IEEE the 10th Asian Test Symposium (ATS 2001), pp. 11-16, Nov. 2001.

Design for Hierarchical Two-Pattern Testability of Data Paths

Md. Altaf-Ul-Amin,

Satoshi Ohtake and Hideo Fujiwara

Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
E-mail: {amin-m, ohtake, fujiwara}@is.aist-nara.ac.jp

Abstract

This paper introduces the concept of hierarchical testability
of data paths for delay faults. A definition of hierarchically
two-pattern testable (HTPT) data path is developed. Also, a
design for testability (DFT) method is presented to augment
a data path to an HTPT one. The DFT method incorporates
a graph-based analysis of an HTPT data path and makes use
of some graph algorithms. The proposed method can provide
the similar advantages of the enhanced scan approach at the
cost of much lower hardware overhead.

1. Introduction

Two-pattern (IP) test is necessary to detect delay defects
in a circuit. The importance of detecting delay defects has
soared in recent years to keep pace with the rapid increase in
speed of integrated circuits. A straightforward solution to TP
testability is the enhanced scan [1] [2]. But this incorporates
very high area overhead and test application time. In the
present work, we introduce hierarchical TP testability of data
paths. Hierarchical testability targeting stuck-at faults has been
explored in a number of research works [3] [4]. These works
address testability at register transfer level (RTL) and thus
exploit the advantages of higher-level design hierarchy where
the number of primitive elements in the design is greatly
reduced. In these works it is shown that hierarchical testability
is better than gate-level based full-scan method in the context
of test generation time, test application time and sometimes
even area overhead. Our approach is hierarchical testability for
delay faults. The design hierarchy we consider is RTL. At RTL
a circuit can be divided into two parts: A controller and a data
path. Initially we consider the data path only. We assume that
all control inputs and status outputs of a data path are directly
controllable and directly obsetvable respectively.

There are a number of delay fault models. Among these,
the path delay fault model is more general and can overcome
the limitations of other models. We develop HTPT data path
targeting all detectable path delay faults. However, in the
present wotk, we do not consider paths involving control
inputs or status outputs. The advantages of an HTPT data
path are (i) the data path can be tested using any delay fault
model, (i) combinational ATPG can be used and (iii) same
fault coverage can be obtained as in the enhanced scan
approach.

Analyzing the functionality of a circuit, some paths in the
data path might be proven to be multiple clock tolerant paths.
Delay in a multiple clock tolerant path is most likely to be
caught by test for transition faults and need not to be targeted
for delay testing [5]. In this paper we developed our approach
assuming that all paths of unity sequential depth are single

clock tolerant. However, if some multiple clock tolerant paths
exist and are discarded from the target fault list, out algorithm
is still applicable and may result in less hardware overhead.

2. The concept of RTL paths

A data path consists of hardware elements connected by
wires. We assume that the wires in a data path are of same bit
width. The RTL paths are the paths in an RTL circuit of a data
path that, (i) start at a primary input and end at a register or (if)
start at a register and end at another/same (in case of
feedback) register or (iii) start at a register and end at a primary
output or (iv) start at a primary input and end at a primary
output. It is obvious that the sequential depth of an RTL path
is one. “PI1-R1” and “R1-ADD-MUXG6-R4” are two examples
of RTL paths in the arbitrary and simple data path of Figure 1.
The reader may verify that the data path of Figure 1 has total
eighteen RTL paths.

In the lower hierarchy, each RTL path consists of a
number of 1-bit wide paths. These individual 1-bit wide paths
may be classified as robust, non-robust, functional sensitizable
and functional PI

2
. PIL
unsensitizable paths.
To guarantee the m O“I
timing performance, it VAR =
is necessary to test the m
robust, non-robust
and functional N\ M3 /
_MUxs /
\/
MULT
vector pair) that differ
from each other only
at single bit [7]. An FS
v

sensitizable (FS) paths
path needs to be PO1 po2

i

[6]. To test a robust
path, it is possible to
find two vectors (a

B<
=}

‘o
2

t?Sted na group Figure 1: An arbitrary data path
simultaneously with

one or more other FS paths. Hence the testing of a group of
FS paths requires two vectors, which may differ from each
other at multiple bits [6]. From now on the testing of an RTL
path will mean the testing of robust, non-robust and functional
sensitizable paths in it.

