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Abstract — This paper proposes a non-scan design-for-test-
ability method for register-transfer level circuits where a circuit
consists of a controller and a data path. It achieves complete fault
efficiency with low hardware overhead and at-speed testing.

I. INTRODUCTION

With the advance in semiconductor technology, the com-
plexity of VLSI designs is growing and the cost of testing is
increasing. To ease the complexity of test generation, design-
for-testability (DFT) techniques have been proposed. The most
commonly used DFT techniques for sequential circuits are
scan-based approaches[1]. These techniques modify sequen-
tial circuits so that automatic test pattern generation (ATPG)
tools can achieve high fault efficiency1 in a reasonable time.
However, these techniques sacrifice the possibility of at-speed
testing[2] for fault efficiency enhancement. To avoid this dis-
advantage of scan techniques, several non-scan approaches
have been investigated. On the other hand, since techniques
of test generation and DFT at gate level face the problems aris-
ing out of huge number of elements and high complexities of
the circuits at gate level, several techniques of test generation
and DFT at register-transfer level (RTL) have been proposed
recently.
In RTL design, a VLSI circuit is generally consists of two

separate parts, a controller part and a data path part. A con-
troller and a data path are interconnected by internal signals:
control signals and status signals. In our previous work [3],
we proposed a DFT method for an RTL circuit which consists
of a controller part and a data path part. The DFT method
integrates the DFT method of [4] for controllers and that of
[5] for data paths. The DFT method for data path is based on
hierarchical test generation [6]. In these DFT methods, we as-
sumed that both control signals and status signals between a
controller and a data path are directly controllable and observ-
able from the outside of the circuits. However, if we consider
a DFT method for the whole circuit consisting of both a con-
troller and a data path, we have to remove this assumption by
adding some extra logic to provide both controllability and ob-
servability of those control and status signals. In our previous
work [3], we resolved this problem by (1) adding multiplex-
ers on those control and status signals to connect directly from
primary inputs and to primary outputs and (2) embedding an
extra circuit in the controller side, called a test plan genera-
tor, which can generate test plans for the data path of an RTL
circuit, where a test plan is a control sequence to propagate

1Fault efficiency is the ratio of the number of faults detected and proved
redundant to the total number of faults.

test patterns for a combinational hardware element from the
primary inputs to the inputs of the hardware element and to
propagate responses from the output of the hardware element
to the primary outputs.
The proposed DFT method for controller/data path circuits

has the following advantages:
• 100% fault efficiency can be achieved.
• At-speed testing can be performed.
Furthermore, from our experimental results,
• Test application time can be reduced significantly compared
to that of the full-scan design.

• Test generation time can be reduced significantly compared
to that of the full-scan design.

However, the proposed method has disadvantage that the hard-
ware overhead is larger than that of the full-scan design. The
hardware overhead of the proposed method is dominated by
extra logic corresponding to the test plan generator for a
strongly testable data path.
In this paper, we present a new property of circuit structure

of data paths called fixed-control testability. If a data path is
fixed-control testable, hierarchical test generation can be ap-
plied and each test plan of combinational hardware elements
can be composed of at most three control vectors. Therefore,
the design of a test plan generator for fixed-control testable
data path is simpler than that of strongly testable one. We also
propose a DFT method for data paths which makes a data path
fixed-control testable and a test architecture for a whole cir-
cuit consisting of both a controller and a data path. Exper-
imental results using some benchmark circuits show that the
method proposed in this paper can reduce hardware overhead
compared to that in [3].

II. PRELIMINARIES
In RTL description, a VLSI circuit generally consists of a

controller and a data path as shown in Figure 1. The for-
mer is represented by an STG and the latter is represented by
hardware elements (e.g. registers, multiplexers and operational
modules) and signal lines connecting them. Each of the con-
troller and the data path has primary inputs from the outside
of the VLSI and primary outputs to the outside of the VLSI.
The controller also has status inputs from the data path and
control outputs to the data path. Similarly, the data path also
has control inputs from the controller and status outputs to the
controller. The signals from the controller to the data path are
called control signals, and the signals from the data path to the
controller are called status signals.
A data path consists of hardware elements and signal lines.

