
 Testable Design of Sequential Circuits with Improved Fault Efficiency

 Debesh K. Das Bhargab B. Bhattacharya Satoshi Ohtake & Hideo Fujiwara
 Dept. of Comp. Sc. & Engg. ACM Unit Graduate School of Information Science
 Jadavpur University Indian Statistical Institute Nara Institute of Science and Technology
 Calcutta - 700 032, India Calcutta - 700 035, India Nara 630-0101, Japan
 debeshd@hotmail.com bhargab@isical.ac.in {satosi-o, fujiwara}@is.aist-nara.ac.jp

Abstract: A new synthesis and design-for-testability (DFT)
technique is proposed for improving fault efficiency in non-scan
synchronous sequential circuits. Certain simple constraints are
imposed on state encoding prior to synthesis, and then a DFT
technique is employed that guarantees absence of all
sequentially undetectable faults, such as invalid, equivalent and
isomorph. If the netlist is available instead of state description,
only the DFT technique is applied, by skipping the synthesis
part. The proposed design guarantees significantly lower test
generation time, higher fault coverage, and almost complete
fault efficiency, when sequential test generation tools are used.
Experiments on MCNC and ISCAS 89 benchmark circuits show
encouraging results. Hardware overhead of the proposed
method compares favorably with that of full-scan.

1. Introduction
To reduce the complexity of test generation in sequential
circuits, several attempts were made to achieve testable
design, or to synthesize them for ensuring high testability.
Full-scan techniques reduce the test generation problem
for a sequential circuit to a combinational one [1]. The
area overhead associated with full-scan can be reduced by
adopting partial scan [2]. The main problem with scan
techniques is that they may fail to allow at-speed testing.
To overcome the shortcomings of scan techniques, non-
scan approaches are proposed [3-7]. However, the
presence of sequentially undetectable faults makes test
generation in non-scan circuits very complex.
Combinational ATPG was used in [6, 7], along with
certain DFT methods to obtain complete fault efficiency.
The ratio of the number of faults detected or proved
redundant by a test algorithm, to the total number of faults
in a circuit, is called fault efficiency. Several techniques
for removal of undetectability and redundancy in
sequential circuits appeared earlier in [9-14].

To improve fault efficiency in non-scan
synchronous sequential circuits, we propose a new
technique, based on removal of sequential undetectability.
If the state transition graph (STG) is available, we use
certain constraints on state encoding to synthesize the
machine that ensures detection of invalid faults. We then
employ a DFT technique [5] using some additional logic
that guarantees absence of other sequentially undetectable

faults such as, equivalent and isomorph. For large circuits,
where only netlist is available instead of STG, we skip the
synthesis part, and apply DFT technique only. Removal of
these undetectable faults significantly lowers test
generation time, and enhances fault efficiency when
sequential ATPG is used, as evident from experimental
results on several benchmarks circuits. Our approach is
simple, and hardware overhead compares favorably with
that of full-scan.

2. Preliminaries
We assume the classical stuck-at fault model. A

gate-level combinational circuit is said to be irredundant
if all faults, single or multiple, are detectable by input-
output experiments. Let the given synchronous sequential
machine be denoted by M. Assume that M has l primary
input lines x1, x2,…, xl, and m primary output lines Z1,
Z2,…, Zm. The outputs y1, y2,…, yk of k flip-flops define
the present state of the machine. The inputs Y1, Y2,…, Yk
to the memory elements at time t determine the values of
yi’s at t+1, and define the next state of M. A sequential
machine M can be described as a quintuple: M ={I, O, S,
δ, Z}, where I, O, S are finite, nonempty sets of inputs,
outputs, and states, respectively; δ: I × S → S, is the state
transition function; Z: I × S → O, is the output function. A
differentiating sequence (DS) of a pair of states Si and Sj,
is a minimal-length sequence of input vectors, such that
the output response obtained by applying the sequence
when the circuit is initially in Si, is different from that
obtained when the circuit is initially in Sj [16]. Two states
are said to be equivalent, if they do not have a DS.

