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Abstract. In this paper an efficient test pattern
generation (TPG) algorithm for combinational circuits
based on the Boolean satisfiability method (SAT) is
presented. We examine some not so popular approaches
as a single cone processing, single path oriented
propagation and backward justification. We give a new
definition for SAT-based test generation and present
duality of learning phenomenon. The resultant ATPG
system, called SPIRIT, combines the flexibility of SAT-
based TPG algorithms with the efficiency of structural
TPG algorithms. Experimental results demonstrate the
efficiency and robustness of the proposed TPG algorithm.
Without fault simulation, SPIRIT is able to generates
complete test sets for the ISCAS‘85 benchmark circuits
and full scan version of the ISCAS‘89 benchmark circuits
within 3 minutes on a 450MHz Pentium-III PC.

1. Introduction
In recent years substantial progress has been achieved

in the fields of design automation, verification and test
generation for integrated circuits using the Boolean
satisfiability method. Although there are many effective
TPG algorithms, their performance is decreasing because
of the increase in size and complexity of integrated
circuits. This problem motivates us to work on the well-
studied topic - test generation for combinational circuits.
The goal is to increase efficiency and robustness of TPG
algorithms. To do so, we study the well-known and the
most successful ATPG systems: (structural) PODEM[6],
FAN[7], SOCRATES[18], [22] and ATOM[8] (algebraic)
Nemesis[13], TRAN[3] and TEGUS[19], and (mixed)
TIP[10,20]. Many techniques to increase efficiency of
TPG algorithms have been proposed in the past two

decades. The most important of them implemented in our
TPG algorithm are briefly described below:

- An unjustified line [7] is an efficient concept for
justification and an early detection of inconsistency.

- 9-V[16] and 16-V[17] algebra allows more precise
value assignment and search space reduction.

- Static learning [18] is introduced as a preprocessing
phase that performs iterative both value assignments (0
and 1) through the variables and finds new dependencies
(global implications) between signals.

- Recursive learning [12] is the first complete learning
procedure able to find all implications (necessary
assignments) at the current level of the decision tree by
recursive AND-OR search on the unjustified lines.

- The Boolean satisfiability method gives an elegant
formulation of TPG problem [13]. Until this time, the
decision points of branch and bound search were limited
to the primary inputs [6], head lines [7] or implying nodes
[21]. Actually, the Boolean satisfiability method translates
TPG problem to a characteristic formula that includes all
signals of the circuit. This increases the degree of freedom
for TPG algorithms.

- Single Path Oriented Propagation (SPOP) [10]
simplify propagation (for structural TPG algorithms) and
reduces the need for extracting structural constraints (for
SAT-based TPG algorithms).

- Single cone processing [14] reduces the size of
problem and allows more effective application of unique
sensitization [7].

- Backward justification [11] as an alternative of
PODEM algorithm [6].

- A new data structure of the complete implication
graph that simplifies deriving of global ∧-implications [4]
as an alternative of the complete graph used in [10,20].
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The resultant ATPG system called SPIRIT
(Satisfiability Problem Implementation for Redundancy
Identification and Test generation) combines simplicity,
efficiency and robustness.

The rest of the paper is organized as follows. In
Section 2, a systems overview is provided. In Section 3, a
new definition of SAT based TPG algorithm is presented.
In Section 4, a static learning procedure is presented. In
Section 5, a propagation procedure is presented. In
Section 6, a backward justification procedure and duality
of learning phenomenon are presented. Section 7 provides
experimental results and Section 8 concludes the paper.

2. System overview
The phases for the proposed ATPG system are shown

in Figure 1. Phase 1 (circuit preprocessing) reads a circuit
description, constructs a collapsed fault list, calculates
justification coefficients, builds an implication graph and
performs static learning. Phase 2 (cone preprocessing)
marks a characteristic formula corresponding to a single
cone (primary output) and calculates fault propagation
coefficients. Phase 3 (test session) performs 16-V search
space reduction, propagation and justification.

