPG for a data path with a single PI. In the rest of
this paper, we consider the DFT under the restriction.

4.1 Problem Formulation

A single-control testable data path has two control and
one observation paths for each module . These path are
disjoint and can propagate any value along each of them.
When a given data path does not have such disjoint paths for
a module, paths are added using test MUXs in the proposed
DFT. Each operational module appearing on the paths has to
propagate any value on its input port to the output port. For
the propagation, we augment the module with thru function
if necessary. The test MUXs and the thru functions added
in the DFT is referred as the DFT elements.

Definition 2 The DFT for the single-control testability is
formalized as the following optimization problem.

Input: a data path
Output: a single-control testable data path
Optimization: minimizing hardware overhead (i.e.,
hardware of added DFT elements)

4.2 DFT algorithm

We propose a DFT algorithm for the single-control testa-
bility. The algorithm consists of the following two stages.
Stage 1 For each module, determine the control paths and

add the DFT elements for the paths.
Stage 2 For each module, determine the observation path

and add the DFT elements for the paths.

We consider the control paths and the observation path
separately since determining whether or not there exist
these disjoint paths for a module is regarded as a NP-
complete problem, the multicommodity flow problem[4].

4.2.1 DFT for Control Paths (Stage 1)

The objective of the first stage is to modify a given data path
with the minimum hardware overhead so that each mod-
ule has two disjoint control paths. The DFT algorithm pro-
cesses modules one by one: for each combinational module,
it determines the control paths that can be realized with the
minimum hardware overhead and adds the DFT elements
for the paths.
The whole hardware overhead differs depending on the

order of adding the DFT elements (i.e., the order of the
modules processed) since the DFT elements added for for-
mer modules can be utilized for a later one. Thus, the order
of adding the DFT elements is very important to minimize
the whole hardware overhead. The strategy of the algorithm
is that it first adds the necessary DFT elements that have no
alternatives (Step 1), and then adds the DFT elements in
descending order of usability (Step 2). We present more
details of each step in the following.
Step 1: Preprocess
The necessary DFT elements with no alternatives are

added as follows.
1. If the data path has only a single TPG (i.e., PI), it is
clear that no module has two disjoint control paths.
Thus, a TPG is added (Fig. 2 (a)). (Recall that this
is the only exception of TPG addition.)

2. Each module is checked whether its two input ports
are connected from the same module through only reg-
isters. In this case, it is clear that does not have
two disjoint control paths. Thus, we add a direct path
from a TPG to an input port of as in Fig. 2 (b). If
the other input port of is reachable from only one
TPG, then another TPG is chosen to be connected with
the test MUX. This guarantees that has two disjoint
control paths. Otherwise, any TPG can be chosen.
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Figure 2. Preprocess

Step 2: Determination of the control paths
Modules are checked one by one to determine the con-

trol paths and the DFT elements for the control paths are
added. To minimize the whole hardware overhead, the al-
gorithm tries to add the DFT elements in descending order
of usability.
In what follows, we first show how the control paths of

a module are determined and then briefly show the order of
the modules processed.
Determination of control paths
Control paths of module are determined by solving

the minimum cost flow problem as follows.
1. Add a source node to the data path digraph and add
arc for each TPG (i.e., PI) .

2. Let be the sink node .
3. For each arc in the resultant graph, we define
its capacity and define its cost as
follows.

if is an input port of module .
otherwise.

( is the hardware cost of thru function from to
the output port of . if the thru function is
added in process of former modules.)

4. Find the minimum cost integral flow of flow value 2.
(Flow cost is the sum of arc costs over all arcs with
flow of value 1.) The paths of the minimum cost flow
are determined as the control paths of .

The digraph may not have flow of value 2 for module .
This implies that there exist no disjoint control paths for ,
thus, a direct path from a TPG to is added by a similar
way in the preprocess (Fig. 2(b)).
Figure 3 shows an example of the digraph for the mini-

mum cost flow problem. In this figure, the hardware cost of
thru function is 1.
Order of modules processed
To minimize the whole hardware overhead, it is desired

that the DFT elements are added in descending order of

thru
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Figure 3. A digraph for the minimum cost flow
problem

usability. Thus, in the DFT algorithm, modules nearer to
TPGs are processed earlier in principle. This is because
such modules have fewer choice of control paths and be-
cause the DFT elements nearer to the TPGs has high us-
ability, that is, descendant modules can utilize the DFT el-
ements. To reduce hardware overhead, we use some aux-
iliary heuristics to determine the order, however, we omit
further details in this paper.

4.3 DFT for Observation Paths (Stage 2)

The objective of the second stage is to modify the data
path with the minimum hardware overhead so that each
module has an observation path disjoint from its control
paths. The proposed algorithm processes modules one by
one: for each module, it determines the observation path
that can be realized with the minimum hardware overhead
and adds the DFT elements for the path.
The observation path of module is determined by a

similar way to that for the control paths.
1. Add a sink node to the data path digraph and add arc

for each RA (i.e., PO) .
2. Let be the source node .
3. Remove the arcs and nodes that appear on the control
paths of .

