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Abstract
In this paper, we present a robust test generation

algorithm for combinational circuits based on the
Boolean satisfiability method called SPIRIT. We
elaborate some well-known techniques as well as present
new techniques that improve the performance and
robustness of test generation algorithms. As a result,
SPIRIT achieves 100% fault efficiency for a full scan
version of the ITC'99 benchmark circuits in a reasonable
amount of time.

 1. Introduction
In recent years substantial progress has been achieved

in the field of Electronic Design Automation (EDA) using
the Boolean satisfiability (SAT) method. Originally
motivated by the work of T.Larrabee [13] in test pattern
generation (TPG), the SAT method has been applied to
many other EDA applications. Test generation itself plays
a key role in other processes such as logic optimization,
verification, design-for-testability, and built-in self-testing
where the efficiency of the combinational TPG algorithms
is an important issue. Therefore, understanding and
improving test generation has not only practical
importance, but it might also offer insight into several
other related SAT-based EDA applications. The basic
parameters of the ATPG systems are performance and
robustness estimated by CPU time and fault efficiency.
The ultimate goal of this work is to propose efficient
techniques for improving the robustness of the TPG
algorithms. To do so, we study the well-known and most
successful ATPG systems: (structural) PODEM[5],
FAN[7], SOCRATES[20] and ATOM[9], (algebraic)
Nemesis[13], TRAN[1] and TEGUS[21], and (mixed)
TIP[10,22]. The most important techniques implemented
in SPIRIT are described briefly below:

• 9-V[17] and 16-V[19] algebra for more precise value
assignment and search space reduction • X-path check [5]

as an efficient technique for early detection of
inconsistency during propagation • Unique sensitization
[7] and dominators [20] as efficient concepts for dynamic
learning during propagation • An unjustified line [7,8] as
an efficient concept for justification and an early detection
of inconsistency • Static learning [20] as an efficient
technique for deriving new dependencies between signals
during preprocessing • Recursive learning [12] as efficient
technique for dynamic learning during propagation and
justification • Boolean satisfiability as a method giving an
elegant formulation of the TPG problem [13] • Single
cone processing [15] and single path oriented propagation
[10] as efficient approaches for reducing the search space
of the TPG problem • Backward justification [11] as an
alternative of PODEM algorithm making decisions on
only the primary inputs • A new data structure of the
complete implication graph [3] as an alternative of the
complete implication graph used in [10,22] • Duality of
learning [4] as an efficient concept for improving
justification and avoiding overspecification.

In previous work [4], we examined some not so
popular approaches such as single cone processing [15],
single path oriented propagation [10] and backward
justification [11]. We showed that two techniques, static
learning [20] and duality of learning [4], are sufficient to
achieve both high performance and robustness for the
ISCAS’85 and ISCAS’89 benchmark circuits. Without
fault simulation, SPIRIT generated complete test sets for
these benchmark circuits within 3 minutes on a 450MHz
Pentium-III PC. In this paper, we propose new techniques
and heuristics to increase the efficiency of these
approaches.

The rest of the paper is organized as follows. In
Section 2, a system overview of SPIRIT is provided. In
Section 3, new techniques and heuristics are presented.
Section 4 provides experimental results and Section 5
concludes the paper.
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2. System overview
The most typical SAT-based algorithms [1,13,21]

translate the TPG problem into a characteristic formula
that represents both the logical and structural constraints
for the possible solutions. The formula is usually written
in a conjunctive normal form (CNF) where one sum is
called a clause. Clauses with one, two, or more variables
are called unary, binary, and k-nary clauses respectively.

SPIRIT represents the CNF formula using a new data
structure for the complete implication graph proposed in
[3]. More formally, a node in the implication graph
represents each variable in the CNF formula. Each binary
clause (X ∨ Y) is represented by two local implications,
(X=0 → Y=1) and (Y=0 → X=1). Each k-nary clause is
represented by 2k ∧-nodes, k local ∧-implications and a k-
bit key dynamically calculated by the binding procedure.
Figure 1 sketches the data structure of a ternary clause of a
2-input AND gate. In contrast to the complete implication
graph used in [10,22], this data structure allows unified
representation of both ternary and k-nary clauses as well
as both local ∧-implications and derived global ∧-
implications during static learning.