Path delay fault testing requites launching a transition at
the starting of a path by applying a pair of vectors, propagating
the transition along the path and allowing fault effect
observation from the end of the path [6]. However, many of
the RTL paths in the data path neither start at a PI nor end at a
PO. Therefore, some paths are necessaty to ensure the flow of
test data (test vectors and test responses) from PIs to

appropriate registers and from appropriate registers to POs.
Paths used for the flow of test vectors will be referred to as
control paths and paths used for that of test responses will be
referred to as observation paths. Any logic value can be
propagated along the control paths and the observation paths.
An RTL path may cross one or more multiplexers (MUXs) and
operational modules. If an input of a MUX or an operational
module is on an RTL path then this input is an on-input of the
path. Other input/inputs, which are not on the path, are called

off-imputs.
2.1 Paths through a MUX

In a data path, MUXs are very common elements and are
used as interconnecting units. Let us consider a 2 to 1 MUX as
shown in Figure 2. Both A and B are n-bit wide. C is the
control input. If C selects A then, (i) propagation of signals
from A(Ay,...... Ap) to O(Oy,....... Op) is robust (off-inputs
remain stable at non-controlling value) and independent of the
signals at B and (ii) there is no merging gate among the paths

(:\1 to 01), (Az to
O)yevvn (An to On)

B, O e there are only n
mutually independent
(1-bit wide) paths from

A to O. Similar is the

case for the path from

O B to O. Therefore,
B, while testing any RTL
_Z; path crossing one or
more MUXs the select

input/inputs should
select the on-
input/inputs of the
MUX/MUXs and the off-input/inputs of the MUX/MUXs
can be don’t care. For example, to test the path "PI2-Mux1-
R2" (Figure 1), TP vectors should be applied at PI2 and test
responses should be captured at R2. The off-input of MUX2

may be don't care.

A

C
Figure 2: n-bit wide 2 to 1 MUX

2.2 Paths through an operational module

Many RTL paths cross not only MUXs but also operational
modules. In the following example, we are discussing such a
path.

Example 1: The path "R1-MUX3-MUX5-MULT-R5" in
Figure 1 crosses the operational module MULT. The segment
"R1-MUX3-MUX5-" of this path is like a wire in a sense that
the signal values at R7 appear unchanged at the output of the
MUXE6 if the control inputs of the MUXSs select the on-inputs.
Again the segment "-R5" on the output side of MULT is
obviously like a wire. The core segment of this path is the part
of the path inside the MULT. In other words the test vector
set required to test the part of the path inside the MULT is the
same as to test the whole path "R1-MUX3-MUX5-MULT-
R5". These test vectors can be generated by sepatately
considering the gate level circuit structure of the MULT.
Obviously the bit width of these test vectors spans both inputs
of the MULT. Suppose, bits of the test vectors to be applied to
the off-input of the MULT are not all don't cares. Hence to
test the path "R1-MUX3-MUX5-MULT-R5", test vectors
should be applied not only at R7 but also at the off-input of

the MULT. Test vectors can be applied at the off-input of the
MULT from register R2. Therefore, we say that the RTL path
" R1-MUX3-MUX5-MULT-R5" is an HIPT path if, (i) there
exist two control paths from primary input/inputs to R1 and
R2 that support the application of TP vectors and (i) there
exists an observation path to propagate the test responses
from R5 to a primary output.

