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Abstract 

In this paper, we introduce strong self-testability for data 
paths at register transfer level (RTL). A high-level 
synthesis scheme is proposed for  producing such strongly 
self-testable data paths. This is achieved by incorporating 
testability constraints during processes of register 
assignment and interconnection assignment. This method 
is based on the use of test resources reusability to 
improve the self-testability of data path. Experimental 
results are presented to demonstrate the effectiveness of 
the proposed approach. 

Keywords: Data path, high-level synthesis, strong 
self-testability. 

1 Introduction 

High-level synthesis can explore a larger design space 
than lower-level synthesis. An inherently testable 
architecture may already exist in the design space, which 
can be derived by high-level synthesis to produce a highly 
testable circuit at low or even no area and/or delay penalty. 
As automatic test pattern generation (ATPG)-oriented 
approaches, strong testability was introduced in [l], and 
weak testability was introduced in [2]. Many methods, 
whether BIST-oriented or ATPG-oriented, operate by 
modifying the allocation process so that the synthesized 
circuit does not have some undesirable structural 
property. 

The BIST-oriented approaches usually assume the 
presence of a test pattern generator (TPG) for test vector 
generation and a test response compressor (TRC) for 
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response compression. The blocks that are required to 
perform a test (i.e., TPG and TRC) are known as test 
resources. Since the BIST logic is combined with the 
system logic, opportunities exist for the synthesis 
technique to generate hardware that can be shared by both 
the system and test operation, resulting in improved 
performance and reduced cost. 

Area and test time are major overheads encountered 
when using BIST techniques. Approaches have been 
proposed either towards the minimal (extra) area 
overhead solution (MAOS), or the minimal test 
(application) time solution (MTTS). Both approaches 
have merits and limitations. In general, the area overhead 
of MTTS may be too high and the test time of MAOS 
may be too long. Neither is acceptable when both 
attributes are important. 

The MAOS-oriented approaches focus on 
minimizing area overhead. The basic approach is to 
maximize the sharing of test registers resulting in a fewer 
number of registers being modified for BIST [3-81. The 
goal is to reduce BIST area overhead without sacrificing 
the quality of the test. The main limitation is the test time 
may be too long. The MTTS-oriented approaches focus 
on exploiting test concurrency. The basic approach is to 
maximize the test concurrency resulting in a fewer test 
session [ 9 ] .  The goal is to reduce test time. The main 
limitation is the area overhead may be too high. 

MAOS-oriented approaches dominate current 
research. A prime concern in BIST implementation is the 
area overhead due to the modification of normal registers 
to be test registers. One of the difficulties is the register 
self-adjacency problem. To deal with it, methods have 
been proposed either to avoid producing such 
self-adjacent registers or to minimize their number during 
synthesis process. Avra [4] proposed a register allocation 
method that minimizes the number of self-adjacent 
registers in the design. Papachristou et al. [5] presented a 
combined register and ALU allocation method that 
generates self-testable designs that do not have any 
self-loops. Parulkar et al. [6] attempted to employ the 

229 

IEEE the 9th Asian Test Symposium (ATS 2000), pp. 229-234, Dec. 2000.



concept of I-path [ lo]  to reduce the area overhead 
imposed by BILBO registers. 

In this paper, we first introduce strong 
self-testability for data paths at RTL. The key aspect is to 
propose a high-level synthesis scheme for producing such 
strongly self-testable data paths. This is achieved by 
incorporating testability constraints during processes of 
register assignment and interconnection assignment. This 
method is based on the use of test resources reusability to 
improve the self-testability of data path. Given a 
scheduled data f low graph (DFG) and a module 
assignment, we assign variables to registers and data 
transfer to interconnection paths, such that the area 
overhead required for a strongly self-testable data path is 
minimal. 

For each strongly self-testable data path, it has the 
following metrics 
(1) 100% fault efficiency' for single stuck-at faults; 
( 2 )  At-speed testing; 
(3) Short test time; 
(4) Low extra area overhead; 

The rest of this paper has been organized as 
follows. Section 2 introduces strong self-testability for 
data paths at RTL. In Section 3 ,  we consider strong 
self-testability during high-level synthesis processes, 
including register assignment and interconnection 
assignment. Experimental results are presented in Section 
4. Finally, conclusion and future work are discussed in 
Section 5. 

2 Strongly Self-Testable Data Paths at RTL 

2.1 Strong Self-Testability 

A data path is the core of a processor, it is where all 
computations are performed. A typical data path consists 
of an interconnection of basic combinational functions, 
such as logic (AND, OR, XOR) or arithmetic operators 
(addition, multiplication, comparison, shift). RTL 
modules consist of functional modules and multiplexers. 
We only consider strong self-testability for functional 
modules. 