Since a test pattern for a fault is an input vector that
sensitizes the fault and propagates the fault effect to a
primary output, we consider that: a test pattern is found iff
both the fault under consideration and a propagation
path are sensitized and all unjustified lines are justified. If
one of these conditions cannot be satisfied, the fault is
proved as undetectable in respect to the current primary
output. In this way, we avoid extracting the structural
constraints and simplify the satisfying the logical
constraints for test generation. This definition
considerably increases the efficiency of the SAT-based
TPG algorithms. For example, the premier SAT-based
TPG algorithms [1,13,21] consider that a test pattern is
found when the formula is satisfied, i.e., every clause in
that formula evaluates to 1. This approach potentially
increases the complexity of the TPG problem. The recent
SAT-based TPG algorithms [4,6,22] also use justification
by checking for an empty J-frontier instead of checking
whether all the clauses in the formula are satisfied.

The phases of SPIRIT are shown in Figure 2. In
contrast to the most typical SAT-based TPG algorithms
[1,13,21], SPIRIT builds the implication graph and
performs static learning once for the whole circuit since

these are prominent and time-consuming steps. Using
single path oriented propagation, we avoid extracting
structural constraints [1,13,21]. Using single cone
processing, we apply a “divide-and-conquer” strategy and
keep the size of the TPG problem as small as possible.
This approach may produce more that one test session for
a redundant or even detectable fault because SPIRIT has
to prove that the fault is undetectable in respect to each
primary output where the fault effect can be observed. On
the other hand, this approach allows more effective
application of many TPG techniques.

3. New test generation techniques
In this section, we present techniques and heuristics for

improving the robustness of the TPG algorithms.

3.1. Augmented unique sensitization
Since the propagation procedure is based on the single

path oriented propagation (SPOP) approach [10], we
briefly describe this approach. Beginning from the fault
location forward to the primary output, SPOP sensitizes
path-segment by path-segment where a path-segment is
defined as a subpath starting at the fault location or a
fanout branch and ending at a fanout stem or the primary
output. For SPOP, the fanout stems are decision points
and the next path-segment is selected by sorting the fanout
branches using propagation coefficients during cone
preprocessing (Figure 2). During propagation, an
inconsistency can be easily found by deriving as many as
possible implications at each level of the decision tree. To
do so, we apply static learning [20], static 16-V search
space reduction [4], unique sensitization [7], dominators
[20], and dynamic learning based on first level recursive
learning [12]. Many potential conflicts can be avoided by
dynamic learning restricted to an area near to the primary

Figure 1. The representation of local ∧-implications

Figure 2. SPIRIT flowchart
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output. The propagation procedure based on this
assumption has two extra steps:

Step 1: This step is performed after the fault and all
unique gates are sensitized, and first level recursive
learning on the unjustified lines is performed. In general,
the propagation procedure checks all alternative decisions
for the end of the propagation path. First, some
propagation paths near to the primary output are
invalidated by assigning value D and D  to certain lines.
Next, a convergent gate for all valid propagation paths is
determined. Let us assume that A1,...,An are the
alternative decisions for the end of the propagation path,
then some implications can be found by first level
recursive learning, i.e., as an intersection of the
implications produced by these alternative decisions.

Step 2: This step is based on restricted dominators,
i.e., the dominators in the last path segment starting from a
fanout branch and ending at the primary output. If the next
path segment has a restricted dominator then the
propagation procedure finds some dynamic implications
by first level recursive learning on the alternative
decisions for sensitization of the path segment starting
from the restricted dominator and ending at the primary
output. More formally, the propagation procedure
sensitizes this path segment by propagating both value D
and value D  to the primary output. Dynamic implications
are derived as an intersection of the implications produced
by both alternative decisions, propagate value D or value
D  to the primary output.

3.2. Improved X-path check
Since SPOP does not suppose justification of each

sensitized path, it is possible that a propagation path is
sensitized but cannot be justified. Such a path is called an
unjustifiable path. Early identification and reduction of the
unjustifiable paths is important to improve the robustness
of the TPG algorithms. To achieve this, we propose a path
pruning technique based on an analysis of the undetectable
faults in respect to the current primary output and applied
during X-path check.