In Figute 1, we can see that disjoint control paths "PI1-R1"
and "PI2-MUXI1-R2" are sufficient to apply TP vectors and
the test response can be observed using the observation path
“R5-PO2”. It is noticeable that these control and observation
paths can also test the RTL path "R2-MULT-R5". Two conttol
paths not necessarily should be disjoint to support the
application of TP test. We will mention in Section 3.1 the
necessary and sufficient conditions for two control paths to

support the application of TP test.
3. The HTPT Data Path

In this section we define the HTPT data path and give
some other definitions. In the following sub sections we
present an analysis on HTPT data paths.

Difinition 1: The degree of an RTL path is n, if it crosses an
n-input operational module.

For example, the path "R1-MUX3-MUX5-MULT-R5" of
Example 1 1s an RTL path of degree 2. There might be paths in
a data path that crosses no operational module. In Figure 1,
the path “PI2-MUX1-R2” crosses only a MUX and the path
“PI1-R1” is simply a wire. These paths are special types of
RTL paths of degree 1. The degree of an RTL path implies the
number of control paths that are sufficient to ensure its
hierarchical TP testability.

Definition 2 An RTL path of degree n, which crosses an n-
input operational module say M is an HTPT path if there
exist n control paths Cy, Cz...C, and an observation path Py
such that, (i) C; is from a primary input to the starting register
of the path (in case it starts at a PI, C; is an empty path) and
(i) Co....C, is from primary input/inputs to a register /
registers which are either directly or through multiplexer/
multiplexers connected to the n-1 off-input/inputs of M (In
case an off-input of M is connected to a PI, the corresponding
control path is an empty path) and (iii) Ci, Co...C, support the
application of TP test and (iv) Py is from the ending register of
the path to a primary output (in case the path ends at a primary
output, P1 is an empty path).

Definition 3: The set of control paths and an observation
path that are sufficient to ensure the hierarchical TP testability
of an RTL path is referred to as the test plan of the path.
Definition 4 An RTL data path is an HTPT data path if all
its RTL paths are HTPT paths.

3.1 Conditions for control paths to support TP test

Here, we first briefly discuss the #r function [3]. The thru
function allows the propagation of a logic value from an input
to the output of an operational module without any change.
For common two-input operational modules (e.g. adder,
multiplier etc.), a b7 function from an input to the output can
be realized by providing a constant at the other input. The
necessary constant can be provided either by means of a
support path or by adding a mask. For other modules #hru
functions can be realized by means of a MUX. Initially, we

assume that a #hrw function exists from any input to the output
of any operational module. Under this assumption a control
path can be represented by lines and the registers it crosses.
However, such an assumption is not necessary for an HIPT
data path and will be relaxed later on.

The general condition: Let Cy, Cs.... C, are n control paths
starting at primary input/inputs and ending at n different
points EPy, EPs,...... EP, (These ending points may be either
registers or primary inputs). Let, a vector pair (vi, v2) spans
over n control paths. Hence, vi or v2 can be divided into n
partial vectors, each of which is associated to a control path.
Based on this, we represent vq and vz as vi=vi&vie&...... Vin
and v2 = v21&var&........v2y (the symbol '&' merely links the
partial vectors). Bit-width of each of wvii, via,...... Vin, V21,
V22,........V2, 1 equal to the bit-width of the data path. Let, vi1,
V{2yenennn Vig, V21, V22yeeennn.. von can be fed from primary
input/inputs according to a schedule such that viy, via,...... Vin
simultaneously appears at EPy, EP,...... EP, and in the next
clock cycle v21, va,.......v2y simultaneously appear at EPy,
EP,,...... EP, then we say that Ci, Cs.... C, support the
application of TP test.

The sequential depth of a control path is the number of
registers that appear on the path. To mean the sequential depth
of any control path say, C; we use the notation SD(Cy). In the
following theorem we mention necessary and sufficient
conditions for two control paths to support TP test.

Theorem I Two control paths C; and C» from primary
input/inputs to two different points EPy and EP, support the
application of TP test if and only if one of the following
conditions is satisfied.

Condition 1: CyNCz = ¢ i.e. Cy and C; are disjoint

Condition 2: |SD(C,") — SD(C,")|= 2, where Ci" and C, are
disjoint parts of C; and C; from EP; and EP: respectively to
the nearest merging point of C; and Ca.