In contrast to the most typical SAT-based TPG
algorithms [3,13,19], SPIRIT builds the complete
implication graph (formula) and performs static learning
once for the whole circuit since static learning is
prominent and time consuming step. Using SPOP, we also
avoid the extracting structural constraints (D-chain
conditions) [3,13,19]. This approach reduces considerably
the preprocessing time but makes the resultant TPG
algorithm unfeasible for redundancy removal because by
removing redundant elements, the processed circuit is
changed during test generation. In this way, some global
implications found during static learning become invalid.

This disadvantage is not critical because the best results
for redundancy removal can be achieved by resynthesis.

Using a single cone processing, we apply “Divide
and Conquer” strategy. This approach may produce more
that one test session for a redundant fault and even a
detectable fault because SPIRIT has to prove that the fault
is undetectable in respect to each primary output where
the fault effect can be observed. On the other hand, this
approach allows more effective application of 16-V search
space reduction, the SPOP approach and backward
justification.

3. SAT basis
The typical SAT-based algorithms [3,13,19] translate

a problem into a characteristic formula that represents
both the logical and structural constraints for the possible
solutions. The characteristic formula is usually written in
Conjunctive Normal Form (CNF) where one sum is called
a clause. Clauses with one, two, three or more variables
are called unary, binary, ternary and k-nary clauses
respectively.

A CNF formula is represented by an implication
graph. More formally, each variable X is represented by
two nodes in the implication graph labeled X and X .
Next, each binary clause (X ∨ Y) is viewed by two local
implications ( X → Y) and ( Y → X) between these
nodes, i.e., for each binary clause (X ∨ Y) there are two
directed edges in the implication graph that represent
these two local implications. A complete implication
graph represents each k-nary clause by 2k ∧-nodes, k local
∧-implications and k-bit key dynamically calculated by
the binding procedure [4].  An example is shown in
Fugure2.

Since each k-nary clause corresponds to a logic gate
then the following definitions can be used:

Definition 1: A k-nary clause is called unsatisfied iff it
does not evaluate to 1. A clause is satisfied iff a variable
in this clause is set to a value so that this clause evaluates
to 1.

Definition 2: A k-nary clause is called unjustified line
iff it is unsatisfied and the variable corresponding to the
output of logic gate is specified (the least significant bit of
the k-bit key is 1). A clause is satisfied iff an unspecified
variable in this clause is set to a value so that this clause
evaluates to 1.

Figure 1. SPIRIT flowchart
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Since a test pattern for a fault is an input vector that
sensitizes the fault and propagates the fault effect to a
primary output, hereafter we will consider that:
• a test pattern is found iff both the fault under

consideration and propagation path are sensitized
and all unjustified lines are justified

If one of these conditions cannot be satisfied, the fault
under consideration is proved as an undetectable in
respect to the current primary output. In this way, we
eliminate the deriving of structural constrains and
simplify satisfying the logical constrains for test
generation.

4. Static learning
Contrary to local implications that can be extracted by

the structure of a circuit, detection of global implications
requires a special analysis of the logic functions as they
represent information that is not obvious from the circuit
description. To find global implications, the static
learning procedure iterates though the variables of the
formula performing both value assignments (0 and 1)
until one full iteration produces no new implications [19].
The derived global implications by static learning play an
important role in avoiding a backtracking during branch
and bound search (satisfying a CNF formula).

The leading static learning procedures [7,18] can find
a limited number of global implications. In [18] static
learning is performed as a preprocessing phase based on
contradiction, Equation (1), where A,B∈{0,1}.

(X=A → Y=B) ⇔ (Y= B  → X= A ) (1)

Clearly, the 2CNF portion of a CNF formula (only the
binary clauses) fulfills priory the law of contraposition.
This is not true when the k-nary clauses are also included.
For example, it is possible that an assignment sets k-1
variables in a k-nary clause and the clause is still
unsatisfied. In this case, the last variable should be set to a
logic value so that this clause is satisfied. If the last
variable of this clause is an output (or input) of the
corresponding gate, this binding rule is called a forward
(or backward) local ∧-implication.

