
Strong Self-Testability for Data Paths High-Level Synthesis *

Xiaowei Li Toshimitsu Masuzawa and Hideo Fujiwara
Dept. of Computer Science

Peking University
Beijing 100871, China

Graduate School of Information Science
Nara Institute of Science and Technology

8916-5 Takayama, Ikoma, Nara 630-0101, Japan

Abstract

In this paper, we introduce strong self-testability for data
paths at register transfer level (RTL). A high-level
synthesis scheme is proposed for producing such strongly
self-testable data paths. This is achieved by incorporating
testability constraints during processes of register
assignment and interconnection assignment. This method
is based on the use of test resources reusability to
improve the self-testability of data path. Experimental
results are presented to demonstrate the effectiveness of
the proposed approach.

Keywords: Data path, high-level synthesis, strong
self-testability.

1 Introduction

High-level synthesis can explore a larger design space
than lower-level synthesis. An inherently testable
architecture may already exist in the design space, which
can be derived by high-level synthesis to produce a highly
testable circuit at low or even no area and/or delay penalty.
As automatic test pattern generation (ATPG)-oriented
approaches, strong testability was introduced in [l], and
weak testability was introduced in [2]. Many methods,
whether BIST-oriented or ATPG-oriented, operate by
modifying the allocation process so that the synthesized
circuit does not have some undesirable structural
property.

The BIST-oriented approaches usually assume the
presence of a test pattern generator (TPG) for test vector
generation and a test response compressor (TRC) for

*This research was supported in part by Japan Semiconductor
Academic Research Center (STARC) under research project,
and in part by the Natural Science Foundation of China (NSFC)
grant #69976002.

1081-7735/00 $10.00 0 2000 IEEE

Email: ,fiiiiwam 0 is. aist-naru. ac. j p

response compression. The blocks that are required to
perform a test (i.e., TPG and TRC) are known as test
resources. Since the BIST logic is combined with the
system logic, opportunities exist for the synthesis
technique to generate hardware that can be shared by both
the system and test operation, resulting in improved
performance and reduced cost.

Area and test time are major overheads encountered
when using BIST techniques. Approaches have been
proposed either towards the minimal (extra) area
overhead solution (MAOS), or the minimal test
(application) time solution (MTTS). Both approaches
have merits and limitations. In general, the area overhead
of MTTS may be too high and the test time of MAOS
may be too long. Neither is acceptable when both
attributes are important.

The MAOS-oriented approaches focus on
minimizing area overhead. The basic approach is to
maximize the sharing of test registers resulting in a fewer
number of registers being modified for BIST [3-81. The
goal is to reduce BIST area overhead without sacrificing
the quality of the test. The main limitation is the test time
may be too long. The MTTS-oriented approaches focus
on exploiting test concurrency. The basic approach is to
maximize the test concurrency resulting in a fewer test
session [9] . The goal is to reduce test time. The main
limitation is the area overhead may be too high.

MAOS-oriented approaches dominate current
research. A prime concern in BIST implementation is the
area overhead due to the modification of normal registers
to be test registers. One of the difficulties is the register
self-adjacency problem. To deal with it, methods have
been proposed either to avoid producing such
self-adjacent registers or to minimize their number during
synthesis process. Avra [4] proposed a register allocation
method that minimizes the number of self-adjacent
registers in the design. Papachristou et al. [5] presented a
combined register and ALU allocation method that
generates self-testable designs that do not have any
self-loops. Parulkar et al. [6] attempted to employ the

229

IEEE the 9th Asian Test Symposium (ATS 2000), pp. 229-234, Dec. 2000.

concept of I-path [lo] to reduce the area overhead
imposed by BILBO registers.

In this paper, we first introduce strong
self-testability for data paths at RTL. The key aspect is to
propose a high-level synthesis scheme for producing such
strongly self-testable data paths. This is achieved by
incorporating testability constraints during processes of
register assignment and interconnection assignment. This
method is based on the use of test resources reusability to
improve the self-testability of data path. Given a
scheduled data f low graph (DFG) and a module
assignment, we assign variables to registers and data
transfer to interconnection paths, such that the area
overhead required for a strongly self-testable data path is
minimal.

For each strongly self-testable data path, it has the
following metrics
(1) 100% fault efficiency' for single stuck-at faults;
(2) At-speed testing;
(3) Short test time;
(4) Low extra area overhead;

The rest of this paper has been organized as
follows. Section 2 introduces strong self-testability for
data paths at RTL. In Section 3 , we consider strong
self-testability during high-level synthesis processes,
including register assignment and interconnection
assignment. Experimental results are presented in Section
4. Finally, conclusion and future work are discussed in
Section 5.