Condition 3: Either Ci’or C,’ crosses at least two hold registers.
Condition 4: When |SD(Cy") — SD(C)| =1, the disjoint part
(ie. one of Ci'or C)) with lower sequential depth crosses a

hold register.
The proof of this theorem is explained in [8]. Figure 3
typically depicts the

PI o
PIl P2 o conditions of
Theorem 1. In Figure
) 3 the registers with
, , double bordetline
C C Cl CZ .
! 2 are hold registers.
We mentioned in
EPI EP2 EP1 EP2

[8] some sufficient
conditions for any
number of control
paths to support TP
test.

Here, one thing
is noteworthy. Let
an RTL path P start
at a register R and
crosses an
operational module
M. For P to be an
HTPT path, a

control path from a

(a) Condition 1 (b) Condition 2

PI PI

e} @
=
EPI EP2 EP1 EP2

(c) Condition 3 (d) Condition 4

Figure3: Control paths typically
depicting the conditions of Theorem 1

PI to R is necessary. Now, if R is a feedback register (FR) to
M, the control path must not incorporate a thr# to M. In
Figure 1, R3 is an FR to ADD. Only one control path from a
PI to R3 is “PI1-R1-ADD-MUX2-R3”. Now to test the path
“R3-MUX4-ADD-MUXG6-R4”, this control path cannot be
used. Because, the first vector of a vector pair is loaded at R3
to settle the signal lines throughout the path including the part
of the path in ADD. In the next clock, the second vector is
loaded at R3 to launch the desired transition. However, the
first vector cannot do its job if the second vector propagates
using a thrm to ADD. Therefore we should always carefully
exclude such control paths.

3.2 Graph based analysis of HTPT data paths

All RTL paths that cross an operational module having two
or more inputs can be represented as a graph. We call it
structural connectivity graph (SCG) of the module. The nodes of
the SCG consist of the module and the registers, PIs and POs
that are at the starting and at the ending of the RTL paths
through the module. The edges of the SCG represent the
connections of the module with the other nodes. Let the set of
nodes connected to each of the inputs of an n-input module
are Ry, R,Ri and the set of nodes connected to the
output of the module is Ro. Let Ry = {ri,ro1,131.....}, R =
{rlz, rgg,r32....}, R,‘J, :{rh,, rzu,r3l,“...} and R():{rl, 1o,
13....}. From the SCG of an n-input module a n+1-partite
graph can be generated. We call it register compatibility graph
(RCG) of the module. Ry, Rp,Rin and R, are the n+1 set
of nodes. The edges of the RCG are determined based on the
following rules.

Rulel. If there exist n control paths Cy, Cs.....C, from primary
input/inputs to any node 1€ Ri, ro€Rpp....o.oo r1,€ Ry, that
support the application of TP test, there exist edges between
any two nodes of j, 112, and 1.
Rule2: If there exist an observation path from any node rm€
R, to a primary output, there exist edges between t, to any
node in R;j; and Rp and . Ry,
Example 2: The SCG of MULT of Figure 1 is shown in
Figure 4(a). RCG of MULT is shown in Figure 4(b) under the
assumption that
0 through function
N exists from any
input to the
output of any
operational
module. Table 1

(a) (b) shows that which
Figure 4: (a) SCG and (b) RCG of MULT edge/edges in
of Figure 1 Figure 4(b) are

because of which
control or observation path/paths.

Table 1: List of edges of the graph in Figure 4(b)
and corresponding paths

R1-R2 PI1-R1 And PI2-MUX1-R2

R3-R2 PI1-R1-ADD-MUX2R3
And PI2-MUX1-R2

R4-R2 PI1-R1-ADD-MUX6-R4
And PI2-MUX1-R2

R1-R5, R2-R5, R3-R5, R4-R5 R5-PO2

R1-R2, R2-R2, R3-R2, R4-R2 R2-MULT-R5-PO2

Definition 5: An edge in the RCG of a module from any node
in R, to any node in Ryjor R, ot Ry, actually represent
an RTL path through the module and hence we refer to such
an edge a path edge.