Since the deriving of each new global implication
involved at least one forward or backward ∧-implication
(the least significant bit of k-bit key is 0 or 1 respectively),
we will consider that the type of this ∧-implication
determines the type of the derived global implication.

For the circuit in Figure 3(a), a value assignment B=0
sets variables D and E to 0 and a ternary clause (D ∨ E ∨
F ) is still unsatisfied. To satisfy this clause, the binding

procedure performs a forward local ∧-implication and sets
the last unspecified variable F to 0. Thus, backward
global implication (F=1 → B=1) is found by
contradiction.

For the circuit in Figure 3(b), a value assignment D=1
sets variables A and C to 0, and a ternary clause (A ∨ B ∨
C) is still unsatisfied. To satisfy this clause, the binding
procedure performs a backward local ∧-implication and
sets variable B to 1. Thus, forward global implication
(B=0 → D=0) is found by contradiction.

Using unjustified lines [7], some implications can be
found as an intersection of the conditions for satisfying a
k-nary clause. For the circuit in Figure 3(c), a value
assignment H=1 sets variables A and G to 0 and a k-nary
clause (A ∨ E ∨ F ∨ G) is still unsatisfied. To satisfy this
clause either variable E or variable F must be set to 1, but
each one of these value assignments implies that variable
C should be set to 1. Therefore C=1 is a necessary
assignment and backward global implication (H=1 →
C=1) is found. Clearly, this global implication cannot be
found by contradiction. This global implication can be
easily found by deriving and performing global ∧-
implications during static learning [4]. In [4], we also
showed that some static global ∧-implications derived
during static learning can be transformed without spare
operations to dynamic implications during branch and
bound search.

5. Single path oriented propagation
The SPOP approach has been introduced in [10].

Beginning from the fault location forward to the primary
output, SPOP sensitizes path-segment by path-segment
where a path-segment is defined as a subpath starting at
the fault location or a fanout branch and ending at a
fanout stem or the primary output. For the SPOP
approach, the fanout stems are decision points and next
path-segment is selected by initial sorting of the fanout
branches using propagation coefficients (see Figure 1). In
this way, the SPOP approach is an alternative to the D-
frontier (for the structural TPG algorithms) and the
extracting structural constraints (for the SAT-based TPG
algorithms). The main advantage of the SPOP approach is
that first it sensitizes the easiest path for fault effect
propagation according to the selected criteria. In contrast,
the alternative solutions can block the shortest
propagation path by justification of the current path-
segment. The disadvantage of the SPOP approach is that
the number of unjustified lines increase considerably and
it is possible that the sensitized propagation path is
unjustifiable. We reduce these cases using static learning,

Figure 3. Network examples 1, 2 and 3
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16-V search space reduction and propagation path
pruning techniques.

16-V search space reduction (SSR) is performed as a
test session preprocessing phase. SSR starts from the fault
location forward to the primary output, and calculates the
possible assignments in a set of {0,1,D, D } for each
variable in the CNF formula.  SSR also takes into account
the number of the propagation paths and reduces values
{0,1} when only one propagation path is possible. Using
observable points, some propagation paths can be reduced
and even the CNF formula can be proved as unsatisfiable
during SSR. For example, if a propagation path includes a
line that is directly observable for another primary output,
then the values {D, D } for the corresponding variable
and all propagation paths that include this line can be
reduced. If the set of possible value assignments of a
variable is empty then the CNF formula is proved as
unsatisfiable without propagation and justification. In this
way, SSR specifies the logical constraints for a test session
and also validates some global implications for the faulty
circuit. However, both static learning and SSR do not
guarantee that a sensitized propagation path is justifiable.
It is possible that a sensitized propagation path cannot be
justified. We reduce the number of the sensitized
unjustifiable propagation paths using a propagation path
pruning technique.

Propagation path pruning (PPP) is performed after the
first sensitized propagation path is proved as unjustifiable.
PPP checks each unjustified line by first level recursive
learning. If an unjustifiable line is found then the PPP
backtracks path segment by path segment to the highest
level of SPOP where this line can be justified.