2 Strongly Self-Testable Data Paths at RTL

2.1 Strong Self-Testability

A data path is the core of a processor, it is where all
computations are performed. A typical data path consists
of an interconnection of basic combinational functions,
such as logic (AND, OR, XOR) or arithmetic operators
(addition, multiplication, comparison, shift). RTL
modules consist of functional modules and multiplexers.
We only consider strong self-testability for functional
modules.

Definition 1: A module is controllable if its output
can be set to any desired value. A module is observable if
any signal change at its inputs is reflected by a change at
the output.

Definition 2: A justi5cation path (J-path) of an
n-bit width register r is a path that allows r to be assigned
to the 2" possible values from a primary input (PI) or a
TPG. A propagation path (P-path) of r is a path that
allows any change in r to be propagated from r to a

' Fault efficiency is the ratio of the number of faults identified
as either detectable or redundant to the total number of faults.

primary output (PO) or a TRC.
An output port of a module M is observable if there

exists an observable variable fed by this port such that its
P-path do not contain M. A J-path is composed of a
cascade of controllable modules. A P-path is composed of
a cascade of observable modules. J-path and P-path are a
generalization of the notion of I-path from [lo].

Definition 3: A data path is strongly self-testable, if
each module is random pattern testable, and there exists a
test plan for each module, in which, for each input port of
the module, there exists a J-path from a TPG to it, and for
output port of the module, there exists a P-path from i t to
a TRC, such that those J-paths and P-path are mutually
disjoint.

Random-pattern testability of the RTL modules
present in the system is crucial for achieving complete
fault coverage for the whole data path. Most RTL
modules like adders, subtracters, multipliers, shifters,
registers and register files are random-pattern testable.
Meanwhile, modules like comparators, incrementers and
decrementers are random-pattern resistant, but, they can
be modified to be random-pattern testable by adequate
test points insertion.

Here, for simplicity, we have following
assumptions:
(1) In the Data Path G, each functional module M has

two distinct input ports A and B, and has just one
output port C;

(2) Each module is random-pattern testable.

2.2 Strongly Self-Testable Data Paths

The area overhead minimization problem for a strongly
self-testable data path is to decide which registers to
modify and the modes (TPG or TRC) to add, in such a
way that every module in a given data path can be tested
with minimal area overhead. We attempt to solve this
problem by trying to modify registers in the data path
which have the maximum sharing potential.

We define role of a register as its possible use as
TPG or TRC and denote these roles by the letters p and r;
respectively. A register instance is a particular register in
a particular role. The two possible register instances of a
register RI are denoted RI,, RIr. The modification cost C,,
of a register RI for a role x is defined as the amount of
area overhead that would result from modifying R, so that
it has an additional modes represented by x, where x = p
or r.

We associate a modification cost C,, with each
register. For a register of n bits, the cost of being
implemented as a TPG (LFSR for instance) is roughly
estimated as 2*(n-2) times the cost of a multiplexer. The
cost of the register implemented as a TRC is roughly
estimated as n-2 times the cost of a multiplexer.

Definition 4. A module is directly self-testable if

230

there exists two J-paths directly from register RI and RI to
its two distinct input ports, and there is a P-path directly
from its output port to Rk. R,and RJ are converted to RI,
and RJP, and Rk is converted to Rb. The RI,, Rip and Rb
are called a test scenario (TS) of the module.

Definition 5. A module is indirectly self-testable if
there exists two J-paths from register RI and R, to its two
distinct input ports through one and only one module, and
there is a P-path from its output port to Rk through no
more than one module. Ri and R; are converted to RI, and
R,,, and Rk is converted to Rb.

The problem for finding strongly self-testable
solutions is solved in three steps [l l] . A synthesized
strongly self-testable data path is shown in Fig.1.

Q Q Q Q P P P

Fig.1 A Synthesized Data Path

Here is a possible strongly self-testable solution for
the data path: for M1 self-testing, both R1 and R2 are
direct TPGs and R8 is a direct TRC. For M2 self-testing,
R7 is a direct TPG, and R6 is an indirect TPG (through
M3 and R8) and R1 is a direct TRC. For M3 self-testing,
both R6 and RI are direct TPGs and R8 is a direct TRC.
For M4 self-testing, both R6 and R7 are direct TPGs and
R7 is also a direct TRC.

