
A DFT Method for Core-Based Systems-on-a-Chip
based on Consecutive Testability

Tomokazu Yoneda and Hideo Fujiwara
Graduate School of Information Science, Nara Institute of Science and Technology

8916-5 Takayama, Ikoma, Nara, 630-0101, Japan
tomoka-y, fujiwara @is.aist-nara.ac.jp

Abstract

This paper introduces a new concept of testability
of core-based systems-on-a-chip (SoCs) called consecu-
tive testability and proposes a design-for-testability (DFT)
method for making a given SoC consecutively testable
based on integer programming problem. For a consecu-
tively testable SoC, testing can be performed as follows.
Test patterns of a core are propagated to the core inputs
from the SoC inputs consecutively at speed of system clock.
Similarly the test responses are propagated to the SoC out-
puts from the core outputs consecutively at speed of system
clock. The propagation of test patterns and responses is
achieved by using the consecutive transparency properties
of surrounding cores and interconnects between cores. All
interconnects can be tested in a similar fashion. Therefore,
the method can test not only logic faults such as stuck-at
faults, but also timing faults such as delay faults that require
consecutive application of test patterns at speed of system
clock.
keywords: consecutive testability, consecutive trans-
parency, test access mechanism, core-based systems-on-a-
chip, design for testability

1 Introduction
A fundamental change has taken place in the way digital

systems are designed. It has become possible to design an
entire system, containing millions of transistors, on a single
chip. In order to cope with the growing complexity of such
modern systems, designers often use pre-designed, reusable
megacells knows as cores. Core-based systems-on-a-chip
(SoC) design strategies help companies significantly reduce
the time-to-market and design cost for their new products.
However, SoCs are difficult to test after fabrication[1].

In order to make SoC testable, the following three condi-
tions have to be satisfied. (1)There exist test pattern source
(TPS) and test response sink (TRS) for each core. The
TPS generates the test patterns for the embedded core, and
the TRS compares the test responses to the expected re-
sponses. (2)There exists test access mechanism for each
core. The test access mechanism propagates test patterns
and responses. It can be used for on-chip propagation
of test patterns from a TPS to the core-under-test, and

for on-chip propagation of test responses from the core-
under-test to a TRS. (3)Interconnects that exist between
cores are testable. In this paper, we assume that TPS
and TRS are implemented off-chip (i.e., embedded cores
are tested by using external primary inputs (PIs) / primary
outputs (POs)). Under this assumption, a major difficulty
concerns accessibility of embedded cores. Several tech-
niques of design for testability (DFT) have been proposed.
There are three main approaches to achieve accessibility
of embedded cores. The first approach is based on test
bus architectures[2, 3]. The second approach is based on
boundary scan architectures[4, 5]. The third approach uses
transparency[6, 7] or bypass mode[8] for embedded cores
to propagate test patterns and responses.
Under the design environment for SoCs, it is also impor-

tant to test timing faults such as delay faults as well as logic
faults such as stuck-at faults. For that reason, it is necessary
to be able to apply test patterns consecutively by using nor-
mal system clock and observe the responses consecutively
by using normal system clock. We call such a test access
consecutive test access. Although test bus approach is con-
secutively test accessible, it is difficult to test interconnects.
On the other hand, boundary scan, transparency, and bypass
mode approaches are able to test interconnects, they are not
consecutively test accessible.
In this paper, we propose new concepts,consecutive

transparency for cores and consecutive testability for SoCs,
as the properties that enable both above-mentioned consec-
utive test access and test for interconnects. Then we present
a DFT method to make a given SoC consecutively testable.
Consecutive transparency of a core guarantees that any in-
put sequence applied to an input port of the core can be
propagated to some output ports of the core, and any out-
put sequence that appears at an output port of the core can
be propagated from some input ports of the core consecu-
tively at speed of system clock. Consecutive testability of
an SoC guarantees that, for each core (for each intercon-
nect), by using consecutive transparencies of other cores,
test patterns can be fed into the core (the interconnect, re-
spectively) from PIs and the responses can be propagated
to POs consecutively at speed of system clocks. Therefore,
consecutive testability guarantees high quality of test since
any test sequence for a core can be applied to the core from
PIs and any response sequence can be observed at POs con-
secutively at speed of system clock (at-speed test).