Example 1: Let us consider a s-a-0 fault at line D in
Figure 4(a). Figure 4(b) shows the possible value
assignments for each variable after SSR. Let D’-L-O-R be
the first sensitized propagation path. In this case, N is
unjustifiable line. If R is not a primary output that can
produce sensitization of many propagation paths until the
alternative path segment, D’-I-M-P-R is sensitized. This
particular case can be avoided by static learning. For
example, if static learning is performed then four global
implications will be found: (F=1→J=1), (F=1→K=1),
(N=0→H=0) and (R=0→H=0). These new implications
find inconsistency by assignment O=D during SPOP. In
the few cases when the global implications derived by
static learning are not enough, PPP can also reduce the
number of the sensitized unjustifiable propagation paths.

6. Justification and duality of learning
Justification is performed after a propagation path is

sensitized and has to justify all unjustified lines. We
assume that a test pattern is found when a fault effect is
propagated to the primary output and all unjustified lines
are justified. In contrast, many SAT-based TPG
algorithms try to satisfy all clauses in the CNF formula.
This approach can produce a massive backtracking and
even aborting after a test pattern is found. This approach
also increases the number of specified primary inputs.

The backward justification procedure is based on
justification coefficients calculated during circuit
preprocessing (see Figure 1). The justification coefficients
take into account the structure of the circuit and measure
the relative difficulty for justification of each line in the
circuit. By sorting the inputs of each logic gate using the
justification coefficients, we suppose that each unjustified
line can be justified by assigning a certain/controlling
value to the first unspecified variable/input of the
corresponding k-nary clause/gate.

During the SPOP phase all unjustified lines are
included in a justification list which is sorted in an
increasing order of justification coefficients before
backward justification (heuristic BJ1). During backward
justification this list is dynamically updated by adding
new unjustified lines at the end of the list when the
unjustified lines are processed (justified) starting from the
end to the beginning of the justification list. Actually, this
is a dynamic reordering of the variables based on a depth
first search strategy. This strategy is more efficient than
static order typical for the SAT-based TPG algorithms
[3,13,19]. If a backtrack limit is exceeded, the backward
justification is applied with the reverse ordered
justification list (heuristic BJ2). In case that both these
heuristics cannot justify or prove unjustifiable the
sensitized propagation path, the backward justification
performs heuristics BJ1* and BJ2* using dynamic
learning (first level recursive learning).

Figure 4. Network example 4
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Example 2: Let us consider a s-a-0 fault at line C in
Figure 5. During static learning four global implications
are found: forward implications (B=0→J=0) and
(F=0→K=0) and backward implications (M=1→J=0) and
(N=0→K=0). After value assignment C’=D, the fault
effect is propagated to the primary output and the values
of signals are shown in Figure 5. As a result, four primary
inputs are specified and two unjustified lines, J and K, are
included in the justification list. During justification,
variables A and E are set to 1 in order to justify lines J
and K, i.e., in this case (case A), all primary inputs are
specified. However, primary inputs A and E can be left
unspecified because both unjustified lines J and K are
already justified (case B).

Let us consider the same example without static
learning. In this case (case C), variable K will be
unspecified after SPOP since in Example 2 variable K is
set to 0 by forward global implication (F=0→K=0). Next,
the justification list will include lines J and L. To justify
these unjustified lines, variables A and D should be set to
1. In this way without static learning, primary input E will
be left unspecified. In summary, three solutions for
justification are possible: (A) all variable are specified,
(B) variables A and E are unspecified and (C) variable E
is unspecified. If the circuit under consideration is a
subcircuit of large circuit, each solution will produce
different number of unjustified lines that have to be
justified. This phenomenon is called here duality of
learning. Obviously, static learning is important to
decrease the number of backtracks. On the other hand,
static learning may produce some spare unjustified lines
that have to be justified.