Definition 1: A module is controllable if its output 
can be set to any desired value. A module is observable if 
any signal change at its inputs is reflected by a change at 
the output. 

Definition 2: A justi5cation path (J-path) of an 
n-bit width register r is a path that allows r to be assigned 
to the 2" possible values from a primary input (PI) or a 
TPG. A propagation path (P-path) of r is a path that 
allows any change in r to be propagated from r to a 

' Fault efficiency is the ratio of the number of faults identified 
as either detectable or redundant to the total number of faults. 

primary output (PO) or a TRC. 
An output port of a module M is observable if there 

exists an observable variable fed by this port such that its 
P-path do not contain M. A J-path is composed of a 
cascade of controllable modules. A P-path is composed of 
a cascade of observable modules. J-path and P-path are a 
generalization of the notion of I-path from [lo]. 

Definition 3: A data path is strongly self-testable, if 
each module is random pattern testable, and there exists a 
test plan for each module, in which, for each input port of 
the module, there exists a J-path from a TPG to it, and for 
output port of the module, there exists a P-path from i t  to 
a TRC, such that those J-paths and P-path are mutually 
disjoint. 

Random-pattern testability of the RTL modules 
present in the system is crucial for achieving complete 
fault coverage for the whole data path. Most RTL 
modules like adders, subtracters, multipliers, shifters, 
registers and register files are random-pattern testable. 
Meanwhile, modules like comparators, incrementers and 
decrementers are random-pattern resistant, but, they can 
be modified to be random-pattern testable by adequate 
test points insertion. 

Here, for simplicity, we have following 
assumptions: 
(1)  In the Data Path G, each functional module M has 

two distinct input ports A and B, and has just one 
output port C; 

(2) Each module is random-pattern testable. 

2.2 Strongly Self-Testable Data Paths 

The area overhead minimization problem for a strongly 
self-testable data path is to decide which registers to 
modify and the modes (TPG or TRC) to add, in such a 
way that every module in a given data path can be tested 
with minimal area overhead. We attempt to solve this 
problem by trying to modify registers in the data path 
which have the maximum sharing potential. 

We define role of a register as its possible use as 
TPG or TRC and denote these roles by the letters p and r; 
respectively. A register instance is a particular register in 
a particular role. The two possible register instances of a 
register RI are denoted RI,, RIr. The modification cost C,, 
of a register RI for a role x is defined as the amount of 
area overhead that would result from modifying R, so that 
it has an additional modes represented by x, where x = p 
or r. 

We associate a modification cost C,, with each 
register. For a register of n bits, the cost of being 
implemented as a TPG (LFSR for instance) is roughly 
estimated as 2*(n-2) times the cost of a multiplexer. The 
cost of the register implemented as a TRC is roughly 
estimated as n-2 times the cost of a multiplexer. 

Definition 4. A module is directly self-testable if 
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there exists two J-paths directly from register RI and RI to 
its two distinct input ports, and there is a P-path directly 
from its output port to Rk. R,and RJ are converted to RI, 
and RJP, and Rk is converted to Rb. The RI,, Rip and Rb 
are called a test scenario (TS) of the module. 

Definition 5. A module is indirectly self-testable if 
there exists two J-paths from register RI and R, to its two 
distinct input ports through one and only one module, and 
there is a P-path from its output port to Rk through no 
more than one module. Ri and R; are converted to RI, and 
R,,, and Rk is converted to Rb. 

The problem for finding strongly self-testable 
solutions is solved in three steps [ l l ] .  A synthesized 
strongly self-testable data path is shown in Fig.1. 

Q Q  Q Q  P P P  

Fig.1 A Synthesized Data Path 

Here is a possible strongly self-testable solution for 
the data path: for M1 self-testing, both R1 and R2 are 
direct TPGs and R8 is a direct TRC. For M2 self-testing, 
R7 is a direct TPG, and R6 is an indirect TPG (through 
M3 and R8) and R1 is a direct TRC. For M3 self-testing, 
both R6 and RI are direct TPGs and R8 is a direct TRC. 
For M4 self-testing, both R6 and R7 are direct TPGs and 
R7 is also a direct TRC. 

3 High-Level Synthesis for Strong 
Self-Testability 

High-level synthesis starts with a behavioral description 
of a digital system and synthesizes a RTL data path. The 
synthesis model used in this work assumes single-cycle 
operations, individual register storage and point-to-point 
multiplexer (MUX) connectivity. 