IEEE the 10th Asian Test Symposium (ATS 2001), pp. 193-198, Nov. 2001.

core2

core3

core4

core7core6

core8

core5

core1

core9

Primary Inputs

Primary Outputs

Figure 1. Core-Based Systems-on-a-Chip

In this paper, we assume that TPS and TRS are imple-
mented off-chip. However it is easy to extend the method
so that TPS and TRS implemented on-chip by Built-In-Self-
Test can be dealt with.

This paper is organized as follows. In section 2, we intro-
duce an SoC model. In section 3, we introduce the consec-
utive transparency, the consecutive testability, and present
a new test methodology for testing SoCs. In section 4, we
present a DFT method for consecutive testability. Section 5
concludes this paper.

2 SoC Modeling
An SoC consists of hardware elements and intercon-

nects. A hardware element is a primary input (PI), a pri-
mary output (PO), or a core. For the sake of uniformity,
user-defined logic can be considered as another core. Each
individual core is testable and a precomputed test set is
available for each core which, if applied to the core, will
result in a very high fault coverage. We introduce ports of
each hardware element as interface points in a natural fash-
ion: signals enter into a hardware element through its input
ports, and exit through its output ports. For convenience,
we regard a PI as an output port and a PO as an input port.
An interconnect connects an output port with an input port.
Any number of interconnects can connect to the same out-
put port (i.e., fanout is allowed), but only one interconnect
can connect to the same input port. It is not necessary that
interconnects are of the same bit width.

3 A Test Methodology for SoCs Based on
Consecutive Testability

We present a new test methodology for SoCs based on
consecutive testability. Figure 2 illustrates a consecutively
testable SoC and the consecutive test access. A control sig-
nal is provided for each core by a test controller (either
off-chip or on-chip). Each control signal of a core deter-
mines the current test mode of the core called a configu-
ration. In Figure 2, a configuration of each core is deter-
mined and consecutive transparencies of shaded ports are

CUT

Test Sequence

time t : vector1
 time t : vector1’

Test Sequence

 time t +2 : response2
 time t +1 : response1

 time t +1+ m : response1
PO

PIPI

Test
Controller

selected consecutive
transparency

not selected consecutive
transparency

 latency: l cycles latency: k cycles

 latency: m cycles

 time t +2 - k : vector3
 time t +1 - k : vector2
 time t - k : vector1

 time t +2 - l : vector3’
 time t +1 - l : vector2’
 time t - l : vector1’

Test Response

Core 1
Core 2

Core 3

Core 4

Figure 2. Consecutive Test Access

realized. Consecutive transparency of an input port guaran-
tees that any input sequence applied to the input port can
propagate to some output ports consecutively at speed of
system clock , and consecutive transparency of an output
port guarantees that any output sequence that appears at the
output port can propagate from some input ports consecu-
tively at speed of system clock. Consecutive testability of
an SoC guarantees that, for each core (interconnect) in the
SoC, by selecting configurations of other cores, test patterns
can be consecutively fed into the core (interconnect) from
PIs and the responses can be consecutively propagated to
POs through consecutive transparencies of other cores and
interconnects. We define the consecutive transparency of a
core and the consecutive testability of an SoC in the follow-
ing subsections.

3.1 Consecutive Transparency
In this subsection, we define a new testability of a core

called consecutive transparency as follows.

Definition 1: Let I i be the ith bit of an input port I,
and O j be the jth bit of an output port O. Suppose that
there exists a configuration of a core which can realize a
path P between I i and O j . P is called a consecutively
transparent path if any input sequence applied to I i can
be consecutively observed at O j after some latency, and
then I i and O j are said to be consecutively transparent.
Moreover, a core is called to be consecutively transparent
if, for each port of the core, there exists a configuration that
can make all bits of the port consecutively transparent.

Figure 3 illustrates various configurations of a consec-
utively transparent core. A consecutively transparent core
has generally several configurations, and each configuration
can be identified by an ID number. By selecting a configu-
ration of a core, consecutively transparent paths of an I/O

w1 w2 w3 w5w4

w6

I1

w7 w8

(a) Configuration ID 1 (b) Configuration ID 2 (c) Configuration ID 3

(d) Configuration ID 4 (e) Configuration ID 5

PA

JA

POPAPA PO

JA JA

W(Ii) : bitwidth of
 an input port Ii
W(Oi) : bitwidth of
 an output port Oi
wi : bitwidth of consecutive
 transparent path

I2 I3

O1 O2

I1I2 I3

O1 O2

I1I2 I3

O1 O2

I1I2 I3

O1 O2

I1I2 I3

O1 O2

 W(I1) = w1 W(I2) = w2 + w3 W(I3) = w4 = w5

 W(O2) = w7 + w8 W(O1) = w6

Figure 3. Various Configurations of a Consec-
utively Transparent Core

port are realized and the I/O port can be made consecutively
transparent. For each configuration, all consecutively trans-
parent paths between an input port and an output port are
represented as one consecutively transparent path.