Hardware elements are primary inputs, primary outputs, con-
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Fig. 1. An RTL controller/data path circuit.
trol inputs, status outputs, registers, multiplexors, and opera-
tional modules. A signal line connects two hardware elements
with some bit width. Inputs of a hardware element in the data
path can be classified into data inputs and control inputs. Ex-
amples of the control inputs are load enable signals of registers,
selection signals of multiplexers and function selection signals
of operational modules. Similarly, outputs of a hardware ele-
ment of a data path can be classified into data outputs and sta-
tus outputs. Comparators are examples of hardware elements
having status outputs.
The following restrictions are introduced into our data path

architecture in order to simplify the discussion, though they
can be relaxed.
A1: All signal lines in the data path have the same bit width.
A2: An operational module has only one or two data inputs
and only one data output.

A3: For any data input, there exists a path from a primary in-
put. And for any data output, there exists a path to a primary
output.

A4: Control inputs of a hardware element are connected di-
rectly to control inputs of the data path. And status outputs
of a hardware element are connected directly to status out-
puts of the data path.

III. FIXED-CONTROL TESTABILITY

In this section, we define a new property of circuit struc-
ture of data path called fixed-control testability which is a sub-
class of strong testability. Strong testability is proposed as a
characteristic of data paths that guarantees applicability of hi-
erarchical test generation[6]. Hierarchical test generation is a
promising way for testing very large sequential circuits. In the
hierarchical test generation, testing for each hardware element
M proceeds as follows.
Step 1: Test patterns are generated forM (a combinational cir-
cuit) using a combinational ATPG tool.

Step 2: The test patterns are applied to M: the values are fed
through primary inputs at appropriate times, so that the de-
sired test patterns can be applied toM.

Step 3: The responses of M to the test patterns are propagated
to primary outputs for observation.
A test plan specifies the control signals so that the test pat-

terns and the responses can be propagated. Strong testability
of a data path is defined as follows.
Definition 1: Strong Testability [5]
A data path is strongly testable if there exists a test plan for
each combinational hardware elementM that makes it possible
to apply any pattern toM and to observe any response ofM. ✷
A strongly testable data path has the following advantages.
• Test pattern generation time is short since a combinational
ATPG tool can be used for each combinational hardware el-
ement separately.

• Test plan generation time is short since test plans are gener-
ated at RTL (not at gate level).

• 100% fault efficiency can be achieved for the whole data

path, since each hardware element M under consideration is
a combinational circuit of small size and strong testability
guarantees complete controllability and observability of M
in the data path.
Let TP be a test plan of a combinational hardware element

M in a strongly testable data path. The test plan TP can propa-
gate any pattern of M along several paths CP from primary in-
puts to M. Similarly, TP propagates any response of M along
several paths OP fromM to primary outputs. The test plan TP
generally consists of three phases: a control phase, a test phase
and a observation phase. Here, let R(CP) be a set of registers
which are the nearest registers from M on paths in CP and let
R(OP) be a set of registers which are the nearest registers from
M on paths in OP.
Control phase: The sequence of control vectors corresponding
to the control phase in TP propagates any pattern from pri-
mary inputs of the data path to every register in R(CP) if
R(CP) ̸= φ. Otherwise, the control phase is not necessary.

Test phase: The control vector corresponding to the test phase
in TP propagates any pattern from primary inputs and/or
every register in R(CP) and any response from data outputs
of M to every register in R(OP) and/or primary outputs.

Observation phase: The sequence of control vectors corre-
sponding to the observation phase in TP propagates re-
sponses from every register in R(OP) to primary outputs if
R(OP) ̸= φ. Otherwise, the observation phase is not neces-
sary.
For a controller/data path circuit, test plans of the data path

must be applied to control signals. In the test architecture of
[3], we generate the test plans from inside of the circuit by ap-
pending extra logic called a test plan generator (T PG) which
generate test plans. For a strongly testable data path, a test
plan for a hardware element of the data path can not be gen-
erally composed of fixed control vectors such that control vec-
tors of the test plan varies clock by clock. Therefore a T PG
must be designed as a sequential circuit. If control vectors of a
test plan do not vary, the T PG becomes combinational circuit
and hence area overhead can be reduced. We introduce such a
testability defined as follows.
Definition 2: Fixed-Control Testability
A data path is fixed-control testable if the following conditions
hold.
C1: The data path is strongly testable.
C2: For each combinational hardware element M in the data
path, a control sequence of each phase in a test plan of M is
composed of only one control vector. ✷

In addition to advantages of strongly testable data paths, a
fixed-control testable data path has the following advantage.
• A test plan of a combinational hardware element is com-
posed of at most three control vectors.