3 High-Level Synthesis for Strong
Self-Testability

High-level synthesis starts with a behavioral description
of a digital system and synthesizes a RTL data path. The
synthesis model used in this work assumes single-cycle
operations, individual register storage and point-to-point
multiplexer (MUX) connectivity.

3.1 Testability Metria on DFG

Variables in a behavior are potential test resources and
contribute to BIST area overhead directly. Operations in a
behavior are correlated to modules that form the
functional module under test. Data transfers between

variables and operations correspond to interconnection
paths that are potential test paths. We refer to test
registers as BIST resources, include those selected to be
TPGs to modules and those selected to be TRCs from
modules. Since minimal area overhead is our objective, it
is not necessary to test all the modules in one test session.

For directing assignments to a strongly self-testable
data path with low area overhead, a mechanism that
relates variables to test functionality in a data path is
required. For this purpose, we view each variable as a test
variable in addition to a functional variable to be stored in
a register. Basically, there are two kinds of test variables:

Definition 6: A variable is a P-variable, i.e., is a
candidate for TPG, if there is a J-path from it to an input
port of a module. A variable is an R-variable i.e., is a
candidate for TRC, if there is a P-path from the output
port of a module to it .

Usually, LFSR, BILBO and CBILBO can be a
P-variable and MISR, BILBO, and CBILBO can be a
R-variable, but have different area costs due to
modification.

Definition 7: Reusabiliv R(v) of a variable v is the
sum of the number of modules for which v is a P-variable
and the number of modules for which v is a R-variable,
both directly and indirectly. The maximum clique size
M(v) of a variable v is the maximum clique in the
variable conflict graph (VCG) which v belongs.

The reusability R(v) reflects the number of modules
for which the variable v can act as TPG and the number of
modules for which it can act as TRC. For example, in
Fig.2, the variable h is potentially to be TPG only for
“module” (+ I) , R(h) is 1. The variable i is potentially to
be TRC for “module” (* I) and to be TPG for “module”
(* 3) and (-I), R(i) is 3.

3.2 Problem Formulation

One way of making a data path strongly self-testable is to
modify all functional registers and give them test
capabilities. Such an approach is an overkill in terms of
the area overhead. Usually, portions of a data path, such
as multiplexers, interconnect and functional registers can
be easily tested using functional patterns. The
components that are hard to test using functional patterns
are the modules such as ALUs, adders and multipliers.
Hence, we modify a subset of the registers and give them
the capability of generating pseudo-random test patterns
for the modules in the data path and for compressing the
responses from these modules into signatures.

This problem could be formulated as follows:
(I) Given a scheduled DFG, and a module assignment

has been done, any module which is
random-pattern-resistant has been replaced by
random-pattern testable one.

231

(2) Exploit test register reusabilit)' in register assignment
process, the optimization objective is to minimize the
total number of registers needed to be modified as
test registers, while keeping the synthesized data path
strongly self-testable.

(3) Register assignment is followed by minimum
interconnection assignment. The effect of
interconnection assignment on BIST registers is
exploited.

3.3 Register Assignment

Given a scheduled DFG. We assume that module
assignment is done without any testability consideration.
Because registers can be viewed as potential test
resources only after the module assignment is fixed. Here,
we consider BIST area minimization in register
assignment process for the proposed strong
self-testability.

The register assignment problem can be modeled
as coloring the VCG. Each node in the VCG represents an
edge from the DFG that crosses a clock cycle boundary.
A conflict edge between two nodes in the VCG indicates
that two variables associated with those nodes cannot be
stored in the same register. All nodes with the same color
can be mapped to the same register in the final
implementation. The number of colors is the number of
registers required in the data path design. A coloring of
VCG corresponds to a valid register assignment with each
color corresponding to a register.

For the given the VCG, several algorithms exist
that can almost always color the graph with a minimum
number of colors in polynomial time. However, a
k-colorable graph, where k is the chromatic number of the
graph, may have several different k-colorings, each
coloring scheme represents a different assignment of
nodes to registers. Because of using different number of
multiplexers and interconnects, these colorings may
represent data path designs of different sizes. Furthermore,
a coloring scheme that uses more than k colors may
represent a smaller implementation. Therefore, techniques
must be employed to guide the nodes coloring algorithm
to reach the lowest-cost implementation.

\ / I /

"'do

Fig. 2. A Scheduled DFG.