Example 3: Let us consider again the circuit in Figure
3(b). Without static learning after assignment B=0,
ternary clause (A∨B∨C) is still unsatisfied. To satisfy this
clause either variable A or variable C should be set to 1
but both these value assignments set variable D to 0
therefore D=0 is a necessary assignment. If we apply this
new dynamic forward implication derived by first level
recursive learning then a new spare unjustified line D will
be included into justification list.

Getting an idea of these examples to avoid spare
unjustified lines (overspecification):

• all static forward global implications and ∧-
implications as well as all dynamic forward
implications must be discarded

In our justification procedure, we avoid
overspecification by removing all forward global
implications and ∧-implications after static learning as
well as by restricting dynamic learning to the unjustified
lines in the justification list.

7. Experimental results
We implemented the presented TPG algorithm in

ATPG system SPIRIT [5] and ran experiments on the
ISCAS’85[1]  benchmark circuits and full scan version of
the ISCAS’89[2] benchmark circuits on a 450 MHz
Pentium-III PC. For all experiments, the maximum
number of both the sensitized unjustifiable paths during
propagation and the backtracks during justification was
set at 10. As a result, without fault simulation SPIRIT was
able to generate complete test set and prove all redundant
faults in the ISCAS’85 and ISCAS’89 benchmark circuits.

Table 1 presents the number of the sensitized
propagation paths for successful and unsuccessful test
sessions (test patterns exist/does not exist). Accordingly,
99.97% of the successful test sessions generated test
patterns by justification of the first sensitized propagation
path. Also, 99.83% of the unsuccessful test sessions were
identified during SSR or SPOP, i.e., without justification.
Only 89 test sessions (0.05%) sensitized one or more
unjustifiable propagation paths.

Table 2 shows the results of the backward justification.
Columns 2-5 show the number of local implications,
forward and backward global implications and the number
of reduced indirect implications by removing all forward
global implications. Columns 6-11 show the number of
aborted backward justifications using heuristics BJ1, BJ2
and BJ1&BJ2 in two cases: (1) when all global
implications were used; and (2) when all forward global
implications were removed. Avoiding overspecification,
we reduced significantly the number of aborted
justifications 81.11%, 71.66% and 97.75%, respectively.

Table 3 shows the final results: columns (2-3), the
average and maximum number of binary variables in CNF
formula (size of problem), columns (4-5), the average and
maximum depth of decision tree, columns (6-7), the
average and maximum number of value assignments
(excluding static learning), column (8-9), the average and
maximum number of specified primary inputs, and
columns (10-12), the number of test sessions that need
less than 10, 100 and 1000 value assignments. The last
column (13) presents test generation time in seconds. In
some cases, the time for static learning was more than
50% of the test generation time (circuits S35932 and
S38584) [4]. To decrease preprocessing time, we applied a
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restricted static learning when a huge dependency
between signals was found (the average number of set
variables by value assignment is greater than 100).

Since SPIRIT processes a single cone, the number of
test sessions was usually bigger than the number of faults
in the collapsed fault list. For example, the number of test
sessions for circuit S15850 was 88% more than the
number of the processed faults when the average ratio was
9.9% (see Table 1). On the other hand using a single cone
processing, SPIRIT kept the size of problem as small as
possible and increased effectiveness of 16-V search space
reduction, SPOP and backward justification.

SPIRIT did not apply any techniques that required a
special analysis or intensive computations such as
dominators [18], X-path check [6], dependency-directed
backtracking [15] or calculating transitive closure [3]
which is equivalent to the first level recursive learning
[4]. After static learning and 16-V search space reduction,
the proposed TPG algorithm selected and set a variable in
the CNF formula to a value according to the current
objective, propagation or justification. Therefore, the
number of value assignments assesses the efforts spent for
satisfying the CNF formula. In this sense, the ratio
between columns (6) and (4) and between (6) and (8)
estimates the spare assignments and the number of
assignments necessary to determine the value of one
primary input. Except for the circuits C432 and C6288 the
average number of specified primary inputs was larger
than the average number of assignments which
demonstrated the effectiveness of the presented backward
justification procedure in respect to the PODEM
approach. The effectiveness of the proposed justification
procedure would be clarified more precisely if the
assignments of the unsuccessful test sessions (no test
patterns exist) were excluded when the average number of
assignments was calculated. This correction changed most
significantly this parameter for the circuit S15850 to 5.2,
but this was not enough to change the relation between
these two parameters. Also, the maximum number of
assignments was usually smaller than the average number
of variables in the CNF formula (size of problem) which
demonstrated the efficiency of our TPG algorithm.