Assumption 1: If a stuck-at-0 (1) fault in line X be
undetectable then all paths propagating value D ( D ) via
this line cannot be sensitized and justified.

Clearly, Assumption 1 is not true, but it may accelerate
the test generation. More formally, the cases where
Assumption 1 is not valid are easily identified and the
remaining undetectable faults are used for path pruning.
Accordingly, X-path-check considers that the value D and
D  cannot be propagated via a line with undetectable

stuck-at-0 or 1 fault respectively.

The advantage of this technique is that it reduces not
only the number of backtracks during propagation but also
the number of the sensitized unjustifiable paths. The
disadvantage of this technique is that to be effective, the
fault lists should be processed in reverse order, i.e., from
the primary outputs to the primary inputs.

3.3. Improved backward justification
Justification is performed after a propagation path to

the primary output is sensitized. The justification
procedure is based on justification coefficients calculated
during circuit preprocessing (see Figure 2). These
coefficients take into account the functions and structure
of the circuit and measure the relative difficulty of
justification for each line. Duality of learning is another
important technique used by the justification procedure.
Accordingly, the justification procedure avoids
justification of spare unjustified lines by removing all
forward global implications and ∧-implications after static
learning as well as by restricting dynamic learning to the
unjustified lines in the J-frontier [4]. The justification
procedure also uses the following strategies (heuristics) to
select the next unjustified line for justification:

S1: Depth-first search strategy gives a higher priority
to the unjustified lines more recently included in the J-
frontier.

S2: First-difficult/First-easy are two orthogonal
strategies giving a higher priority to the unjustified lines
more difficult/easier for justification according to the
justification coefficients.

S3: First-local/first-global are two orthogonal
strategies giving a higher priority to the unjustified lines
located near/far from the last processed unjustified line.
Clearly, the first-local strategy is oriented to finding an
inconsistency at the nearest fanout stems, while the first-
global strategy is oriented to finding an inconsistency at
the primary inputs.

S4: Decision tree reduction. This strategy tries to
minimize the size of the decision tree. Clearly, the
justification of 2-input gates is more difficult than the
justification of k-input gates where k≥3 because in the
second case, many alternatives for justification exist, i.e.,
it is sufficient that just one of the inputs of these gates can
be set to the control value. Giving a higher priority to the
unjustified lines corresponding to gates having less inputs
can reduce the size of the decision tree by decreasing the
number of the branches in the highest levels of the
decision tree.

Strategy S1 is basic for the justification procedure.
Strategy S2 is used for an initial ordering of the J-frontier
after a successful propagation, while strategies S3 and S4
are used for a reordering of the J-frontier during
justification. For example, strategy S1 is applied by a
stack-type J-frontier using the first-in-first-out model. To



increase effectiveness of strategy S4, a super gate
extraction is performed during circuit preprocessing. By
sorting the inputs of each super gate using the justification
coefficients, we suppose that each unjustified line can be
easily justified by assigning a certain value to the first
unspecified input of the corresponding super gate. Here,
we consider that super gates are extracted by direct
backward justification [23]. Figure 3, is an example for
super gate extraction. To determine the super gate of gate
G in Figure 3(a), we set line G to 0 and performed all
direct backward implications. As a result, lines A and B
are set to 0, and lines C and D are set to 1. The resultant
super gate is shown in Figure 3(b). Let us suppose that
lines A, B, C and D be very easy, difficult, easy and
difficult for justification, respectively. In the original
circuit, the decisions for justification of line G are sorted
according to the justification coefficients and will be
performed top-down. Without super gate extraction, the
second decision for justification of line G will be B=1
declared as difficult for justification. After super gate
extraction, the second decision for justification of line G
will be C=0 declared as easy for justification. Therefore,
the super gate extraction may improve justification of line
G if the first decision, A=1, is inconsistent.