We classify consecutively transparent paths into three
types, PA (Propagation AND), PO (Propagation OR), and
JA (Justification AND). PA and PO are types of consecu-
tively transparent paths for input ports to propagate test re-
sponses. JA is a type of consecutively transparent paths for
output ports to justify test sequences. Figure 3(a) illustrates
type PA such that any input sequence applied to an input
port I1 propagates to only one output port O2. Figure 3(b)
illustrates type PA such that any input sequence applied to
an input port I2 propagates to two output ports(O1 and O2),
where any input sequence of bit width W I2 is bit-sliced
(W I2 w2 w3) and observed at two output ports (O1
and O2). Figure 3(c) illustrates type PO such that any in-
put sequence applied to I3 propagates to two output ports
(O1 and O2), where any input sequence of bit width W I3
is fanouted (W I3 w4 w5) and observed at two output
ports (O1 and O2).

We define a core connectivity graph G V E λ to rep-
resent an SoC composed of consecutively transparent cores:

V VPI VPO Vin Vout where
VPI is the set of all PIs of the SoC,
VPO is the set of all POs of the SoC,
Vin is the set of all input ports of cores in the SoC, and
Vout is the set of all output ports of cores in the SoC.
E Ecore Enet where
Ecore x y Vin Vout input port x is connected
to output port y by a consecutively transparent path ,
and
Enet y x Vout Vin output port y is connected
to input port x by an interconnect .
Labeling function λ : E 2C I T W where
C is the set of all cores in the SoC,
I is the set of all ID numbers of configurations,
T JA JO PA PO types of consecutively transpar-
ent path (JO is for fanouted interconnects) , and
W is the set of all bit widths of e E .
Especially for e Enet ,
λ e φ φ JO bit width of e φ φ PO bit width
of e

c1 c2

c3

c4

c5

c6

c8

c7

c9

Figure 4. Core Connectivity Graph

e1 e2

e3

e4 e5

 e1 : {{c, 2, PA, w2}, {c, 4, JA, w6}}
 e2 : {{c, 2, PA, w3}}
 e3 : {{c, 1, PA, w1}, {c, 5, JA, w7}}
 e4 : {{c, 3, PO, w4}}
 e5 : {{c, 3, PO, w5}, {c, 5, JA, w8}}

Figure 5. Label by λ

Figure 4 illustrates a core connectivity graph G which
corresponds to the SoC of Figure 1 and Figure 5 illustrates
edges labeled by λ which correspond to the core of Figure
3.

We refer to a vertex that has no input edge as a source,
and a vertex that has no output edge as a sink. For a core
connectivity graph G, selecting a configuration of a core is
to leave edges which have labels of the configuration and to
remove other edges from the core.

3.2 Consecutive Testability

In this subsection, we introduce a new testability of an
SoC called consecutive testability. For SoCs, it is important
to test timing faults such as delay faults as well as logic
faults such as stuck-at faults. For that reason, it is necessary
to be able to apply any test sequence from PIs to each core
and observe any response sequence at POs consecutively
at speed of system clock. Moreover, it is also important to
test interconnects between cores thoroughly. We formalize
consecutive testability of an SoC as a sufficient condition
that satisfies above-mentioned conditions. We first define
justification subgraph GJ and propagation subgraph GP as
follows.

Definition 2: Let G V E λ be a core connectivity graph
of an SoC and GJ VJ EJ λ be an acyclic subgraph of G.
For a core c C, GJ is called a justification subgraph of c
and c is said to be consecutively controllable if GJ satisfies
all the following conditions.

1. All input ports of c are sinks in GJ and only PIs are
sources in GJ .

2. For each edge u EJ , u has a label of either JO or JA.

3. Let G V E λ be a subgraph of G obtained by
selecting a configuration for each core. For each edge
u EJ ,

(a) u contains all input edges of u in G , and
(b) u contains only one output edge of u in G when

output edges have labels of JO in G .
Definition 3: Let G V E λ be a core connectivity graph
of an SoC and GJ VJ EJ λ be an acyclic subgraph of G.
For an interconnect e y x Enet , GJ is called a justifi-
cation subgraph of e and e is said to be consecutively con-
trollable if GJ satisfies all the following conditions.