Consider the scheduled DFG shown in Fig.2, with
module assignment: {MI :(* 1 ,*3), M2:(*2,*4,*5),
M3:(-1,-2), M4:(+1)]. We associate a reusability R(v)
with each variable v (node in the VCG), as shown in the
Fig.3. Using this measure the assignment process can be
guided by choosing merges that result in large increases
in reusability of registers. Usually, a VCG is an interval
graph, The minimum coloring algorithm on interval graph
is a greedy algorithm [12]. A node n on a graph G is
simplicial, if its adjacency set induces a clique in G. The
adjacency set is the set of all nodes that are connected to n.
An ordering of the nodes such that each node is a
simplicial node of the remaining graph is called a perfect
node elimination scheme (PNES) [131. An interval graph
has many such PNESs. The optimal coloring algorithm
constructs one such scheme arbitrarily and colors the
nodes greedily in the reverse order.

Fig. 3. The corresponding VCG

The nodes are ordered such that if x is before y,
then R(x) 5 R(y) and if R(x)=R(y) then M(x) 5 M(y). .4t
every step of constructing a PNES, there is a choice of
simplical nodes. The PNES is determined such that at
each step a simplicial node that is earliest in this order is
selected. Since nodes are colored in the reverse PNES
order, this results in nodes with higher reusability to be
considered earlier when there is maximum flexibility in
the assignment of colors. The node (i+l) is assigned in
the following way. If (i+l) conflicts with all registers,
then a new register is created. Otherwise, pick a register
such that theA R(xl) = R(x'+')-R(x') is maximum. Such a
x' corresponds to a register that can best utilize (i+ l) to
improve its reusing as a test resources. This process is
near optimal since it relies on a PNES of a VCG.

In the above example, the procedure results in a
minimum assignment of colors. Eight registers are needed.
{Rl:(j,o,c), R;?:(i,b), Rdd,m), R4:(p), R d a) , Rdh,n),
R7:(e), Rg:(p,l,f)}. Fig.1 shows the resulting data path
corresponding to this register assignment and the given
module assignment. According to the definition 3, one
possible strongly self-testable solution for the synthesized

232

Module TPG for left TPG for right TRC
inmt ~ o r t inout Dort

M4 I R6 I R7 I R7

M1
M2
M3

3.4 Interconnection Assignment

R1 R2 R8
R8 through M3 R7 R1

R6 R1 R8

For a given module assignment, different register
assignments have different effects on interconnection area.
The minimum interconnection assignment can be
modeled as a double clique partitioning of the input
register compatibiliry graph (RCG) [14]. In RCG, each

input register is represented as a vertex, an edge between
two vertices if the two input registers can be connected to
the same input port (of a module). Weights are used in the
clique partitioning algorithm to direct the assignment
towards finding cliques, such that registers with high
reusabilities are connected to both input ports (of the
same module).

4 Experimental Results

In order to examine the efficiency of the proposed
methodology, we generated minimal area BIST solution
for several high-level synthesis benchmarks. Here, we
present results on high-level synthesis, and RTL
modification for strongly self-testability.

We choose three popular academic high-level
synthesis benchmarks data paths:
(1) the 2"d order differential equation Di@q [151;
(2) the auto regression filter element AR-Filter [161;
(3) the 5Ih order elliptic wave filter FIRJilter [171;

Table 2. Our Experimental Results (with strong BIST)

Table 3. Traditional High-Level Synthesis Results (without BIST consideration)

In Table 2, we report the results we obtained for
strongly self-testable data paths. For each benchmark data
path (given in scheduled DFG and a module assignment),
we report the number of registers, including the number of
CBILBO, the number of BILBO, the number of TPG, the
number of TRC. The number of multiplexers, and the extra
area overhead due to the configuration for the synthesized

strongly self-testable data path. The BIST area overhead is
expressed as a percentage increase in the gate count as a
result of the modification for the BIST scheme. For the
purpose of comparison, we list in Table 3 traditional
high-level synthesis results [18] on the same benchmarks
without any BIST consideration.

233

5 Conclusions and Ongoing Work

In this paper, we first introduced strong self-testability for
data paths at RTL. The key aspect is to propose a
high-level synthesis scheme for producing such strongly
self-testable data paths. This is achieved by incorporating
testability constraints during register assignment. This
method is based on the use of test resources reusability to
improve the self-testability of a data path. Given a
scheduled data flow graph and a module assignment, we
assign variables to registers, such that the area overhead
required for a strongly self-testable data path is minimal.
Experimental results are presented to demonstrate the
effectiveness of the proposed approach.