Definition 6. An edge in the RCG between any two vertices
of Ri,Riz, evvnnnn and Ry, is a control edge.

Definition 7: 1f a sub graph of the RCG of a module with
only one node from each of Ri;, Ry,Rin and R, is a clique,
then this is referred to as a test clique.

A test clique implies the existence of n control path and one
observation path, which are sufficient to test n RTL paths
passing through n inputs of the module i.e. a test clique in the
RCG of an n input module incorporates test plan for n paths.
Theorem 2: All RTL paths through a module are TP testable
if, the path edges cotresponding to all RTL paths through the
module exist in its RCG and each path edge is part of some
test clique.

The proof of this theorem is given in [8].

4. Details of the DFT method

This section discusses the DFT elements we utilize in our
approach and also the algorithm for efficient addition of the
DFT elements to augment a data path to an HTPT one.

4.1 The DFT elements

We consider three types of DFT elements in our approach.
They ate MUXs, b functions and rotating enhanced flip-
flops (REFFs). The operation of a MUX is well known. About
the 7hru function, we briefly explained in Section 3.1 An REFF
consists of two flip-flops and a MUX as shown in figure 5.
The control input of the MUX is used as the mode selector. In
normal mode the REFF behaves like a normal flip-flop. Using
normal mode two bits can be loaded
to the REFF. Just after loading two
bits, the mode can be changed to test
CK mode. In test mode the bits exchange
their position at every clock but
Q D remain stored in the REFF. Hence an
REFF can be regarded as a 2-bit hold
register. Of a TP vectot, the bit of
which vector should be loaded first to

the REFF depends on the time of
loading and the time of applying the
vectots.

CK

clk
Figure 5: Rotating
enhanced flip-flop

4.2 Algorithm for adding DFT elements

In this section we present our algorithm for adding test
hardware to an RTL data path. For simplicity we are describing
our algorithm assuming that operational modules in the data
path has maximum two inputs and there is no chaining of
modules. This means there is no RTL path of degree 3 or
more in the data path. Most of the benchmarks satisfy this
condition. Also, our approach can be extended for data paths
with modules having more than two inputs. The input, output
and optimization for our algorithm are as follows.

Input: An RTL data path

Output. An HTPT data path

Optimaization : Mininizing hardware overhead and test
application time

4.2.1 Selecting potential control and observation paths

Every register (other than the constant registers) of a data
path is at the starting of some RTL path and also at the ending
of some RTL path. Therefore control paths are necessaty from
PIs to all registers and so are the observation paths from all
registers to POs. However the number of paths in the data
path can be very large and we use some heuristics to select
some potential control and observation paths. We make a set
CP of potential control paths and a set OP of potential
observation paths for each register R. The first members of CP
are the shortest depth paths from each PI to R. We favor the
shortest depth paths because they help to reduce the test
application time. To determine the shortest depth control
paths, we represent the data path as a port digraph [9]. The
digraph of the data path of Figure 1 is shown in Figure 6 (a). A
node represents a port in the data path and any edge say, (u,v)
implies that either a metal line connects u to v or u and v are
input port and output port respectively of the same element.
The shortest depth control paths can be selected by
performing a modified breadth first search (BES) on the
digraph. The BES is performed n times where n is the number
of PIs of the data path. Each of n PIs are once considered as
the source node. Figure 6 (b) shows the breadth first tree
(thick lines) of the digraph of Figure 6 (a) considering PI1 as
the source node. This tree contains the shortest depth paths
from PI1 to each register reachable from PI1. Similatly the
members of OP of any register R are the shortest depth paths

(2) (©)

Figure 6: (a) Port digraph of the data path of Figure 1 and
(b) Breadth first tree of the digraph of Figure 6(a)

from R to each PO. The shortest depth observation paths can
be determined by reversing the edges of the digraph and
performing similar BFS m times where m is the number of
POs. For each member of CP and OP of any register we
maintain a variable, which we refer to as the "cost" of the path.
The cost of the path is nothing but the number of b
functions associated to the path i.e. the cost of a #hru function
is 1.