A machine is in synchronization mode, if the
operation starts with a specified input sequence, referred
to as power-up sequence [17]. Hardware reset may exist
as a special input. Under this mode, the starting or reset
state is a state in which the machine starts, after using
power-up sequence or hardware reset. A state is called a
valid state if it can be reached from the reset state by
applying an input sequence, otherwise it is an invalid
state. A machine is said to be operated in free mode, if no
restriction on the power-up sequence exists; the machine

Proceedings of the 14th International Conference on VLSI Design
0-7695-0831-6/01 $10.00 © 2001 IEEE

14th International Conference on VLSI Design, pp. 128-133, January 3-7, 2001.

2

may start operation at the state it happens to be in that
time. Let us consider a fault f in the machine M, and let
the faulty machine be denoted by Mf ={I, O, Sf, δf, Zf}.
Two states Si in M and Si

f in Mf are called corresponding
states, if they have the same encoding [8]. States Si and Si

f

are called corresponding equivalent states, if they produce
identical response to any input sequence. The machine M
is assumed to be in synchronization mode with hardware
reset if the STG description of M is available, otherwise it
is assumed be in free mode.

3. Redundancy and undetectability
Though the concepts of redundancy and

undetectability are synonymous in combinational circuits,
they differ in sequential circuits [17, 18] where a fault
may be irredundant, but undetectable. A fault f is said to
be detectable in a sequential circuit if, for every pair of
initial states S in M and Sf Mf, there exists an input
sequence X, such that response Z(X,S) of M to X, is
different from the response Zf(X,Sf) of Mf at some time
unit on some output [17]. A fault is said to be
undetectable if it is not detectable.

Definition: A fault in a sequential circuit M is said to be
combinationally redundant if starting from any input state
with any sequence of input vectors, its effect cannot be
observed at the primary outputs, or by only probing next
state lines, i.e., they are undetectable under full-scan.

Definition: If a fault is not combinationally redundant, but
changes the state diagram such that no input sequence
starting from any state, can detect the change, then the
fault is sequentially redundant fault (SRF).

SRF's are broadly classified into three groups
under the synchronization mode [15].

Definition: If a fault changes the transitions only from the
invalid states, but does not corrupt any transition from the
valid states, it is an invalid fault. An equivalent fault is a
fault that causes an interchange and/or creation of
equivalent states only. A fault in a sequential machine is
an isomorph fault if the state table of the faulty machine is
identical to that of the fault-free machine under renaming
(i.e., some permutation) of the states.

3.1 Equivalent fault
If an equivalent fault causes an interchange of

equivalent states alone, then it is undetectable under both
synchronization and free mode while testing with single or
multiple observation time approaches. However, some
equivalent faults caused by creation of new states (and
interchange) may be detectable as a probabilistically
detectable fault [23].

Lemma 1 [5]: If for all Si (0< i <2k-1), Z{Ia,Si} is distinct
from Z{Ia,Sj} i≠j for at least an input Ia∈I, then an
equivalent fault can never exist regardless of the circuit

realization (that uses k flip-flops).

3.2 Isomorph fault
An isomorph fault is generally undetectable

under both synchronization and free mode with single or
multiple observation time approaches. However, some
isomorph faults may be detectable, if the machine operates
in synchronization mode [19].

3.3 Invalid fault
This can occur only in synchronization mode.

Lemma 2: If an invalid fault appears, then there exist at
least an invalid state Si and one input Ia∈I, such that

(i) δf{Ia,Si} ≠δ{Ia,Si}, or Zf{Ia,Si
f}≠Z{Ia,Si}

or both and
(ii) ∀Ia∈I, δf{Ia,Sj

f}=δ{Ia,Sj} and
Zf{Ia,Sj

f}=Z{Ia,Sj} if Sj is a valid state,
where, Si and Si

f (similarly Sj and Sj
f) are

corresponding states.

Corollary 1: If all 2k states are valid in the machine, an
invalid fault cannot occur.

Next, we present a design technique that
eliminates three types of SRFs from a sequential circuit.

4. Testable design
Given a sequential circuit M {I, O, S, δ, Z} with

l inputs, m outputs, and k flip-flops. First, we assume that
the STG of M is available. We then synthesize a modified
machine M' {I, O, S', δ', Z'} with a control input C, such
that M' is devoid of redundancy and easily testable.
Further, M' reduces to M when C = 0.

4.1 Synthesis for detecting invalid faults
We assume that the number of invalid states in M

can be at most 2k-1 -1. Now, we impose a simple restriction
on the state assignment of the machine.

