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ABSTRACT
In this paper, we present a new data structure for a complete

implication graph and two techniques for low complexity static
learning. We show that using static indirect ∧-implications and
super gate extraction some hard-to-detect static and dynamic
indirect implications are easily derived during static and dynamic
learning as well as branch and bound search. Experimental
results demonstrate the effectiveness of the proposed learning
techniques.

1. INTRODUCTION
In recent years substantial progress has been achieved in

Electronic Design Automation (EDA) using the Boolean
satisfiability (SAT) method. The reason is development and
elaboration of efficient learning techniques. Originally
implemented in ATPG systems FAN[1] and SOCRATES[2],
learning finds static indirect implications during preprocessing as
well as dynamic implications during test generation. Further
improvement of the learning techniques has been achieved in
Nemesis[3] and TRAN[4] based on the Boolean satisfiability
method. The first complete learning algorithm, called recursive
learning, has been introduced in [5]. Now, the learning techniques
are widely used in many SAT-based applications such as logic
optimization, verification and test generation.

In general, learning plays a key role in avoiding unnecessary
backtracking during branch and bound search by finding as many
as possible implications at each level of the decision tree. Clearly,
if all implications are derived during branch and bound search,
each instance can be solved without backtracking. However, the
deriving all implications is also an NP-complete problem.
Therefore, increasing the precision of learning and keeping its
complexity as low as possible is an important issue for many
SAT-based applications.

The rest of this paper is organized as follows. In Sections 2
and 3, the basic learning techniques and procedures are provided.
In Section 4, we present a new data structure for a complete
implication graph and two new techniques for low complexity
static learning. Experimental results are given in Section 5, and
we conclude in Section 6.

2. BASIC LEARNING TECHNIQUES
The Boolean satisfiability method gives an elegant

formulation of many EDA problems. In general, the SAT-based
algorithms translate a problem to a formula that represents the
constraints for the possible solutions. The formula is usually
written in Conjunctive Normal Form (CNF) where one sum is
called a clause. Clauses with one, two, three, or more variables are
called unary, binary, ternary, and k-nary clauses respectively. The
first step in satisfying a formula is to construct an implication
graph. More formally, each variable X is represented by two
nodes X and X .  Each binary clause (X ∨ Y) is represented by

two implications ( X → Y) and ( Y  → X). Thus, the formula
can be easily manipulated since a binding procedure requires only
a partial traversal of the implication graph and checking the k-
nary clauses [3]. In this way, the implication graph represents only
the binary clauses. In [6], an efficient data structure representing
all clauses of the CNF formula has been implemented. The
resultant implication graph is called complete and contains two
types of nodes. While the first type nodes represent the variables,
the second type, called ∧-nodes, symbolize an conjunction
operation or simply a direct ∧-implication. In the complete
implication graph, each ternary clause is uniquely represented by
three direct ∧-implications, see Figure 1. However, this approach
requires dedicated transformation of the k-nary clauses into
ternary.

The premier learning procedures [1,2] are able to find a
limited set of indirect implications. Also, the precision of static
learning in [2,3] strongly depends on the order of value
assignments since some indirect implications can be found if
certain other indirect implications have already been derived. To
avoid this dependency, we assume an iterative computation of the
indirect implications [7]. The iterative static learning procedure
performs both 0 and 1 value assignments through the variables
until one full iteration produces no new implications.

2.1. Contradiction (learning rule 1)
In [2], static learning is performed as a preprocessing phase

based on the contrapositive law, (X→Y) ⇔ ( Y → X ), called
here a learning rule 1. Clearly, the 2CNF portion of a formula

Figure 1: Implications for binary and ternary clauses
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(only the binary clauses) priory fulfills the contrapositive law.
This is not true when the k-nary clauses are also included. For
example, it is possible that a value assignment sets k-1 variables
in a k-nary clause (where k≥3) and the clause is still unsatisfied.
Then a direct ∧-implication is performed and the last variable of
the clause is set to a value so that the clause is satisfied. For
example, value assignment B=0 for the network example 1,
Figure 2(a), sets variables D and E to 0 and clause (D ∨ E ∨ F )
is still unsatisfied. Next, the binding procedure performs forward
∧-implication and sets the last variable of this clause F to 0. Thus,
backward indirect implication (F=1 → B=1) is found by rule 1.
Also, value assignment D=1 for the network example 2, Figure
2(b), sets variables A and C to 0, and clause (A ∨ B ∨ C) is still
unsatisfied. Next, the binding procedure performs a backward ∧-
implication and sets the last variable B to 1. Thus, forward
indirect implication (B=0 → D=0) is found by rule 1.