IV. DFT METHOD FOR DATA PATHS

In our DFT method for a data path, as many test patterns and
responses of each hardware element as possible are propagated
along existing data path flows in the data path. If test patterns
and responses cannot be propagated along existing data path
flows, the DFT method appends DFT elements (e.g. masks,
multiplexers and bypass registers) to the data path to guarantee
that the test patterns and the responses can be propagated along
existing data path flows. We provide a brief explanation of the
DFT method.
Consider testing of a combinational hardware element M

with two data inputs, x and y, in the data path. To test M, a
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value specified by a test pattern should be fed into x. We prop-
agate the value along a path p from a primary input to x. If
an operational module M′ appears on p, the output value ofM′

will depend on the function and the input value(s) of M′.
In order to guarantee that the data output ofM′ is completely

controllable by the data input on p, thru function between the
input and the output is added to M′. Most of the popular op-
erational modules (e.g. adder) can realize the thru function by
using a mask element. The mask element generates a constant
which is required to realize the thru function. If we cannot re-
alize the thru function using the mask element, we realize the
thru function using a multiplexer. In the rest of this paper, we
assume that, for every operational module, thru function can be
realized by mask element in order to simplify the discussion.
However, we cannot achieve the fixed-control testability by

adding only the thru functions. The thru functions guarantee
controllability of a single path. To test M, a test pattern must
be applied to both the inputs x and y simultaneously. Pres-
ence of re-convergent paths in the data path can prevent such
application of the test pattern to M. In particular, this can hap-
pen if the propagation paths to the two inputs of M start from
the same primary input and have the same sequential depth2.
Such re-convergent paths will cause a timing conflict, i.e. two
different values are required on a primary input at the same
time. In the concept of strong testability [5], such conflicts
are resolved by using hold functions of registers where a regis-
ter originally has a hold function or is augmented with a hold
function. However, since use of hold functions of registers
spoils fixed-control testability, we cannot use the hold func-
tions. To resolve such conflicts, in this DFT method, some
registers are bypassed by multiplexers and bypass registers are
added to some signal lines.
The goal of the DFT method is to make a given data path

fixed-control testable with the minimum hardware overhead.
Practical implementation of an algorithm for the DFT method
also dictates that the computation time for the DFT insertion
and test plan generation algorithms be manageable. We pro-
pose a heuristic algorithm for the DFT method. The heuristic
algorithm for the DFT proceeds in the following two stages.
Stage 1 (Construct paths): For each data input of hardware el-
ements, we determine a path which is used to propagate test
vectors from a primary input to the data input . Similarly, for
each hardware element, we determine a path which is used
to propagate responses from the data output to a primary out-
put. In this stage, we pay attention to reduce test application
time and minimizing the number of DFT elements added at
the next stage.

Stage 2 (Add DFT elements): To ensure the propagation capa-
bility of the paths determined at the Stage 1, we add DFT
elements (thru function, multiplexer and bypass register) to
the data path at strategic locations.
The limitation of space prevents us describing the details of

the DFT algorithm. See [7].

V. TEST ARCHITECTURE OF RTL CIRCUITS

In our DFT for an RTL controller/data path circuit, we first
apply the DFT method of [4] to the controller and apply the
DFT method proposed in Section IV to the data path. Then,
we embed mechanisms to enhance controllability and observ-
ability of the control signals and the status signals in the same

2The number of registers on a path is called sequential depth of the path.
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Fig. 2. Test architecture of a controller/data path circuit.
way as the method of [3] so that the testing methods of con-
trollers and data paths can be applied.
The test architecture of the controller/data path circuit of our

method is shown in Figure 2. The circuit is configured by con-
trolling test pins as shown in Table I.