4.1.1 State-assignment: We assume that all the invalid
states are encoded such that the state variable y1 is
assigned logic value 1. Since the number of invalid states
< 2k-1 -1, this can always be done. The remaining bits may
be assigned arbitrarily. With this constraint, we synthesize
the sequential circuit without any restriction on its
structure; then we augment the circuit with some extra
logic as indicated in the following procedure.

4.1.2 Circuit design: To detect invalid faults, all states
are made valid by adding a 2-input OR gate and a control
input C in the test mode. We change the next-state
function Y1 to Y1' as: Y1' = Y1 + C. Only one next-state
function is modified (Fig. 1). The output functions are
then changed by augmenting the circuit with an additional
combinational logic Cadd according to a DFT method
described in subsection 4.2.

Theorem 1: The modified circuit M' is devoid of all
invalid faults.

Proceedings of the 14th International Conference on VLSI Design
0-7695-0831-6/01 $10.00 © 2001 IEEE

3

Proof: The encoding of any invalid state in M begins with
y1 =1. Consider an invalid state Sinv in M with the code (1,
y2*, y3*,....,yk*) where yi* ∈ (0,1), for 2 < i < k.
Obviously, there exists a valid state Sv whose code is (0,
y2*, y3*,....,yk*). As Sv is a valid state, in the original
machine M, there exists a valid state S* ∈ S and an input
Ia∈ I, s. t. δ{Ia, S*}= Sv. Then in the modified machine
M', the following conditions are true: for C = 0, δ'{Ia, S*}
= Sv and for C = 1, δ'{Ia, S*}= Sinv. Thus, the invalid state
Sinv in M becomes valid in M'. So an invalid fault can
never occur in M'.

4.2 DFT to remove equivalent and isomorph faults
For eliminating equivalent and isomorph faults,

we use an additional logic Cadd as in [5]. If the STG is
available, we adopt this procedure following the technique
described in subsection 4.1. If only netlist is known, then
we skip the encoding part, and apply this DFT technique
alone to the circuit. In that case, the machine is considered
to be in free mode, without the necessity of using a reset
line. Three cases may arise.

Case 1 (k < l): Consider only one output line,
say Z1 of M. Then modify it as Z1' = �CZ1 + CF, where C
is the same control input used earlier, and F = {x1 y1+
x2y2+.....+ xkyk} (Fig. 2a). The other functional outputs are
kept unchanged. For every combination of (y1, y2,, yk),

yi ∈ (0,1), the sub-function consists of a unique sum term
of {xi's}. The K-map of F for k = 3 is shown in Fig. 2b.
Variables xi's (yi's) are used to label the map horizontally
(vertically). No two rows (i.e., states) in the map have
identical patterns.
Hardware overhead: Cadd requires (3k+6) gate inputs.

Case 2 (l < k < l ×m): This is similar to Case 1,
but needs slight modification. Let r = ⎡k / l⎤. Modify
output lines Z1, Z2,.... Zr as: Zj+1' = �CZj+1 + CFj+1, where,
0 < j < r-1, C is a control input and Fi realized by a two-
level AND-OR circuit (Fig. 3) has the following
expression: Fj+1 = x1yjl+1+ x2yjl+2+ ……+xayjn+a where a = l
for (0<j<r-1), and a=k-(r-1)n for j = r-1. If a is found to be
1, then we replace Fj+1 by yjl+1.
Hardware overhead: In general, Cadd requires (3k+ 6r)
gate inputs, for (k mod l) = 1, this value is (3k+6r-3).

Case 3 (l ×m < k) : The proposed technique does
not fit in this case. We however, observe that this case
seldom appears among benchmarks.

Theorem 2 [5]: The modified circuit is devoid of all
equivalent and isomorph faults.
Theorem 3 [5]: The differentiating sequence for every
pair of states in M' is of unit length.