The advantages of the proposed method are high
fault coverage for single stuck-at faults, low extra
hardware overhead and capability of at-speed testing. As
part of our ongoing work, the proposed method will be
tested on more academic benchmarks as well as real
industrial ones.

Acknowledgements

Authors would like to thank Mr. Hiroki Wada at Nara
Institute of Science and Technology for his constructive
discussion.

References

[7] X.Li and P.Y.S.Cheung, “Data Path Synthesis for BIST with
Low Area Overhead’, Proc. of IEEE 1999 Asian and South
Pacijic Design Automation Conference (ASP-DAC’99),

[8] N.Mukhejee, M.Kassab, J.Rajski and J.Tyszer, “Arithmetic
Built-In Self-Test for High-Level Synthesis”, Proc. of IEEE
1995 VLSI Test Symposium (VTS’95), pp.132-139

[9] 1.G.Harris and A.Orailoglu, “SYNCBIST SYNthesis for
Concurrent Built-In Self-Testability”, Proc. of IEEE 1994
Int’l Con$ on Computer Design (ICCD’94), pp.101-104

[101 M.A.Abadir and M.A.Breuer, “A Knowledge-Based System
for Designing Testable VLSI Chips”, IEEE Design and Test
of Computers, 1985, pp.56-68

[I l l X.Li, T.Masuzawa and H.Fujiwara, “An Approach to
Designing Strongly Self-Testable Data Paths at RTL”,
Technical Report, 2000

[121 D.L.Springer and D.E.Thomas, “Exploiting the Special
Structure of Conflict and Compatibility Graphs in
High-Level Synthesis”, Proc. of IEEE 1990 Int’l Con$ on
Computer-Aided Design (ICCAD’90), pp.254-257

[131 M.C.Golumbic, Algorithmic Gravh Theory and Perfect
Gravhs, Academic Press, 1980.

[141 B.M.Pangrle, “On the Complexity of Connectivity Binding”,
IEEE Trans. on CAD, Vol.10, 1991, pp.1460-1465

[151 P.Paulin and J. Knight, “Force-Directed Scheduling for the
Behavioral Synthesis of ASICs”, IEEE Trans. on CAD.,
Vo1.8, No.6, 1989, pp.661-679

[I61 N.Park and A.C.Parker, “SEHWA: A program for Synthesis
of Pipelines”, Proc. of ACMLEEE 1986 Design Automation
Con$ (DAC’86), pp.454-460

1171 R.Jain, A.C.Parker and N.Park. “Predicting Svstem-Level

pp.275-218

. .

Area and Delay for Pipelined and Non-pipelined Designs”,
IEEE Trans. on CAD, Vol. 1 1 , No.8, 1992, pp.955-965

[I81 LParulkar, S.Gupta and M.Breuer, “Scheduling Data Flow
Graphics for Minimizing BIST Resources in Data Paths”,
Proc. of IEEE 1998 Design, Automation and Test in Europe

H.Wada, T.Masuzawa, K.K.Saluja and H.Fujiwara, “Design
for Strong Of RTL Data Paths to Provide
Complete Fault Efficiency”, Proc. of IEEE 2000 Int’l Con$
on VLSl Design (VLSI Design ’2000), pp.300-305
M.Inoue, K.Noda, T.Higashimura, T.Masuzawa and (DATE- 98).

H.Fujiwara, “High-Level Synthesis for Weakly Testable
Data Paths”, IEICE Transactions on Information and
Systems, Vol.E8 I-D.No.7, 1998, pp.645-653

S.Ravi, N.K.Jha and G.Lakshminarayana, “TAO-BIST: A
Framework for Testability Analysis and Optimization of
RTL Circuits for BIST”, Proc. of IEEE 1999 VLSI Test
Symposium (VTS’99), pp.398-406
L.J.Avra, “Allocation and Assignment in High-Level
Synthesis for Self-Testable Data Paths”, Proc. of IEEE 1991
Int’l Test Conf (ITC’91), pp.463-412
CPapachristou, S.Chiu and H.Harmanani, “SYNTEST a
method for high-level SYNthesis with self-TESTability”,
Proc. of IEEE 1991 Int’l Con$ on Computer Design

LParulkar, S.Gupta and M.A.Breuer, “Data Path Allocation
for Synthesizing RTL Designs with Low BIST Area
Overhead’, Proc. of ACMLEEE 1995 Design Automation
Con5 (DAC’95), pp.395-401

(ICCD’91), pp.458-462

234