4.2.2 The Preprocess

First, we consider the FRs of all modules. Suppose, a
register R appears on both input and output sides of the SCG
of a module M. This implies that R¢ is an FR to M. Now, if a
control path from a PI to R¢incorporates a #hru to M, then this
control path cannot be used to test any RTL path that crosses

M (explained in Section 3.1). So we first find in the CP of R
for a control path without a #hrw to M. If we succeed, we
switch to other FR of M or FR of other module. If no such
control path is found in the CP of R¢ we search the entire data
path. For this search, we remove the edges from inputs to
output of M in the digraph and then find shortest path from
each PI to Reuntil a path is found. If a path is found, this path
is added to the CP of R¢. However the failure of such a search
implies that there is no control path from any PI to R¢ without
a thru to M. Under such a situation a direct path is added to Re
using a test MUX from a PI. This PI is chosen based on the
control paths in CPs of the registers connected to the other
input of M (input to which Ry is not connected). If the majority
of the nodes connected to the other input of M have control
path from a PI, we choose other PI for Ry. This direct path is
included to the CP of Ry. In case the data path has single input,
it might be difficult to find a suitable PI. Under such a
situation we augment each flip-flop of R¢ to REFF. This
information is added to the paths in the CP of Re. We then
switch to other FR of M or FR of other module until all FRs in
the data path are considered. We start to consider the FRs of
the modules nearer to PIs first. Sometimes a single MUX can
be used for more than one FR of a module. In Figure 7, the
test MUX is providing control paths from PI7 to both R3 and
R4. In case of single input Data path, if it becomes necessary
to augment flip-flops of more than one register to REFF, we
use a global REFF register connected to the only PI of the
data path. Such an REFF register can be used as a PI for TP
testing. This is because an REFF can store two bits for as long
as it is necessary. Direct paths then can be added from the
global REFF register to FRs using test MUXs. We use global
REFF because the hardware overhead incurred by registers is
very high. Whenever we add any DFT element, we update the
CPs of registers affected by the addition. Addition of test
MUXs and REFF registers creates some more paths of degree
1 in the data path. We should also consider the TP testability
of these paths. Preprocess of adding DFT elements is now
complete. Because of adding DFT elements in preprocess,
SCGs of modules in the data path remain unchanged

4.2.3 Determining Test Plans

We discussed our algorithm for adding some DFT
elements in the previous section. In this section, we continue
our algorithm of adding more DFT elements to ensure the test
plans for all RTL paths. First we address the RTL paths of
degree 2 and then of degree 1.

RTL paths of degtee 2: We consider all RTL paths passing
through a module at a time. The following four steps are
performed for each two-input operational module.

Generating RCG from SCG (step 1):Let, M is a 2-input
module and Rii, R and R, are the set of nodes connected to
the left input, right input and output of the module. Each
member of Rj and R has a set of control paths CP and each
member of R, has a set of observation path OP. Let rjj € Ry
and 1o € Rp. Now we look for two control paths, one from CP
of rj1 and other from CP of 1y, such that they satisfy any one
of the four conditions of Theoren 1. In case we find more than
one pair of control paths to satisfy any condition of Theorem 1,
we choose the pair having lowest cost. We add a control edge
between rj; and ri in the RCG and keep record of the lowest

cost control paths that support this edge. We should keep in
mind that in case 1 and 112 is 2 FR to M, we cannot consider a
control path for rj or 1y incorporating a #hr# to M unless 1 or
tjr is augmented to an REFF register. If we fail to find a
control edge between 1j1 and ri» we switch to another pair of
nodes. We search for control edges between every possible
pair of nodes with one node from Rj and one node from Rp.
For each member of R,, we choose the lowest cost
observation path from its OP and add path edges to the RCG
as described in ru/e 2 in Section 3.2.