Besides removing sequential redundancies, our
technique has an added advantage. As the differentiating
sequence for any pair of states is of unit length in our
design, sequential test generation time reduces drastically.
This is highly desirable for inducing testability [24].

x1

y1

F

Fig. 2a: Cadd for l > k (Case 1)

C
Z'1

MUX

x2

y2

xk

yk

Z1

x1

x2 x3x3

y1

y2

y3

y3

Fig. 2b: K-map of Cadd

for k = 3 and l > 3, when C = 1.

x1

yjl+1

Fj+1

Fig. 3: Cadd for Case 2

C
Z'1

MUX

x2

yjl+2

xk

yjl+a

Zj+1

Fig. 1: Testable design for detection of
invalid, equivalent, and isomorph faults

 Additional
combinational
 logic Cadd

Combinational
 circuit

y1

yk

xl

x1 Z1

Zm

Y1

Yk

FF

FF

Z'1

Z'm

C

Global
reset

 1 1 1 1

 1 1 1 1 1 1

 1 1 1 1

 1 1 1 1 1 1

 1 1 1 1 1 1 1

 1 1 1 1 1 1

 1 1 1 1

Proceedings of the 14th International Conference on VLSI Design
0-7695-0831-6/01 $10.00 © 2001 IEEE

4

The use of only a single OR gate transforms all invalid
states to valid states in test mode. Thus, it becomes easier
for a sequential ATPG to initialize the machine to a
desired state during test generation. As a result, test
generation time is reduced, and fault efficiency is
increased. We performed our experiments on MCNC [20],
as well as on ISCAS 89 [21] benchmarks.

extra gate
of of of inputs

nam e PIs PO s FFs D FT full proposed
 l m k C ase scan design

bbara 4 2 4 1 24 20
bbsse 7 7 4 1 24 20
bbtas 2 2 3 2 18 20
beecount 3 4 3 1 18 17
cse 7 7 4 1 24 20
dk14 3 5 3 1 18 17
dk15 3 5 2 1 12 14
dk16 2 3 5 2 30 32
dk17 2 3 3 2 18 20
ex1 9 19 5 1 30 23
ex2 2 2 5 3 30 N A
ex3 2 2 4 2 24 26
ex4 6 9 4 1 24 20
ex5 2 2 4 2 24 26
ex6 5 8 3 1 18 17
ex7 2 2 4 2 24 26
keyb 7 2 5 1 30 23
kirkm an 12 6 4 1 24 20
lion 2 1 2 1 12 14
lion9 2 1 4 3 24 N A
m c 3 5 2 1 12 14
opus 5 6 4 1 24 20
planet 7 19 6 1 36 26
planet1 7 19 6 1 36 26
pm a 8 8 5 1 30 23
s1 8 6 5 1 30 23
s1488 8 19 6 1 36 26
s1494 8 19 6 1 36 26
s208 11 2 5 1 30 23
s27 4 1 3 1 18 17
s298 3 6 8 2 48 44
s386 7 7 4 1 24 20
s420 19 2 5 1 30 23
s510 19 7 6 1 36 26
s820 18 19 5 1 30 23
s832 18 19 5 1 30 23
sand 11 9 5 1 30 23
sse 7 7 4 1 24 20
styr 9 10 5 1 30 23
tav 4 4 2 1 12 14
tbk 6 3 5 1 30 23
tm a 7 6 5 1 30 23
train11 2 1 4 3 18 N A
train4 2 1 2 1 12 14

5. Experimental results

Comparison of hardware overhead of our design
with that of full-scan in terms of additional circuit area
estimated by the number of literals, is given in Tables 1
and 3. For most of these circuits, Case 1 of the proposed
DFT fits well, and for some circuits Case 2 is appropriate.