3.1 Testability Metria on DFG 

Variables in a behavior are potential test resources and 
contribute to BIST area overhead directly. Operations in a 
behavior are correlated to modules that form the 
functional module under test. Data transfers between 

variables and operations correspond to interconnection 
paths that are potential test paths. We refer to test 
registers as BIST resources, include those selected to be 
TPGs to modules and those selected to be TRCs from 
modules. Since minimal area overhead is our objective, it 
is not necessary to test all the modules in one test session. 

For directing assignments to a strongly self-testable 
data path with low area overhead, a mechanism that 
relates variables to test functionality in a data path is 
required. For this purpose, we view each variable as a test 
variable in addition to a functional variable to be stored in 
a register. Basically, there are two kinds of test variables: 

Definition 6: A variable is a P-variable, i.e., is a 
candidate for TPG, if there is a J-path from it to an input 
port of a module. A variable is an R-variable i.e., is a 
candidate for TRC, if there is a P-path from the output 
port of a module to it .  

Usually, LFSR, BILBO and CBILBO can be a 
P-variable and MISR, BILBO, and CBILBO can be a 
R-variable, but have different area costs due to 
modification. 

Definition 7: Reusabiliv R(v) of a variable v is the 
sum of the number of modules for which v is a P-variable 
and the number of modules for which v is a R-variable, 
both directly and indirectly. The maximum clique size 
M(v) of a variable v is the maximum clique in the 
variable conflict graph (VCG) which v belongs. 

The reusability R(v) reflects the number of modules 
for which the variable v can act as TPG and the number of 
modules for which it  can act as TRC. For example, in 
Fig.2, the variable h is potentially to be TPG only for 
“module” ( + I ) ,  R(h) is 1. The variable i is potentially to 
be TRC for “module” ( * I )  and to be TPG for “module” 
( * 3 )  and (-I), R(i) is 3. 

3.2 Problem Formulation 

One way of making a data path strongly self-testable is to 
modify all functional registers and give them test 
capabilities. Such an approach is an overkill in terms of 
the area overhead. Usually, portions of a data path, such 
as multiplexers, interconnect and functional registers can 
be easily tested using functional patterns. The 
components that are hard to test using functional patterns 
are the modules such as ALUs, adders and multipliers. 
Hence, we modify a subset of the registers and give them 
the capability of generating pseudo-random test patterns 
for the modules in the data path and for compressing the 
responses from these modules into signatures. 

This problem could be formulated as follows: 
( I )  Given a scheduled DFG, and a module assignment 

has been done, any module which is 
random-pattern-resistant has been replaced by 
random-pattern testable one. 
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(2) Exploit test register reusabilit)' in register assignment 
process, the optimization objective is to minimize the 
total number of registers needed to be modified as 
test registers, while keeping the synthesized data path 
strongly self-testable. 

(3) Register assignment is followed by minimum 
interconnection assignment. The effect of 
interconnection assignment on BIST registers is 
exploited. 

3.3 Register Assignment 

Given a scheduled DFG. We assume that module 
assignment is done without any testability consideration. 
Because registers can be viewed as potential test 
resources only after the module assignment is fixed. Here, 
we consider BIST area minimization in register 
assignment process for the proposed strong 
self-testability. 

The register assignment problem can be modeled 
as coloring the VCG. Each node in the VCG represents an 
edge from the DFG that crosses a clock cycle boundary. 
A conflict edge between two nodes in the VCG indicates 
that two variables associated with those nodes cannot be 
stored in the same register. All nodes with the same color 
can be mapped to the same register in the final 
implementation. The number of colors is the number of 
registers required in the data path design. A coloring of 
VCG corresponds to a valid register assignment with each 
color corresponding to a register. 

For the given the VCG, several algorithms exist 
that can almost always color the graph with a minimum 
number of colors in polynomial time. However, a 
k-colorable graph, where k is the chromatic number of the 
graph, may have several different k-colorings, each 
coloring scheme represents a different assignment of 
nodes to registers. Because of using different number of 
multiplexers and interconnects, these colorings may 
represent data path designs of different sizes. Furthermore, 
a coloring scheme that uses more than k colors may 
represent a smaller implementation. Therefore, techniques 
must be employed to guide the nodes coloring algorithm 
to reach the lowest-cost implementation. 

\ /  I /  

"'do 
______ 

Fig. 2. A Scheduled DFG. 