1. Only y is a sink in GJ and only PIs are sources in GJ .
2. For each edge u EJ , u has a label of either JO or JA.
3. Let G V E λ be a subgraph of G obtained by

selecting a configuration for each core. For each edge
u EJ ,

(a) u contains all input edges of u in G , and
(b) u contains only one output edge of u in G when

output edges have labels of JO in G .
Definition 4: Let G V E λ be a core connectivity graph
of an SoC and GP VP EP λ be an acyclic subgraph of
G. For a vertex v V , GP is called propagation subgraph of
v and v is said to be consecutively observable if GP satisfies
all the following conditions.

1. Only POs are sinks in GP and only v is a source in GP.
2. For each edge u EP, u has a label of either PO or PA.
3. Let G V E λ be a subgraph of G obtained by

selecting a configuration for each core. For each edge
u EP,

(a) u contains all output edges of u in G when the
output edges have labels of PA, and

(b) u contains only one output edge of u in G when
the output edges have labels of PO in G .

Then, we define the consecutive testability of an SoC as
follows.

Definition 5: Let G V E λ be a core connectivity graph
of an SoC. An SoC is said to be consecutively testable if the
SoC satisfies the following two conditions.

1. For each output port v Vout of each core c C, there
exist one justification subgraph GJ of c and one propa-
gation subgraph GP of v where GJ and GP are disjoint.

2. For each interconnect e y x Enet , there exist one
justification subgraph GJ of y and one propagation
subgraph GP of x where GJ and GP are disjoint.

4 DFT for Consecutive Testability
This section presents a method for design-for-testability

(DFT) that makes a given SoC consecutively testable. We
assume that each individual core is testable and a precom-
puted test set is available for each core which, if applied to
the core, will result in a very high fault coverage, and the
internal design of the cores cannot be modified by DFT due
to IP (Intellectual Property) protection. Additionally, we as-
sume that all cores are consecutively transparent and control
signals for configurations can be controlled independently
of normal operations. Even if a core is not consecutively
transparent, we can make the core consecutively transpar-
ent by adding bypass routes outside the core. In the rest of

this paper, we consider the DFT under such assumptions.

4.1 Problem Formulation

Each core (each interconnect) in a consecutively testable
SoC is consecutively controllable and consecutively ob-
servable. In other words, for each output port of each
core (for each interconnect), a core connectivity graph
G that represents a consecutively testable SoC has one
justification subgraph GJ and one propagation subgraph
GP where GJ and GPare disjoint. When a given SoC does
not have such disjoint subgraphs, paths from PIs and paths
to POs are added using test MUXs (multiplexers) in the
proposed DFT.

Definition 6: The DFT for the consecutive testability is for-
malized as the following optimization problem.
Input: An SoC (a core connectivity graph)
Output: A consecutively testable SoC
Optimization: Minimizing hardware overhead (i.e., total
bit width of added MUXs)

4.2 DFT algorithm

We propose a DFT algorithm for consecutive testability.
The algorithm consists of the following four stages.

Stage 1: Augment a given SoC so that all cores are
consecutively controllable.
Stage 2: Augment a given SoC so that all cores are
consecutively observable.
Stage 3: Augment a given SoC so that all interconnects are
consecutively controllable.
Stage 4: Augment a given SoC so that all interconnects are
consecutively observable.

Due to limitations of space, we only present a procedure
of stage 1. However procedures for the other stages can be
presented in a similar fashion.

4.2.1 DFT for Consecutive Controllability of
Cores (Stage 1)

The objective of the first stage is to modify a given SoC
with minimum hardware overhead so that all cores are
consecutively controllable (i.e., all cores have justification
subgraphs). The strategy of the algorithm is that, for each
core, first it creates control initial graph, and second it
creates control middle graph. Then it induces conditions
such that each core has a justification subgraph (each core
is consecutively controllable), and formalizes the DFT as
integer programming problem. Justification subgraphs of
all cores are determined with minimum hardware overhead
by solving the integer programming problem.