2.2. Indirect ∧∧-implication (learning rule 2)
In [8], some indirect implications are derived as an

intersection of the implications for satisfying an unjustified gate,
called here a learning rule 2. The static learning procedure based
on rule 2 finds indirect implication (H=1 → B=1) for the network
example 3, Figure 2(c). More formally, the learning procedure
iterative calculates a transitive set consisting of all direct and
indirect implications derived by the transitive and contrapositive
laws for each value assignment. For example, since value
assignment H=1 sets variables D and G to 0, then to satisfy k-nary
clause (D ∨ E ∨ F ∨ G) either variable E or F must be set to 1.
However, each one of these value assignments implies that
variable B must be set to 1. Since B=1 is an intersection of the
transitive sets of value assignments E=1 and F=1, therefore B=1 is
a necessary assignment for satisfying clause (D ∨ E ∨ F ∨ G).
Thus, indirect implication (H=1 → B=1) is found. Clearly, this
indirect implication cannot be found by rule 1.

2.3. Recursive learning (learning rule 3.N)
The first complete learning algorithm, recursive learning

called here a learning rule 3.N, is introduced in [5]. If a level of
recursion N is not restricted, then all static and dynamic
implications are derived during static and dynamic learning. For
example, indirect implication (C=0 → L=0) for the network
example 4, Figure 3, cannot be found by rules 1 and 2 while this is
possible by rule 3.1 (first level recursive learning). During
iterative value assignments through the variables, the static
learning procedure first finds indirect implication (E=0 → H=0)

by rule 1, since value assignment H=1 sets variable E to 1. Next,
value assignment C=0 sets variables E, F and H to 0, and clause
(A ∨ G ∨ H) is still unsatisfied. To satisfy this clause, either
variable A or G must be set to 1, but both these assignments set
variable L to 0. Therefore L=0 is a necessary assignment and
indirect implications (C=0 → L=0) is found. These indirect
implications cannot be found by rules 1 and 2 since neither value
assignment A=1 or G=1 priory implies L=0 (L=0 is not in the
transitive sets of A=1 nor G=1).

3. LEARNING PROCEDURES
In this section, we make an analysis and classification of the

well-known learning procedures.

3.1. Structure based
The SOCRATES learning procedure [2] temporarily sets a

variable to value 0 or 1, and checks whether the variables
corresponding to gate outputs are set to non-controlling value
(learning criterion). In this way, the learning procedure finds the
indirect implications as a result of performing only forward ∧-
implications. For example, the SOCRATES learning procedure
cannot find indirect implication (B=0→D=0) for the network
example 2, Figure 2(b), although value assignment D=1 sets
variable B to 1 because B is not a gate output.

3.2. Clause based
In [3], an improved SAT-based static learning procedure is

presented. The bounding procedure first performs all implications
and then all direct ∧-implications by checking k-nary clauses.
Thus, new indirect implications can be easily identified since they
involve at least one direct ∧-implication (reduction of a k-nary
clause to unary). In this way, Nemesis finds an indirect
implication (B=0 → D=0) in the network example 2, Figure 2(b).

3.3. Implication graph based
In [4], the TRAN learning procedure derives indirect

implications by finding a transitive closure of the implication
graph and checking for certain properties. TRAN uses a fixation,
identification and exclusion to transform the k-nary clauses to
binary in order to be included into the implication graph. In fact,
TRAN applies rule 3.1 restricted to the unsatisfied clauses with
two unspecified variables because an analysis is made only on the
implication graph. In this way, TRAN finds some hard-to-detect
indirect implications, like (C=0 → L=0) and (L=1 → C=1) in the
network example 4, but it fails to find some indirect implications
derived by rule 2. On the other hand, the dynamical update of the
implication graph and the calculation of the transitive closure
make this learning procedure complicated and costly.

3.4. Set algebra based
In [8], an iterative learning procedure based on rules 2 and 3.1

is presented. For each value assignment, Simprid iterative
calculates two sets, transitive and contrapositive. The transitive set
of a value assignment is a list of all implications derived for this
assignment. While the contrapositive set of a value assignment is
a list of all implication for this assignment derived by rule 1
(contradiction). For example, if value assignment A=0 sets
variable B to 1, then implication B=1 is included into the
transitive set of assignment A=0 and implication A=1 is included
into the contrapositive set of assignment B=0.

Table 1 presents an analysis of the precision and complexity
of the well-known learning procedures. The precision is evaluated
by the network examples and learning rules disused in the

Figure 2: Network examples 1, 2 and 3

Figure 3: Network example 4 [8]
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previous section. The procedures are divided into three categories,
low, average and high, according to their complexity, O(MN),
O(M2N) and O(MN2) respectively, where N and M are the
number of variables and the average number of the variables set
by each value assignment.