3.4. Avoiding critical area
This heuristic was inspired by the work in [8,14,18].

Clearly, the justification is the critical phase of test
generation. For example in [8], the proof of NP-
completeness of the TPG problem is based on a
polynomial transformation of the justification into the
3CNF-SAT problem. Hereafter, we suppose a similar
transformation, and represent the justification by a
dynamically updated formula (J-formula). Clearly, the J-
formula includes a part of the characteristic formula
corresponding to a subcircuit involved in the justification
process because justifying and satisfying the CNF formula
are not equivalent. In [14], T.Larrabee showed that for
each clause to variable ratio bigger than 4.2, the
percentage of satisfiable randomly generated 3CNF
formulas decreases as a function of the number of clauses.
Also, around this ration the random 3CNF formulas need
much more CPU time to be satisfied or to be proved as
unsatisfiable. We call this area critical. In [18], a relation
between cut-width propertys of a circuit and the worst

case complexity for test generation is discussed. Let us
associate the unjustified lines and the primary inputs
involved in the justification process with the clauses and
the variables of the J-formula. Clearly, each value
assignment during the search process changes the clause
to variable ratio and the cut-width properties of the J-
formula. Until this point, we used these characteristics
informally by choosing SPOP. Let us compare the two
alternative approaches for justification: (1) justification of
the whole propagation path (the SPOP approach) and (2)
justification of each path segment in respect to the critical
instances (hard to prove redundant faults). We may
consider the first approach as more effective because: (1)
the application of the orthogonal strategies S2 and S3,
presented in Section 3.3, is restricted for the second
approach; and (2) the J-formula can fall into a critical area
somewhere between the fault location and the primary
output. In this case, the second approach for justification
needs more time to prove the J-formulas as unjustifiable
within the critical area. In [4], we experimentally showed
that many redundant faults can be identified during the
propagation phase, i.e., without justification. However,
SPOP may sensitize one or more propagation paths for
redundant faults that are difficult to be proved as
unjustifiable because the J-formula falls into a critical area
during justification. To avoid the critical area in these
cases, the justification procedure selects up to 5 variables
and proves the sensitized propagation path as unjustifiable
for all possible value assignments of the selected
variables. To improve the cut-width properties, the
justification procedure selects variables corresponding to
the fanout stems having a maximum number of fanout
branches. As a result, many or all value assignments of the
selected variables are inconsistent. The remaining
instances need fewer backtracks because of the improved
cut-width properties of the J-formula.

4. Experimental results
We implemented the techniques presented in Section 3

in the ATPG system SPIRIT[4], and ran experiments on a
full scan version of the ITC’99[2] benchmark circuits on a
450 MHz Pentium-III PC. Table 1 provides the basic
characteristics of the ITC’99 benchmark circuits. Columns
2 to 7 give the number of gates (excluding INV and EQU
gates), primary inputs, primary outputs, lines, detectable
and redundant faults. Columns 8 and 9 give the average
and maximum cone size estimated by the number of
variables (#primary inputs + #gates). Columns 10 and 11
give the average and maximum size of super gates.

SPIRIT was run in two passes. In the first pass, the
maximum number of sensitized unjustifiable paths during
propagation and backtracks during justification was set at
3. Likewise, the maximum number of value assignments
was set at 10000. In the second pass, all these parameters

Figure 3. Super gate extraction
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were set 100 times higher and the heuristic for avoiding
the critical area was applied to improve the robustness of
SPIRIT. The experimental results are provided in Table 2.
Columns 2-7 give the number of faults, test patterns,
aborted faults as well as the preprocessing and test
generation time (TPG), fault simulation time (FS) and
total time in seconds. The next columns give the
experimental results of an available commercial ATPG
system. Two experiments, with a time limit per fault of 10
and 50 seconds, were run on Sun UltraSparc 60/2360. In
the first experiment, the commercial ATPG system was
faster than SPIRIT. The main reason was that SPIRIT
used a compiled fault simulator based on the single-
pattern parallel-fault propagation approach that is
ineffective for large circuits. In the second experiment, the
CPU time of the commercial ATPG system was much
longer than that of SPIRIT but still too many aborted
faults remained, 3268 (0.86%). In both experiments, the
test sets of the commercial ATPG system were smaller
than those of SPIRIT, 7165 and 13797 test patterns
respectively. However, we should take into account that
these test sets are incomplete, i.e., all aborted faults are
potentially detectable.