Step 1: Creation of Control Initial Graph
The control initial graph GJc of a core c C is created

from a core connectivity graph G as follows.
1. Remove the edges which have labels of c and let the

vertices which correspond to the input ports of c be
sinks.

c1 c2

c3

c4

c5

c6

c8

c7

c9

1 1 1

1

1

1

1

2

2

2

AJc6 = {c1,c2,c3,c4,c7}
BJc1 = {1}
BJc2 = {1}
BJc3 = {1,2}
BJc4 = {1,2}
BJc7 = {1}

KJc6 = {{1,1,1,1,1},{1,1,1,2,1}
 {1,1,2,1,1},{1,1,2,2,1}}

Figure 6. Control Initial Graph GJc6

2. Remove the edges which have labels of neither JA nor
JO.

3. We define the control initial graph GJc as the set of
vertices and edges reachable to sinks.

Figure 6 illustrates a control initial graph GJc6 . Each
edge in GJc6 has a label of either JO or JA and the num-
ber beside e Ecore represents a label of configuration ID.

Let AJc be the set of cores that exist in GJc . Here, a core
c C that exists in GJc means that there exists more than
one edge which has a label of c in GJc . For each a AJc , let
BJa be the set of all configuration IDs of a. We define KJc
as the following equation.

KJc ∏
a AJc

BJa

BJa1 BJa2 BJa3
A control initial graph GJc contains several configurations
for each core a AJc , and consecutive transparency of each
core a AJc is not realized.

Step 2: Creation of Control Middle Graph
For each k KJc , the control middle graph GJc k is cre-

ated from a control initial graph GJc as follows.
1. For each a AJc , select a configuration that corre-

sponds to k.
2. We define the control middle graph GJc k as the set of

vertices and edges reachable to sinks.
Figure 7 illustrates a control middle graph GJc6 k1 . JO

and JA beside e E represent types of consecutively trans-
parent path e. A control middle graph GJc k contains only
one configuration for each core a AJc , and consecutive
transparency of each core a AJc is realized.

For GJc k , we define QJc k as the set that, for each q
QJc k , q satisfies the following conditions.

1. q is a source and not an element of VPI .
2. q has more than two output edges which have labels of

JO.
3. There exist cycles which contain q.

GJc k is not a justification subgraph GJ because of vertices
in QJc k . Thus, GJc k is a justification subgraph if the set QJc k
is empty, and we can make c consecutively controllable by

c1
c2

c3

c4

c6 c7

k1 = {1,1,1,1,1}
QJc6 = {v2}

JA

JO

JA

JA

JA

JO
JO

JO

JO

v2

Figure 7. Control Middle Graph GJc6 k1

c1

c3

c6

c4

v2
ei

c1

c3

c6

c4

v2
ei

Figure 8. Insertion of a MUX for Consecutive
Controllability

selecting configurations of a AJc which correspond to k.

Step 3: Integer Programming Formulation
Let Yc be a variable that represents consecutive control-

lability for c C, and let xei be a variable defined as fol-
lows.

xei
1 if a test MUX is inserted to ei Enet
0 otherwise (1)

Figure 8 illustrates that a test MUX is inserted to ei. We
can formalize the DFT for consecutive controllability of
cores as the following integer programming problem:

Minimize:
∑

ei Enet

xei bitwidth ei (2)

Subject to:
Yc 1 f or all c C (3)
xei 0 1 ei Enet (4)

Let Yc k be a variable that represents consecutive control-
lability for a control middle graph GJc k , and let Y q

c k be a
variable that represents consecutive controllability for a ver-
tex q QJc k . Yc is defined as follows.

Yc ∑
k KJc

Yc k (5)

Yc k
∏

q QJc k

Y q
c k (QJc k φ)

1 (QJc k φ)
(6)

Equation(5) means that core c is consecutively control-
lable if c is consecutively controllable for more than one
control initial graph GJc k by selecting configurations which
correspond to k KJc . Equation(6) means that GJc k is a jus-
tification subgraph if QJc k is empty or GJc k can be made
consecutively controllable for all vertices in QJc k .

Y q
c k is defined with xei as follows.

Case 1: q is a source of GJc k and not an element of VPI.
Let S be the set of all simple paths from q to sinks in

GJc k . In order to make GJc k consecutively controllable for
q, it is sufficient that more than one MUX is inserted to each
s S and paths from PIs are added. Let Es be the set of all
edges which are elements of Enet in s. Insertion of more
than one MUX to a simple path s means that ms represented
by the following equation is more than 1.

ms ∑
ei Es

xei (7)

With this ms, Y q
c k is defined as follows.

Y q
c k ∏

s S
ms (8)

Case 2: q has more than two output edges which have labels
of JO.