Consider the scheduled DFG shown in Fig.2, with 
module assignment: {MI :(* 1 ,*3), M2:(*2,*4,*5), 
M3:(-1,-2), M4:(+1)]. We associate a reusability R(v) 
with each variable v (node in the VCG), as shown in the 
Fig.3. Using this measure the assignment process can be 
guided by choosing merges that result in large increases 
in reusability of registers. Usually, a VCG is an interval 
graph, The minimum coloring algorithm on interval graph 
is a greedy algorithm [12]. A node n on a graph G is 
simplicial, if its adjacency set induces a clique in G. The 
adjacency set is the set of all nodes that are connected to n. 
An ordering of the nodes such that each node is a 
simplicial node of the remaining graph is called a perfect 
node elimination scheme (PNES) [ 131. An interval graph 
has many such PNESs. The optimal coloring algorithm 
constructs one such scheme arbitrarily and colors the 
nodes greedily in the reverse order. 

Fig. 3. The corresponding VCG 

The nodes are ordered such that if x is before y, 
then R(x) 5 R(y) and if R(x)=R(y) then M(x) 5 M(y). .4t 
every step of constructing a PNES, there is a choice of 
simplical nodes. The PNES is determined such that at 
each step a simplicial node that is earliest in this order is 
selected. Since nodes are colored in the reverse PNES 
order, this results in nodes with higher reusability to be 
considered earlier when there is maximum flexibility in 
the assignment of colors. The node (i+l) is assigned in 
the following way. If (i+l) conflicts with all registers, 
then a new register is created. Otherwise, pick a register 
such that theA R(xl) = R(x'+')-R(x') is maximum. Such a 
x' corresponds to a register that can best utilize ( i+ l )  to 
improve its reusing as a test resources. This process is 
near optimal since it relies on a PNES of a VCG. 

In the above example, the procedure results in a 
minimum assignment of colors. Eight registers are needed. 
{Rl:(j,o,c), R;?:(i,b), Rdd,m),  R4:(p), R d a ) ,  Rdh,n),  
R7:(e), Rg:(p,l,f)}. Fig.1 shows the resulting data path 
corresponding to this register assignment and the given 
module assignment. According to the definition 3, one 
possible strongly self-testable solution for the synthesized 
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Module TPG for left TPG for right TRC 
inmt ~ o r t  inout Dort 

M4 I R6 I R7 I R7 

M1 
M2 
M3 

3.4 Interconnection Assignment 

R1 R2 R8 
R8 through M3 R7 R1 

R6 R1 R8 

For a given module assignment, different register 
assignments have different effects on interconnection area. 
The minimum interconnection assignment can be 
modeled as a double clique partitioning of the input 
register compatibiliry graph (RCG) [14]. In RCG, each 

input register is represented as a vertex, an edge between 
two vertices if the two input registers can be connected to 
the same input port (of a module). Weights are used in the 
clique partitioning algorithm to direct the assignment 
towards finding cliques, such that registers with high 
reusabilities are connected to both input ports (of the 
same module). 

4 Experimental Results 

In order to examine the efficiency of the proposed 
methodology, we generated minimal area BIST solution 
for several high-level synthesis benchmarks. Here, we 
present results on high-level synthesis, and RTL 
modification for strongly self-testability. 

We choose three popular academic high-level 
synthesis benchmarks data paths: 
(1)  the 2"d order differential equation Di@q [ 151; 
(2) the auto regression filter element AR-Filter [ 161; 
( 3 )  the 5Ih order elliptic wave filter FIRJilter [ 171; 

Table 2. Our Experimental Results (with strong BIST) 

Table 3. Traditional High-Level Synthesis Results (without BIST consideration) 

In Table 2, we report the results we obtained for 
strongly self-testable data paths. For each benchmark data 
path (given in scheduled DFG and a module assignment), 
we report the number of registers, including the number of 
CBILBO, the number of BILBO, the number of TPG, the 
number of TRC. The number of multiplexers, and the extra 
area overhead due to the configuration for the synthesized 

strongly self-testable data path. The BIST area overhead is 
expressed as a percentage increase in the gate count as a 
result of the modification for the BIST scheme. For the 
purpose of comparison, we list in  Table 3 traditional 
high-level synthesis results [18] on the same benchmarks 
without any BIST consideration. 
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5 Conclusions and Ongoing Work 

In this paper, we first introduced strong self-testability for 
data paths at RTL. The key aspect is to propose a 
high-level synthesis scheme for producing such strongly 
self-testable data paths. This is achieved by incorporating 
testability constraints during register assignment. This 
method is based on the use of test resources reusability to 
improve the self-testability of a data path. Given a 
scheduled data flow graph and a module assignment, we 
assign variables to registers, such that the area overhead 
required for a strongly self-testable data path is minimal. 
Experimental results are presented to demonstrate the 
effectiveness of the proposed approach. 

The advantages of the proposed method are high 
fault coverage for single stuck-at faults, low extra 
hardware overhead and capability of at-speed testing. As 
part of our ongoing work, the proposed method will be 
tested on more academic benchmarks as well as real 
industrial ones. 
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