For this benchmark set, the total time was 172.33
seconds which made SPIRIT competitive to the best
published ATPG systems ATOM [8] (371.6 seconds on a
200 MHz Pentium Pro PC), TEGUS [19] (477 seconds on
a 200 MHz Pentium Pro PC) and TIP [20] (908 seconds
on Digital Alpha 4100 5/533).

We believe that the advantages of SPIRIT will be more
visible with more difficult benchmark circuits. For
example, LookBack is the basic technique of ATOM since
without LookBack, 999 faults in the circuits C5315,
C6288 and S13207 will be aborted [8]. However, this
technique is ineffective in respect to redundant faults. If

the processed benchmark circuits had many hard to prove
redundant faults, then the LookBack technique could
degrade the overall performance of ATOM. Also, SPIRIT
is a single-phase TPG algorithm and a single-phase
version of ATOM (1132 seconds on a 200 MHz Pentium
Pro PC) is much slower than SPIRIT. On the other hand,
the presented TPG algorithm gives an efficient solution
for overspecification. Without special efforts, SPIRIT
achieved comparable results for the maximum number of
specified primary inputs as a problem oriented TPG
algorithm presented in [9].

8. Conclusions
In this paper we presented an efficient TPG algorithm

based on the Boolean Satisfiability method. We examined
some not so popular approaches as a single cone
processing, single path oriented propagation and
backward justification, and proposed efficient techniques
and heuristics for these approaches. To assess the
effectiveness of SPOP and backward justification, we
implemented them in SPIRIT [5] - ATPG system using a
static order typical for the SAT-based TPG algorithms. As
a result, a considerable impact on the efficiency and
robustness has been achieved. Without fault simulator,
SPIRIT was able to generate complete test sets and prove
all redundant faults in the ISACAS’85 and ISCAS’89
benchmark circuits in a short amount of time. These
results could be achieved even without dynamic learning
but we kept this powerful technique to guarantee the
robustness of our TPG algorithm for future applications as
test generation for large combinational circuits and logic
built-in self-test.
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Table 1: The number of sensitized propagation paths for successful/unsuccessful test sessions
Successful test sessions Unsuccessful test sessions #faults #test #testCircuit

paths=1 =2 =3 =4 =5 SSR paths=0 =1 =2 sessions patterns
C432 517 3 0 0 0 0 27 0 0 524 547 520
C499 750 0 0 0 0 0 156 0 0 758 906 750
C880 942 0 0 0 0 0 0 0 0 942 942 942

C1355 1566 0 0 0 0 0 156 0 0 1574 1722 1566
C1908 1870 0 0 0 0 0 177 0 0 1879 2047 1870
C2670 2627 3 0 0 0 220 90 9 0 2747 2949 2630
C3540 3291 0 0 0 0 0 649 0 0 3428 3940 3291
C5315 5287 4 0 0 0 84 177 9 8 5350 5569 5291
C6288 7707 3 0 0 0 0 380 0 0 7744 8090 7710
C7552 7400 12 4 2 1 86 1294 0 0 7550 8799 7419
S1494 1494 0 0 0 0 0 13 0 0 1506 1507 1494
S5378 4563 0 0 0 0 83 235 0 0 4603 4881 4563
S9234 6471 3 1 0 0 130 833 0 0 6927 7438 6475
S13207 9653 11 0 0 0 74 1020 16 0 9815 10774 9664
S15850 11336 0 0 0 0 765 9968 0 0 11725 22069 11336
S35932 35110 0 0 0 0 0 5376 0 0 39094 40486 35110
S38417 31015 0 0 0 0 36 1052 0 0 31180 32103 31015
S38584 34797 0 0 0 0 267 964 0 0 36303 36028 34797
Total: 166396 39 5 2 1 1745 22567 34 8 173649 190797 166443