TABLE I
CONFIGURATIONS OF TEST

ARCHITECTURE.
Test Pins

t0 t1 t2 t3 t4
Operation

0 0 0 0 0 Normal operation
1 0 1 ∗ ∗ Testing controller
0 1 ∗ ∗ ∗ Testing data path

∗: depend on test patterns or test plans

Since the test architecture
of the circuit except for the
test controller shown in Figure
2 is the same as that proposed
in [3], we discuss only the test
controller.
Test plans are generated for

all the combinational hard-
ware elements in a data path of a circuit. In our test archi-
tecture shown in Figure 2, all the test plans of the data path are
generated by a test controller. The test controller consists of a
test plan generator(T PG), a test pattern register(TPR) and a
target module register(TMR).

TABLE II
CONFIGURATION OF TEST

CONTROLLER.
Mode
t3 t4

Function

0 0 Setting TPR and TMR
0 1 Control phase
1 0 Test phase
1 1 Observation phase

Let us consider the testing of
a combinational hardware element
M, which has data inputs and con-
trol inputs, in the data path. The
TMR is used to store the index of
a test plan of M. The bit width
of the TMR is log2m where m is
the number of test plans for all the
combinational hardware elements in the data path. The T PG
generates a test plan if the index of the test plan is stored in the
TMR. The T PG is designed as a combinational circuit and
controlled by t3 and t4 as shown in Table II. The T PG gener-
ates a control vector for a phase of the test plan. A test pattern
for the control inputs of M is pre-stored in the TPR before en-
tering the control phase and is applied to the control inputs by
way of T PG in the test phase. The load enable signal for TPR
and TMR is controlled from the t3 and t4 by way of T PG
as shown in Table II. The mode switching signal t1 is used to
disable DFT elements of the data path in the normal operation
mode of the circuit.
We also consider testing of a T PG . Since the T PG is not

used at the normal operation, we test the T PG only to confirm
that the test plans are generated correctly. It is performed by
observing primary outputs of a data path by way of MUX3 (see
Figure 2).

VI. EXPERIMENTAL RESULTS
In this section, we evaluate effectiveness of our proposed

method by experiments. Circuit characteristics of RTL bench-
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TABLE III
CIRCUIT CHARACTERISTICS.

Controller Data pathCircuit #gates #PI #PO #S #SI #CO #gates #PI #PO |bit| #R #M #gates
GCD 1524.5 1 1 4 3 7 169.4 32 16 16 3 1 1350.9
JWF 6875.4 1 0 8 0 38 199.5 80 80 16 14 3 6671.7
LWF 1986.2 1 0 4 0 8 57.7 32 32 16 5 3 1924.3
PAULIN 24965.6 1 0 6 0 16 123.5 64 64 32 7 4 24833.7
RISC 62287.6 1 2 11 54 62 3986.9 32 96 32 40 4 58157.9

TABLE IV
TEST GENERATION RESULTS.

TG time(sec.) TA time(cyc.) FE(%)
Circuit Scan Prev. This Scan Prev. This Scan Prev. This
GCD 171.51 0.69 0.69 6629 504 504 100.00 100.00 100.00
JWF 2.88 0.37 0.27 20519 1497 1621 100.00 100.00 100.00
LWF 0.47 0.27 0.27 4066 517 443 100.00 100.00 100.00
PAULIN 4.68 2.11 2.20 16187 2193 2172 100.00 100.00 100.00
RISC 51740.92 71.50 72.29 1006154 9674 7768 99.97 99.99 99.99