Adding DFT elements to Augment RCG (step 2): In the
RCG, some node/nodes of Rii or Ri» may not be connected to
any control edge. For any such node we add DFT elements to
create a control edge in the RCG incorporating this node. First
we try by adding a direct path to such a node from some PI by
means of a test MUX. In a worst case we augment such a node
to an REFF register. However, if it becomes necessary to
augment more than one register, we rather create a global
REFF register as mentioned in Section 4.2.2. Then, direct
paths can be created from the global REFF register to required
nodes by means of test MUXs. The RCG of M is now
sufficient for TP testability of any RTL path through it.
However, when a direct path to a node is created, we check
whether this path can be utilized to remove some DFT
elements added for the previously processed modules. A direct
path to a node might be used instead of some other necessaty
control path/paths to the same node, which incorporates a #hm
function.

Minimizing control edges in RCG (step 3): The RCG may
have some excess control edges. Of all the control edges we
select the minimum number of them fulfilling that each node
in Ry or Rp is connected to at least one control edge.
Minimum number of control edges will create minimum
number of test cliques in the RCG that are sufficient for test
plans of RTL paths through M.

Adding DFT elements fot thru Functions (step 4): Until
now we are with the assumption that s function exist from
any input to the output of any operational module. It is now
time to check whether a 7hr that we need really exists (can be
implemented by a support path) or we should add DFT
element (mask or others) for it. For doing this we consider a
test clique at a time. A test clique in the RCG of a two-input
operational module incorporates two control paths and one
observation path. We search for support paths for the #hu
functions associated to these three paths using some manual
calculation. A support path may have timing conflict with
control paths or other support paths. Timing conflict means it
becomes necessary to provide different values at the same PI
at the same time. We add mask element to realize the #hru
functions for which any support path cannot be found without
timing conflict. The cost of the #hmw function realized by a
mask element becomes zero and we update the cost of all
control and observation paths, which includes this s
function. We consider all the test cliques in the RCG of M in a
similar way.

The above four steps are performed for all two-input
modules consideting the modules nearer to the PIs first. When
we finish all the two-input modules the testability of all the
RTL paths of degree 2 is ensured.

RTL paths of degtee 1: We now consider the testability of
RTL paths of degree 1. Let R¢ and R. are the starting and
ending register of an RTL path of degree 1. We choose the
P2 lowest cost path from the
CP of R as the control

One path and the lowest cost
%,—m - path from the OP of R. as
] the observation path. If

< , any thru of cost 1 is

Crs] N\ / assyociated with these
\ Muxs_/ paths, we try to realize
them using support path.

Mult In case we cannot find

any support path without

One timing conflict, we add

mask element or

PO2 multiplexer to realize

¥ ot them. We consider all

Figure 7: the HTPT equivalent of
the data path of Figure 1

RTL paths of degree 1in a
similar way. Figure 7
shows the HTPT
equivalent of the data path of Figure 1 augmented based on
the algorithm described above.

5. Expetimental Results

We verified the performance of our DFT method by
applying it to 3 benchmark data paths and a RISC processor
provided by a industry. The characteristics of these data paths
are shown in Table 1. In this table PIs and POs denote the
number of primary inputs and primary outputs of the data
path respectively. REGs, MUXs and OPs are the numbers of
registers, multiplexers and operational modules in the data
path. The last column of Table 2 shows the areas of the data
paths generated by the logic synthesis tool Design Compiler
(Synopsys), which we used for our experiments.