Let R be the set of all output edges of q in GJc k . For each
r R, let Sr be the set of all simple paths that contain r from
q to sinks. In order to make GJc k consecutively controllable
for q, it is sufficient that the following condition is satis-
fied for more than one element r R. The condition is that
,for each r R r , more than one MUX is inserted to
each s Sr and paths from PIs are added. Therefore, Y q

c k is
defined as follows with ms represented by equation(7).

Y q
c k ∑

r R
∏

r R r
∏

s Sr

ms (9)

Case 3: There exist cycles which contain q.
Let S be the set of all cycles that contain q in GJc k . In

order to make GJc k consecutively controllable for q, it is
sufficient that more than one MUX is inserted to each s S
and paths from PIs are added. Therefore, Y q

c k is defined as
follows with ms represented by equation(7).

Y q
c k ∏

s S
ms (10)

Test MUXs are inserted to the edges obtained by solving
the integer programming problem with equations (2), (3),
and (4). Thus, justification subgraphs of all cores can be
determined with minimum hardware overhead.

5 Conclusions

In this paper, we introduced a new concepts of testability
called consecutive transparency and consecutive testability.
For a consecutively testable SoC, testing can be performed
as follows. Test patterns of a core are propagated to the
core inputs from the SoC inputs consecutively at speed of
system clock. Similarly the test responses are propagated
to the SoC outputs from the core outputs consecutively at
speed of system clock. The propagation of test patterns

and responses is achieved by using the consecutive trans-
parency properties of surrounding cores and interconnects
between cores. All interconnects can be tested in a similar
fashion. Therefore, the method can test not only logic faults
such as stuck-at faults, but also timing faults such as delay
faults that require consecutive application of test patterns
at speed of system clock. We also proposed a design-for-
testability (DFT) method for making a given SoC consecu-
tively testable based on integer programming problem.

One of our future works is to propose a DFT method for
making cores consecutively transparent. In this paper, we
assumed that TPS and TRS are implemented off-chip, that
is, external testing only. However, we also have to consider
Built-In-Self-Testing (BIST). Hence, another future work is
to extend the proposed SoC model to the SoC model with
on-chip TPS and TRS and BISTed cores.

Acknowledgments
This work was sponsored in part by NEDO (New En-

ergy and Industrial Technology Development Organization)
through the contract with STARC (Semiconductor Technol-
ogy Academic Research Center) and supported in part by
Foundation of Nara Institute of Science and Technology
under the Grant for Activity of Education and Research.
Authors would like to thank Toshimitsu Masuzawa (Osaka
University), Michiko Inoue and Satoshi Ohtake (Nara Insti-
tute of Science and Technology) for their valuable discus-
sion.

References
[1] Y.Zorian, E.J.Marinissen and S.Dey, ”Testing

embedded-core based system chips,” Proc. Interna-
tional Test Conference, pp.130-143, Oct. 1998.

[2] S.Bhatia, T.Gheewala and P.Varma, ”A unifying
methodology for intellectual property and custom
logic testing,” Proc. International Test Conference,
pp.639-648, Oct. 1996.

[3] T.Ono, K.Wakui, H.Hikima, Y.Nakamura and
M.Yoshida, ”Integrated and automated design-for-
testability implementation for cell-based ICs,” Proc.
Asian Test Symposium, pp.122-125, Nov. 1997.

[4] N.A.Touba and B.Pouya, ”Testing embedded cores us-
ing partial isolation rings,” Proc. VLSI Test Sympo-
sium, pp.10-16, May 1997.

[5] L.Whetsel, ”An IEEE 1149.1 based test access archi-
tecture for ICs with embedded cores, ” Proc. Interna-
tional Test Conference, pp.69-78, Nov. 1997.

[6] I.Ghosh, N.K.Jha and S.Dey, ”A low overhead de-
sign for testability and test generation technique for
core-based systems-on-a-chip,” IEEE Trans. on CAD,
vol.18, no.11, pp.1661, Nov. 1999.

[7] I. Ghosh, S. Dey, and N.K. Jha, ” A fast and low
cost testing technique for core-based system-on-chip,”
Proc. 35th Design Automation Conference, pp.542-
547, June 1998.

[8] M.Nourani and C.A.Papachristou, ”Structural fault
testing of embedded cores using pipelining,” Jour-
nal of Electronic Testing:Theory and Applications 15,
pp.129-144 1999.