In this work, we examined many other TPG
techniques, but they were ineffective with this benchmark
set. Some of these techniques were dynamic head lines
[7], dependency-directed backtracking [16], and deriving
and performing global ∧-implications [3]. Actually,
SPIRIT achieved the best performance without static
learning. The reason is that a high dependency between
signals in the ITC’99 benchmark circuits exists and too
many global implications and ∧-implications were derived
during static learning. In general, static learning increases
the robustness of SPIRIT but decreases the performance in
some cases. Table 3 presents an impact of the proposed
techniques on the efficiency of SPIRIT. This experiment
showed that the application of the SPOP approach without
both static and dynamic learning might be quite time-
consuming (rows 3 and 4 in Table 3). Also, the heuristic
for avoiding the critical area is essential to achieve 100%
fault efficiency.

To assess the negative impact of the implemented
techniques, we ran SPIRIT without simulation for the
ISCAS’85 and ISCAS’89 benchmark circuits (the same
experiment as in [4]). The total time was 298 sec., i.e., the
performance of SPIRIT was degraded by 73.2 percents.

5. Conclusions
In the previous work [4], we examined some not so

popular approaches such as single cone processing, single
path oriented propagation, and backward justification, and
showed that they are efficient. In this paper, we proposed
efficient techniques for these approaches. In fact, some of
the proposed techniques elaborate the well-know

techniques, while other techniques present new ideas for
improving the robustness of the TPG algorithms. As a
result, SPIRIT generated complete test sets for the ITC’99
benchmark circuits in a reasonable amount of time. In this
way, SPIRIT is the first reported ATPG system able to
achieve 100% fault efficiency for the ITC’99 benchmark
circuits.
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Table 1: Characteristics of the ITC’99 benchmark circuits
#Faults Cone size Super gate inputsCircuit #Gates #Inputs #Outputs #Lines Detectable Redundant Average Max Average Max

1 2 3 4 5 6 7 8 9 10 11

B14s 4124 277 299 11346 12537 274 486 2519 4.01 38
B15s 7844 485 519 21285 23020 508 1166 4046 8.02 115
B17s 21556 1452 1512 58741 64108 1356 1207 4022 8.48 115
B18s 61636 3357 3343 167559 185205 3333 1483 8120 6.87 115
B20s 8189 522 512 22533 24852 486 688 3071 4.20 38
B21s 8544 522 512 23541 26084 496 753 3070 4.02 38
B22s 13162 767 757 35950 39488 776 739 3083 3.97 39

Total: 125055 7382 7454 340955 375304 7229 1185 8120 6.45 115

Table 2: Experimental results for the ITC’99 benchmark circuits
SPIRIT Commercial TPG system

Time, s Limit 10 sec. Limit 50 sec.Circuit #Faults #Test
patterns

Aborted
faults TPG FS Total #Faults Aborted Time, s Aborted Time, s

1 2 3 4 5 6 7 8 9 10 11 12

B14s 12811 939 0 44 8 52 12643 261 59 102 8495
B15s 23528 1179 0 516 38 554 23316 929 282 253 31735
B17s 65464 2803 0 1262 348 1610 65324 2682 1039 740 91354
B18s 188538 7305 0 2782 3214 5996 188458 6093 3439 1546 220482
B20s 25338 1590 0 93 29 122 25274 437 121 196 19074
B21s 26580 1505 0 112 29 141 26516 393 110 161 16118
B22s 40264 2221 0 198 69 267 40200 628 212 270 25348

Total: 382523 17542 0 5007 3735 8742 381731 11423 5262 3268 412606

Table 3: Impact of each technique on the efficiency of SPIRIT
Pass 1 Pass 2

SPIRIT Aborted Time, s Aborted Time, s
#Test

patterns
Total

time, s
1 All techniques without static learning 93 8438 0 304 17542 8742
2 All techniques with static learning 46 10358 0 278 -15 +1894
3 Augmented unique sensitization without step 1 120 10968 12 45301 +10 +47527
4 Augmented unique sensitization without step 2 108 9322 9 30191 -1 +30771
5 X-path check without path pruning 136 9117 0 343 -1557 +718
6 Backward justification without strategies S1,..,S4 132 9162 0 1639 -123 +2059
7 Second pass without avoiding critical area 93 8438 22 2734 -1 +2430