Table 1: The well-known learning procedures
Network examplesLearning

procedures 1 2 3 4
Precision Complexity

SOCRATES[2] + - - - < rule 1 Low
Nemesis [3] + + - - rule 1 Low
TRAN [4] + + + + < rule 3.1 High
Simprid [8] + + + + rule 3.1 Average

4. NEW LEARNING TECHNIQUES
In this section, we introduce a new data structure for the

complete implication graph that facilitates the deriving and
performing the indirect ∧-implications.

4.1. New data structure of implication graph

Figure 4 depicts the proposed data structure of the complete
implication graph. To represent a k-nary clause, this data structure
needs 2k ∧-nodes organized as a one-dimensional array and a k-bit
key dynamically calculated by the binding procedure. Each bit of
the k-bit key corresponds to one variable in the k-nary clause. A
bit is set to 1, if the corresponding variable is specified and the k-
nary clause is still unsatisfied. We also use the following
conventions in this data structure: 1) we represent a gate instead
of a k-nary clause. In this case, we need more sophisticated
processing of (k/2-1)-input XOR gates; 2) we need one extra bit in
the k-bit key to represent that a gate is justified. This is the most
significant bit of the k-bit key. In this way, the k-bit key becomes
a negative integer when the gate is justified; 3) the less significant
bit of the k-bit key corresponds to the output of the gate. In this
way, we easily identify the unjustified gates and the type of ∧-
implications, forward or backward. Thus, this data structure
allows a unified representation of all gates as well as both direct
and indirect ∧-implications. Initially, all direct ∧-implications are
included into the complete implication graph. Next, all indirect ∧-
implications derived during static learning are also included into
the complete implication graph.

4.2. Deriving indirect ∧∧-implications (rule 2+)
Example 1: Let us consider how indirect implication (H=1 →

B=1) in the network example 3, Figure 2(c), can be easily found
by deriving the indirect ∧-implications during static learning.
First, value assignment B=0 sets variables E and F to 0 and clause
(E ∨ F ∨ D ∨ G) corresponding to gate G is still unsatisfied. To

take into account this relation, the learning procedure adds
indirect ∧-implication B=1 to ∧-node G=<0011>, see Figure 5.
Next, value assignment H=1 sets variables D and G to 0 and
clause (E ∨ F ∨ D ∨ G) corresponding to gate G is still
unsatisfied. Since the k-bit key of gate G is <0011>, then all
implications of ∧-node G=<0011> are valid, i.e., B=1 is a
necessary assignment. Thus, this learning procedure easily finds
indirect implication (H=1 → B=1). This learning technique is
called here a learning rule 2+. In fact, the learning rule 2+ is
equivalent to rule 2 but has lower computational complexity. In
addition, rule 2+ allows some dynamic implications to be easily
found during dynamic learning and branch and bound search.

4.3. Super gate extraction (learning rule A1)
A super gate of gate X can be found by performing all direct

backward implications of value assignment X=A where A is a
non-controlling value of the gate output X.

Example 2: Let us show how super gate extraction, called
here an auxiliary learning rule A1, improves static learning. For
the circuit shown in Figure 6(a), indirect implication (I=0 → B=0)
can be found by rule 3.1 (first level recursive learning). In the
transformed circuit shown in Figure 6(b), gates D, E and G are
replaced by their super gate  (3-input AND gate). In this case, a
static indirect implication (I=0 → B=0) can be found by rule 1.

Example 3: Let us show how rule 2+ and rule A1 improve
dynamic learning. After static learning based on rule 2+, two
indirect ∧-implications for gate I are found for the circuit shown
in Figure 6(c). After value assignment D=0, these indirect ∧-
implications validate dynamic implications (I=1 → B=1) and
(B=0 → I=0). Using implication (I=1 → B=1), dynamic
implication (J=1→ B=1) can be found by dynamic learning based
on rule 3.1 (first level recursive learning), otherwise dynamic
learning based on rule 3.2 (second level recursive learning) must
be applied. The dynamic implication (J=1→ B=1) can be found
without dynamic learning for the transformed circuit in Figure
6(d). In this case, gates I and J form super gate J and the indirect
∧-implications of super gate J derived during static learning
validate dynamic implication (J=1 → B=1) after assignment D=0.

Clearly, the proposed dada structure of the complete
implication graph is not feasible for manipulation of super gates
having too many inputs.  To avoid a huge expansion of super
gates, super gate expanding is restricted to the fanout stems. As a
result, this approach decreases the number of variables, gates and
stuck-at faults in the collapsed fault set of the transformed circuit.