Fault Fault Fault Fault

TG Cover Effi- TG Cover Effi-

Time -age ciency Time -age ciency

(sec.) (%) (%) (sec.) (%) (%)
bbara 805.55 42.91 90.71 147.76 56.87 98.81
bbsse 46.89 77.61 99.95 4.04 80.09 100
bbtas 0.95 90.32 100 0.26 97.46 100
beecount 26.39 90.4 99.88 1.36 92.65 100
cse 15.25 78.41 100 10.38 78.8 100
dk14 3.01 95.38 100 0.63 98.84 100
dk15 0.36 98.85 100 0.36 98.93 100
dk16 146.2 94.14 99.69 6.42 97.96 100
dk17 0.41 98.31 100 0.37 98.52 100
ex1 3366.4 72.7 92.13 147.75 84.19 100
ex3 108.27 80.13 98.72 1.56 96.39 100
ex4 96.25 78.85 99.16 2.98 83.36 100
ex5 331.25 72.65 93.95 1.07 96.83 100
ex6 2.2 83.16 100 2.21 83.54 100
ex7 86.12 62.61 98.42 0.82 96.02 100
keyb 756.41 62.92 98.02 76.48 68.47 100
kirkman 3796.3 85.91 96.12 138.21 89.59 99.99
lion 5.94 16.8 100 0.28 71.53 100
mc 0.2 72.22 100 0.13 76.52 100
opus 140.96 76.18 98.89 3.33 85.92 100
planet 2301.6 71.8 97.32 139.8 78.23 99.99
planet1 2302.8 71.8 97.32 141.27 78.23 99.99
pma 883.9 79.98 96.74 125.27 85.96 100
s1 1252.7 73.13 98.23 57.89 78.71 100
s1488 2799.1 73.28 98.96 1917.9 77.09 100
s1494 5346.6 70.9 97.77 591.58 75.51 100
s208 1082.9 58.88 99.26 122.12 62.5 100
s27 42.23 73.52 99.81 1.6 81.79 100
s298 145189 18.35 30.51 5883.6 88.29 99.97
s386 10.2 74.01 100 6.11 75.6 100
s420 1126.1 58.36 99.08 126.11 62.4 100
s510 1236.4 71.78 96.46 75.71 81.32 100
s820 823.88 77.35 99.81 240.06 78.78 100
s832 1177.3 75.1 99.84 190.78 76.55 100
sand 350.68 78.85 99.78 66.56 79.2 100
sse 44.94 77.61 99.95 3.85 80.09 100
styr 373.62 80.45 99.68 57.09 81.95 100
tav 1.11 65.32 100 0.87 67.25 100
tbk 16124 56.9 89.99 1471.1 81.17 99.62

Original circuit Proposed design

Name

Table 1: Hardware overhead for MCNC
benchmarks: scan design vs. our method

Table 2: Test generation results for MCNC benchmarks

NA: not applicable

Proceedings of the 14th International Conference on VLSI Design
0-7695-0831-6/01 $10.00 © 2001 IEEE

5

 # # # # extra gate
of of of inputs

Name PIs POs FFs DFT Full proposed
(l) (m) (k) Case scan design

s27 4 1 3 1 18 15
s208.1 10 1 8 1 48 30
s298 3 6 14 2 84 72
s344 9 11 15 2 90 57
s349 9 11 15 2 90 57
s382 3 6 21 3 126 NA
s386 7 7 6 1 36 24
s400 3 6 21 3 126 NA
s420.1 18 1 16 1 96 54
s444 3 6 21 3 126 NA
s526 3 6 21 3 126 NA
s526n 3 6 21 3 126 NA
s641 35 24 19 1 114 63
s713 35 23 19 1 114 63
s820 18 19 5 1 30 21
s832 18 19 5 1 30 21
s838.1 34 1 32 1 192 102
s1196 14 14 18 2 108 66
s1238 14 14 18 2 108 66
s1423 17 5 74 2 444 252
s1488 8 19 6 1 36 24
s1494 8 19 6 1 36 24
s5378 35 49 179 2 1074 563
s9234.1 36 39 211 2 1266 669
s15850.1 77 150 534 2 3204 1644
s35932 35 320 1728 2 10368 5484
s38584 12 278 1452 2 8712 5082
s38584.1 38 304 1426 2 8556 4506

Very few of the benchmark circuits belong to Case 3, for
which our technique is not applicable. We assume that a
full-scan design with k latches requires k pieces of 2-input
multiplexers, i.e., 6k gate inputs.

For MCNC circuits [20], where STGs are
available, we first encode the states according to our
proposed method, and then use AutoLogic II (Mentor
Graphics) to synthesize the circuit for the original
machine. With this circuit, we add only one OR gate with
a control input as described in Section 4.1 to make all
invalid faults of the original machine testable. Then we
augment the circuit with some extra logic as discussed in
Section 4.2. This removes all equivalent and isomorph
faults. Test generation results (Table 2) show that our
technique not only decreases test generation time, but also
attains almost 100% fault efficiency in all cases.