Table 2: The number of implications and aborted test sessions using heuristics BJ1, BJ2 and BJ1&BJ2
Implications All global implications Without forward implications

Circuit local forward
global

backward
global

reduced
indirect

BJ1  BJ2 BJ1&BJ2 BJ1 BJ2 BJ1&BJ2

1 2 3 4 5 6 7 8 9 10 11

C432 1624 1 68 3 3 0 0 3 0 0
C499 1504 128 8 608 8 0 0 5 0 0
C880 3384 0 76 0 0 0 0 0 0 0

C1355 5344 336 112 3168 9 8 4 1 2 0
C1908 7854 18 404 201 0 2 0 0 2 0
C2670 10162 31 552 656 0 0 0 0 0 0
C3540 14588 93 1156 4364 7 0 0 7 0 0
C5315 21880 38 1413 185 30 21 0 30 15 0
C6288 25024 1018 930 4125 466 575 216 29 142 3
C7552 30440 115 3005 1835 22 15 2 22 15 2
S1494 6296 5 5716 19 0 0 0 0 0 0
S5378 21182 38 1168 954 0 0 0 0 0 0
S9234 36642 299 3332 5929 0 0 0 0 0 0
S13207 51198 520 6629 14034 32 0 0 12 0 0
S15850 61794 953 4567 24847 0 0 0 0 0 0
S35932 135396 3798 2811 442431 0 0 0 0 0 0
S38417 148980 1053 6186 18124 0 0 0 0 0 0
S38584 151982 861 9935 13019 0 0 0 0 0 0
Total: 735274 9305 48068 534502 577 621 222 109 176 5

Table 3: Experimental results on the ISCAS’85 and full scan version of the ISCAS’89 benchmark circuits

size of problem #levels of
decision tree

#value
assignments #specified inputs Distribution of test sessions

according to #assignments TimeCircuit
average max average max average max average max <10 <100 <1000 (sec.)

1 2 3 4 5 6 7 8 9 10 11 12 13

C432 124.8 204 15.5 35 17.1 186 12.1 26 136 408 3 0.14
C499 150.8 190 26.0 42 27.2 105 33.8 41 156 749 1 0.26
C880 102.2 187 8.6 19 9.6 20 9.7 23 379 563 0 0.17

C1355 381.5 462 27.3 35 28.6 94 35.9 41 156 1566 0 1.67
C1908 532.5 784 13.0 27 15.2 98 20.1 31 780 1267 0 2.08
C2670 306.9 1077 13.3 55 12.2 147 15.4 57 1277 1668 4 1.56
C3540 581.7 1832 9.1 37 10.2 119 13.4 30 2077 1858 5 5.07
C5315 272.0 1106 10.3 40 11.9 156 13.3 47 2349 3210 10 2.97
C6288 1327.2 3526 27.9 89 31.8 856 24.7 32 709 7323 58 49.17
C7552 547.2 1317 24.2 129 26.3 572 31.2 100 2243 6526 30 10.91
S1494 74.0 122 2.4 9 3.7 12 7.0 12 1502 5 0 0.80
S5378 134.8 571 3.8 46 4.9 50 7.9 36 4656 225 0 1.39
S9234 354.8 1238 5.1 27 6.1 28 11.7 43 5879 1559 0 3.88
S13207 188.9 2004 2.9 81 4.0 95 7.7 92 9949 825 0 7.04
S15850 625.4 1750 2.9 35 3.2 37 8.2 40 20713 1356 0 18.65
S35932 77.8 134 2.7 7 3.6 9 4.8 9 40486 0 0 27.41
S38417 197.1 641 10.0 78 11.1 79 13.1 85 21501 10602 0 21.66
S38584 93.2 1081 3.1 24 4.1 26 6.1 54 35108 920 0 17.50
Total: 285.1 3526 7.2 129 8.4 856 10.7 100 150056 40630 111 172.33