Table 2: Circuit characteristics

Circuit Bit PIs POs REGs MUXs OPs Area
width

Paulin 16 2 2 7 11 4 10528

LWFE 16 1 1 5 5 3 3512

Tseng 16 3 2 6 7 7 7802

RISC 32 1 3 40 84 19 94357

Table 3: Hardware overhead

FEnhanced Our method
scan
Circuit | Bit Hardware | Hardware MUX THRU | REFF
width Overhead Overhead
Paulin 8 42.77 8.52 3 2 0
16 27.66 5.53
32 16.23 3.36
LWF 8 65.99 12.75 0 0 1
16 59.23 11.28
32 56.55 10.88
Tseng 8 42.39 4.76 1 2 0
16 31.99 3.93
32 21.65 2.62
RISC 32 35.27 2.04 2 2 1

Table 4 shows the results regarding hardware overhead.
We compare the hardware overhead incurred by our method
to that by the enhanced scan approach. In both cases, the
percentage of area overhead decreases with the increase in bit
width of the data paths. However, the area overhead incurred
by our method is always much lower. For our DFT method,
the columns MUX, THRU and REFF shows the number of
added MUXSs, #hru functions and REFF registers.

6. Conclusions

The concept of hierarchical testability for delay faults is
introduced in this paper. Precomputed vector pairs are
propagated via control paths from primary inputs to
appropriate locations and are applied in a TP fashion to test
paths of unity sequential depth. Test responses are also
propagated via observation paths from the end points of paths
under test to primary outputs. A DFT method is also
presented that can be applied to augment a data path to an
HTPT one. Priority has been given to use the existing paths in
the data path as control paths and observation paths. The area
overhead of our DFT method is smaller compared to that of
the enhanced scan approach. For some example data paths, the
area overhead incurred by our DFT method is 2-12 % only.

Acknowledgments

This work was sponsored in part by NEDO (New Energy and
Industrial Technology Development Organization) through the
contract with STARC (Semiconductor Technology Academic
Research Center) and supported by Japan Society for the Promotion
of Science (JSPS) under the Grant-in-Aid for Scientific Research and
by Foundation of Nara Institute of Science and Technology under the
grant for activity of education and research.

References:

[1] B. I. Dervisoglu and G. E. Stong, "Design for testability: using
scan path techniques for path-delay test and measurement", Proc.
of Int. Test Conf., pp. 365-374,1991.

[2] S. Dasgupta, R. G. Walther and "I W. Williams, “An enhancement
to LSSD and some application of LSSD in reliability, availability
and serviceability”, Proc. of Fault Tolerant Computing Symp.,
FICS-11., pp. 32-34, 1981.

[3] S. Ohtake, H. Wada, I Masuzawa and H. Fujiwara, "A non-scan
DFT method at register-transfer level to achieve complete Fault
efficiency”, Proc. of the ASP-DAC, pp. 599-604, 2000.

[4] I. Ghosh, A. Raghunathan and N. K. Jha, "Design for hierarchical
testability of RTL circuits obtained by Behavioral Synthesis",
IEEE Tran. on Computer-Aided Design of Integrated Circuits
and Systems, Vol. 16, No.9, pp. 1001-1014, 1997.

[5] Wei-Cheng T.ai, Angela Krstic and Kwang-Ting (Tim) Cheng,
"Functionally testable path delay faults on a microprocessor",
TEEE Design & Test of Computers, pp. 6-14, 2000.

[6] Angela Krstic and Kwang-Ting (1im) Cheng, Delay Fanlt Testing for
VLSI Circuits, Kluwer Academic Publishers, 1998.

[7] W. Wang, S. K Gupta “Weighted random robust path delay testing
of synthesized multilevel circuits”, Proc. of 1994 IEELE VLSI test
Symp., pp. 291-297, 1994,

[8] M. A. Amin, S. Ohtake and H. Fujiwara, "Analyzing path delay
fault testability of RTL data paths: A non-scan approach",
Technical Report of IEICE, F1'S2000-71, Vol.100, No. 473, pp.
221-226, 2000.

[9] H. Wada, 'T. Masuzawa, K. K. Saluja and H. Fujiwara, Design for
strong testability of R'1T. data paths to provide complete fault
efficiency”, Proc. Of Int. Conf. on VLSI Design, pp.300-305,
2000.