TG Fault Fault TG Fault Fault
Time Cover- Effici- Time Cover- Effici-

 -age -ency -age -ency
(sec.) (%) (%) (sec.) (%) (%)

s27 0.05 100 100 0.07 100 100
s208.1 1137.4 10.68 72.01 257.41 12.72 95.23
s298 141.2 90.12 98.15 7.13 91.77 100
s344 228.13 93.67 96.52 183.16 95.31 98.25
s349 171.68 94.26 97.7 140.23 94.54 97.91
s386 3.59 92.08 100 3.55 92.41 100
s420.1 3324.9 9.4 34.9 2597.7 11.14 50.49
s641 1.62 87.85 100 1.61 87.83 100
s713 1.48 84.1 100 1.73 84.31 100
s820 127.39 96.51 99.39 97.37 96.64 99.63
s832 134.26 95.61 99.16 101.7 95.71 99.64
s838.1 4546.5 8.8 51.69 4966.6 10.4 50.72
s1196 1.42 99.91 100 1.54 100 100
s1238 1.78 97.16 100 1.83 97.39 100
s1423 11422 49.76 52.64 5446.3 80.44 81.92
s1488 122.06 98.91 99.98 119.8 98.92 99.98
s1494 54.88 98.49 99.98 52.24 98.51 99.98
s5378 17784 71.5 76.47 14447 78.09 83.73
s9234.1 46211 10.42 55.63 68148 36.87 45.29
s15850.1 83676 44.71 58.75 65176 63.91 74.62
s35932 30873 89.6 99.34 6138.3 91.55 99.97
s38584 310757 24.35 48.77 149202 59.14 80.22

Original Circuit Proposed design

Name

A significant improvement in test generation results can
be observed with our technique for the circuit s298.
Without any testable design, the fault efficiency is only
30.51%. Using our synthesis and DFT technique, fault
efficiency reaches 99.97% (Table 2).

For ISCAS 89 [21] benchmarks, only netlists are
available, and hence we use the DFT technique alone
(Section 4.2), which eliminates all equivalent and
isomorph faults. Further, test generation time is decreased
to a large extent, as for every pair of states, there exists a
differentiating sequence of unit length in test mode. The
results are summarized in Table 4. In most of the cases,
we observe higher fault coverage and improved fault
efficiency. However, in some cases, our design requires
higher test generation time and also attains lower fault
efficiency. We have marked these cases by shaded area in
Table 4. Addition of extra logic in our design ensures
detection of more faults, some of which were possibly
aborted during test generation in the original circuit; this
might have caused an increase in test generation time.
However, the sequential test generation tool detects more
faults when DFT is incorporated, as evident from higher
fault coverage observed in these cases.

The sequential ATPG TestGen (Sunrise) [22] is
run on a SUN workstation, and AutoLogic II (Mentor
Graphics) is used for synthesis.

Table 3: Hardware overhead for ISCAS 89
benchmarks: scan design vs. our method

Table 4: Test generation results for
ISCAS 89 benchmarks

Proceedings of the 14th International Conference on VLSI Design
0-7695-0831-6/01 $10.00 © 2001 IEEE

6

6. Conclusion
As redundancy and undetectability make test generation
more complex in sequential circuits, we attempt to achieve
high testability by removing undetectable faults in these
circuits. We have proposed a novel and simple technique
that differs significantly from the previous approaches to
redundancy removal. For circuits with STG descriptions,
we propose a simple encoding of states before synthesis,
and then use a control input and some additional logic to
make all invalid, equivalent and isomorph faults
detectable. If only netlist is available for the circuits, we
skip the synthesis part, and apply the DFT technique for
removal of equivalent and isomorph faults. The additional
logic is independent of the structure and functionality of
the given machine, and depends only on the number of
PI's, PO's and memory elements. Since there exists a unit-
length differentiating sequence for every pair of states in
the modified machine, the approach simplifies test
generation, as evident from experimental results. A
sequential ATPG needs less time for test generation, and
achieves improved fault efficiency for most of the cases.
The proposed method does not require a synthesis
procedure involving computationally intensive search, and
as a non-scan approach, it offers at-speed testing. Its
hardware overhead compares favorably with that of full-
scan designs.

References
1. M. Abramovici, M. A. Breuer, and A. D. Friedman,

Digital Systems Testing and Testable Design. W. H.
Freeman & Co., New York, 1990.