mark circuits used in the experiments is shown in Table III.
The circuits GCD, JWF, LWF and PAULIN are popularly used
examples and the circuit RISC is a practical and large design.
In our experiments, we used a logic synthesis tool AutoLogicII
(Mentor Graphics) with its sample libraries to synthesize these
benchmark circuits. In this table, column “#gates” denotes the
total areas after synthesis. Here, areas are estimated using gate
equivalent of the library cell area. Columns “#PI”, “#PO” and
“#gates” of columns “Controller” and “Data path” denote the
numbers of primary inputs and primary outputs and circuit area
of respective parts. Columns “#S”, “#SI” and “#CO” in “Con-
troller” denote the numbers of states, of status inputs and of
control outputs. Columns “|bit|”, “#R” and “#M” in “Data
path” denote the bit width of data paths and the numbers of
registers and of operational modules in data paths.
Test generation results are shown in Table IV. The ATPG

tool TestGen (Synopsys) is used as a combinational ATPG tool
in this experiments on Ultra60 model 2360 (Sun Microsys-
tems). Columns “TG time”, “TA time” and “FE” denote test
generation time in second, test application time in clock cy-
cles and fault efficiency. In each of these columns, columns
“Scan”, “Prev.” and “This” denote the results of the circuits
modified by the full-scan design, of the circuits modified by
the method of our previous work[3] and of the circuits mod-
ified by our proposed method in this work. Test generation
time of the proposed method is almost the same as the method
of [3]. Test generation time of the proposed method is shorter
than that of the full-scan. Especially, for the circuit RISC, the
proposed method can reduce to 1/700 of the full-scan design
and can enhance fault efficiency compared to that of the full-
scan design. For the circuit, fault efficiency is 99.99% because
the combinational ATPG tool can not generate a test pattern
for a fault in a multiplier of the circuit in the method of [3] and
the proposed method. Test application time of the proposed
method is shorter than the method of [3]. Test application time
of the proposed method is drastically reduced compared with
that of the full-scan design.
The area and pin overheads of the full-scan design, the

method of [3] and the proposed method are shown in Table
V. Columns “C”, “DP”, “TC” and “MUX” in columns “Prev.”
and “This” of column “Area overhead” denote the area over-
head of controllers, data paths, test controllers and multiplex-
ers added to control signals, status signals and primary outputs
of data paths. In the proposed method, area overhead of test
controller is less compared to the method of [3]. Furthermore,
for data paths, however a fixed-control testable data path can
achieve simpler test plans compared to strong testable one, the
difference between the area overhead of the proposed method

TABLE V
HARDWARE OVERHEADS.
Area overhead(%) Pin overhead(#)

Circuit Prev. ThisScan C DP TC MUX C DP TC MUX Scan Prev. This

GCD 26.6 39.7 1.1 2.6 23.2 12.8 32.8 1.1 2.6 16.3 12.8 3 5 5
JWF 26.7 37.1 0.4 5.2 21.9 9.7 41.9 0.4 9.3 22.1 10.0 3 5 5
LWF 33.4 48.6 0.8 18.1 21.1 8.6 44.6 0.8 18.1 17.1 8.6 3 5 5
PAULIN 7.4 8.1 0.2 1.2 5.3 1.4 7.1 0.2 2.5 3.0 1.4 3 5 5
RISC 16.7 27.3 0.1 10.9 12.5 3.6 21.0 0.1 9.6 7.6 3.7 3 6 6

and that of the method of [3] is not large. Especially, for RISC,
the proposed method can reduce the area overhead compared
with the method of [3]. In these results, area overhead of the
proposed method is less than that of the method of [3] for all
circuits except JWF. The area overhead of the proposed method
is larger than that of the full-scan design but the difference be-
tween the area overhead of the proposed method and that of the
full-scan design is not large. The pin overhead of the proposed
method is the same as the method of [3] and larger than that
of the full-scan design. In return for these disadvantages, the
proposed method allows at-speed testing.

VII. CONCLUSION
This paper presented a non-scan DFT method for con-

troller/data path circuits designed at RTL and that for data path
based on fixed-control testability. The proposed method can
achieve 100% fault efficiency and allows at-speed testing. We
reduced the hardware overhead in the presented method com-
pared to the method of our previous work [3]. The hardware
overhead of the method is slightly more than that of the full-
scan design. Since the hierarchical test generation can be ap-
plied to the data path part of the circuits, test generation time
of the proposed method is shorter than that of the full-scan
design. Furthermore, since the proposed method uses no tradi-
tional scan path, test application time is very low.
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