4. Define the capacity and cost of each arc in the same
way as that for the control paths.

5. Find the minimum cost integral flow of flow value 1
(i.e., the minimum cost path). The path of the mini-
mum cost flow is determined as the observation path
of .

The digraph may have no path from to an RA. This
implies that there exists no observation path for that is



Table 1. Circuit characteristics
circuit bit width #PI #PO #Reg #MUX #OP Area
GCD 16 2 1 3 4 1 530.6
Paulin 16 2 2 7 11 4 3818.9
LWF 16 2 2 5 5 3 735.0
4th IIR 16 1 1 12 3 5 1728.3
RISC 32 1 3 40 84 19 25731.5

Table 2. Hardware overheads(HWOH)
DFT method in [8] our DFT method

circuit bit width HWOH(%) #BILBO #CBILBO HWOH(%) #MUX #THRU #LFSR
8 89.30 18.67

GCD 16 74.54 1 1 18.36 1 1 0
32 66.67 18.06
8 80.74 22.50

Paulin 16 40.25 0 6 13.23 8 5 0
32 20.07 7.27
8 43.23 35.10

LWF 16 34.86 0 1 33.32 4 3 0
32 30.87 32.47
8 41.47 33.73

4th IIR 16 29.65 0 2 27.02 5 6 1
32 25.70 25.10

RISC 32 59.12 0 33 18.42 36 18 1

disjoint from its control paths, thus, a direct path from to
an RA is added using a test MUX.
To minimize the whole hardware overhead, it is desired

that the DFT elements are added in descending order of us-
ability. Thus, in the DFT algorithm, modules nearer to RAs
are processed earlier by the same reason as that for the con-
trol paths. For lack of space, we omit further details.

5 Experimental results

In this section, we present experimental results of the
proposed method. We applied the method to four bench-
marks (a greatest common divisor (GCD), Paulin[3], 3rd
Lattice Wave Filter (LWF) and 4th order IIR cascade filter
(4th IIR)) and a RISC processor provided by industry.
Table 1 shows the characteristics of these data paths.

Columns #PI, #PO, #Reg, #MUX and #OP denote the num-
bers of PIs, POs, registers, MUXs and operational modules
respectively. Column Area denotes the gate equivalents of
the circuits synthesized by AutoLogicII (Mentor Graphics)
using the logic synthesis library provided by ALTERA.
Table 2 shows the hardware overhead (HWOH). To eval-

uate the effectiveness of our DFT method, we compare it
with the DFT method proposed in [8]. For the DFT method

in [8], columns #BILBO and #CBILBO denote the numbers
of registers modified into BILBOs and CBILBOs respec-
tively. For our DFT method, columns #MUX and #THRU
denote the numbers of added test MUXs and added thru
functions respectively. Column #LFSR denote the number
of LFSRs (linear-feedback shift registers) added as TPGs
(recall the preprocess of the DFT for the control paths). No-
tice that the hardware overhead in this table does not contain
that for TPGs and SAs added at PIs and POs since these are
usually added in any BIST method.
From the experimental results, we can see that our DFT

is superior in the hardware overhead.
Table 3 shows the final fault coverage (FC) and the num-

bers of clock cycles to attain the fault coverage1. These are
estimated for single stuck-at faults by the fault simulator of
TestGen (Synopsys). In all benchmarks, our DFT method
achieves higher fault coverage than the DFT method in [8].
This is because each target of hierarchical test is smaller
in our method: our method tests each module one by one
while the method in [8] tests each acyclic sub-circuit. It is
useful to mention that all of the faults that are not detected
by our DFT method are proved to be either undetectable or

1We cannot estimate fault coverage for the RISC processor because of
its large circuit size.



Table 3. Fault coverage and test application time
DFT in [8] Our DFT method

circuit
FC (%) #clock FC (%) #clock

GCD 96.07 556 99.83 10178
Paulin 99.84 1108 99.89 20531
LWF 81.44 143 99.82 554
4th IIR 97.89 136 99.57 604

detectable only by the pattern.

6 Conclusions

This paper proposed a new BIST method for RTL data
paths. The advantages of the method are high fault cover-
age, low hardware overhead and capability of at-speed test.
Moreover, test patterns generated by TPGs can be applied
to each module at consecutive system clocks.
This paper introduced a new concept of testability, the

single-control testability, to characterize a data path that the
proposed BIST can be applied to. The DFT method that
transforms a data path into single-control testable one was
also proposed and its advantages were proved by experi-
mental results.
One of our future works is to introduce concurrent BIST

to reduce test application time.
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