Figure 4: Representation of direct ∧-implications

Figure 5: Representation of indirect ∧-implications

Figure 6: Deriving implications using rule A1
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5. EXPERIMENTAL RESULTS
We implemented the proposed data structure and techniques

in an efficient static learning procedure, and ran experiments on a
450MHz Pentium-III PC (SpecInt’95=18.7). Table 2 presents the
static learning results for the ISCAS’85 and the ITC’99
benchmark circuits. Column (2) gives the number of variables (V)
after super gate extraction where the size of the super gates was
restricted to 13 inputs. Columns (3-6) give the number of constant
assignments (CA), direct implications (DIRI) and indirect
implications (INDI) before and after static learning by rule 1. As
in [8], constant value assignments were not counted as
implications after static learning. Also, if a value assignment sets
itself and N other variables, then N+1 implications were counted.
Columns (7-10) give the number of indirect implications and
indirect ∧-implications (INDAI) derived by rule 2+. The
contribution of rule 2, rule 2+, and rule A1 was 203432
implications, 12175303 ∧-implications, and 3514 implications and
2748674 ∧-implications respectively. Columns (11-12) give the
CPU time of the proposed static learning procedure and the
Simprid learning procedure [8] (based on rule 2) ran on HP 9000
J200 (SpecInt’95=4.98). After normalization, our static learning
procedure is about 19 times faster than Simprid because of the
new data structure of the complete implication graph that avoided
the costly calculations for applying rule 2. In this experiment, we
made an indirect comparison of the implications derived by our
learning procedure and Simprid. The reason is that the number of
variables in [8] was calculated as a sum of the number of primary
inputs, primary outputs and gates. In this way, the variables
corresponding to the primary outputs and the outputs of INV and
EQU gates were doubled and some implications were counted
twice. Also, our learning procedure further reduced the number of
variables using super gate extraction. In [8], the contribution of
rule 2 and rule 3.1 was 1128 and 3040 implications respectively.
According to the experiment results for the ISCAS’85 benchmark
circuits shown in Table 2, the contribution of rule 2 and rule 2+
was 488 implications and 35520 ∧-implications respectively.
Taking into account these results, we clarify that static learning by
rule 2+ is even more precise than static learning by rule 3.1 while
rule 3.1 has a much higher computational complexity than rule 2+.

6. CONCLUSIONS
In this paper, we presented a new data structure of the

complete implication graph and two learning techniques based on
deriving and performing indirect ∧-implications and super gate
extraction. The experimental results demonstrated the
effectiveness of the proposed learning techniques. By keeping
complexity of static learning as low as possible, we achieved a
unified and fast implication procedure able to derive many hard-
to-detect static and dynamic indirect implications during static
learning, dynamic learning, and branch and bound search.
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Table 2: Static learning results
Learning rule 2+

No learning Learning rule 1 Original circuit Transformed circuitCircuit #V
#CA #DIRI #CA #INDI #INDI #INDAI #INDI #INDAI

CPU
time,s

CPU[8]
time,s

1 2 3 4 5 6 7 8 9 10 11 12

C432 129 0 911 0 153 +4 99 +4 135 0.03 0.4
C499 203 0 3246 0 168 +0 8 +0 8 0.03 1.4
C880 304 0 3164 0 176 +0 249 +0 446 0.04 0.5

C1355 515 0 19582 0 2392 +0 24 +0 24 0.11 2.9
C1908 460 0 13513 0 3267 +0 688 +0 852 0.19 4.8
C2670 826 3 14339 8 2771 +0 1593 +0 2916 0.20 12.3
C3540 895 1 67516 1 10220 +0 7878 +0 14283 0.85 77.5
C5315 1531 1 33416 1 13114 +452 7932 +452 8772 0.45 25.0
C6288 2416 17 20193 17 8309 +0 0 +0 0 0.37 11.0
C7552 2234 2 79734 4 56500 +32 7061 +32 8084 1.4 131.3
B14s 4329 2 678306 2 473876 +774 160593 +774 193195 6.4 -
B15s 7905 27 3973700 27 1968666 +26886 1073687 +27208 1170987 43.5 -
B17s 21717 84 11475514 84 7307960 +35412 3104267 +36468 3865899 140.2 -
B18s 62213 168 34075095 168 44950525 +120634 6401287 +122770 8109474 432.0 -
B20s 8549 8 1567314 8 841254 +5566 425512 +5566 449643 13.4 -
B21s 8889 6 1404961 6 926205 +1678 355413 +1678 387257 14.8 -
B22s 13654 9 2340927 9 1565645 +11994 629012 +11994 712002 22.7 -

Total: 136769 328 55771431 335 58131201 +203432 12175303 +206946 14923977 676.67 267.1