2. S. T. Chakradhar, A. Balkrishnan, and V. D.
Agrawal, “An exact algorithm for selecting partial
scan flip flops,” Proc., DAC, pp. 81-86, 1994.

3. V. Chickermane, E. M. Rudnick, P. Banerjee, and J.
H. Patel, “Non-scan design-for-testability techniques
for sequential circuits,” Proc., DAC, pp. 236-241,
1993.

4. I. Pomeranz and S. M. Reddy, “Design for testability
for sequential circuits using locally available lines,”
Proc., DATE-98, p. 983-984, 1998.

5. D. K. Das and B. B. Bhattacharya, “Testable design
of non-scan sequential circuits using extra logic,”
Proc., ATS, pp. 176-182, 1995.

6. S. Ohtake, T. Masuzawa, and H. Fujiwara, “A non-
scan DFT method for controllers to achieve complete
fault efficiency,” Proc., ATS, pp. 204-211, 1998.

7. D. K. Das, S. Ohtake, and H. Fujiwara, “New DFT
techniques of non-scan sequential circuits with
complete fault efficiency,” Proc., ATS, pp. 263-268,
1999.

8. I. Pomeranz and S. M. Reddy, “On identifying
untestable and redundant faults in synchronous
sequential circuits,” Proc., VTS, pp. 8-14, 1994.

9. M. A. Iyer, D. E. Long, and M. Abramovici,
“Identifying sequential redundancies without search,”
Proc., DAC, pp. 457-462, 1996.

10. W. Cao and D. K. Pradhan, “Sequential redundancy
identification using recursive learning,” Proc.,
ICCAD, pp. 56-62, 1996.

11. I. Pomeranz and S. M. Reddy, “On removing
redundancies from synchronous sequential circuits
with synchronizing sequences,” IEEE TC, vol. 45,
no.1, pp. 20-32, Jan. 1996.

12. X. Lin, I. Pomeranz, and S. M. Reddy, “On removing
redundant faults from synchronous sequential
circuits,” Proc., VTS, pp. 168-175, 1998.

13. H. Yotsuyanagi and K. Kinoshita, “Undetectable
fault removal of sequential circuits based on
unreachable states,” Proc., VTS, pp. 176-181, 1998.

14. I. Pomeranz and S. M. Reddy, “On finding
undetectable and redundant faults in synchronous
sequential circuits,” Proc., ICCD, pp. 498-503, 1998.

15. S. Devadas, H-K. T. Ma, A. R. Newton, and A.
Sangiovanni-Vincentelli, “A synthesis and
optimization procedure for fully and easily testable
sequential machines,” IEEE TCAD, pp. 1100-1107,
Jan. 1989.

16. S. Devadas and K. Keutzer, “A unified approach to
the synthesis of fully testable sequential machines,”
IEEE TCAD, vol. 10, pp. 39-50, 1991.

17. I. Pomeranz and S. M. Reddy, “Classification of
faults in synchronous sequential circuits,” IEEE TC,
vol. 42, no.9, pp. 1066-1077, Sept. 1993.

18. M. Abramovici and M. A. Breuer, “On redundancy
and fault detection in sequential circuits,” IEEE TC,
pp. 864-865, 1979.

19. D. K. Das, U. K. Bhattacharya, and B. B.
Bhattacharya, “Isomorph redundancy in sequential
circuits,” IEEE TC, September 2000.

20. S. Yang, “Logic synthesis and optimization
benchmarks user guide,” Technical Report 1991-
IWLS-UG-Saeyang, Microelectronics Center of
North Carolina, USA.

21. F. Brglez, D. Bryan, and K. Kozminski,
“Combinational profile of sequential benchmark
circuits,” Proc., ISCAS, pp. 1929-1934, 1989.

22. Sunrise Test Systems, Inc., Sunrise Reference
manual Version 2.3, 1996.

23. I. Pomeranz and S. M. Reddy, and J. H. Patel,
“Theory and practice of sequential machine testing
and testability,” Proc., FTCS, pp. 330-337, 1993.

24. A. Ghosh, S. Devadas, and A. R. Newton,
“Sequential test generation and synthesis for
testability at the register transfer and logic levels,”
IEEE TCAD, pp. 579-598, May 1993.

Proceedings of the 14th International Conference on VLSI Design
0-7695-0831-6/01 $10.00 © 2001 IEEE

