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Abstract

This paper introduces a new concept of testability called
consecutive testability and proposes a design-for-testability
method for making a given SoC consecutively testable
based on integer programming problem. For a consecu-
tively testable SoC, testing can be performed as follows.
Test patterns of a core are propagated to the core inputs
from test pattern sources (implemented either off-chip or
on-chip) consecutively at speed of system clock. Similarly
the test responses are propagated to test response sinks (im-
plemented either off-chip or on-chip) from the core outputs
consecutively at speed of system clock. The propagation of
test patterns and responses is achieved by using the con-
secutive transparency properties of surrounding cores and
interconnects between cores. All interconnects can be tested
in a similar fashion. Therefore, it is possible to test not only
logic faults such as stuck-at faults but also timing faults such
as delay faults that require consecutive application of test
patterns at speed of system clock.
keywords: consecutive testability, consecutive trans-
parency, test access mechanism, systems-on-a-chip, design
for testability, built-in self test

1 Introduction

A fundamental change has taken place in the way digital
systems are designed. It has become possible to design an
entire system, containing millions of transistors, on a single
chip. In order to cope with the growing complexity of such
modern systems, designers often use pre-designed, reusable
megacells knows as cores. Core-based systems-on-a-chip
(SoC) design strategies help companies significantly reduce
the time-to-market and design cost for their new products.

However, SoCs are difficult to test after fabrication[1].
In order to make SoC testable, the following three condi-
tions have to be satisfied. (1)There exist test pattern source
(TPS) and test response sink (TRS) for each core. The TPS
generates the test patterns for the embedded core, and the
TRS observes the test responses. TPS as well as TRS can

be implemented either off-chip or on-chip. (2)There ex-
ists test access mechanism for each core. The test access
mechanism propagates test patterns and responses. It can
be used for on-chip propagation of test patterns from a TPS
to the core-under-test, and for on-chip propagation of test
responses from the core-under-test to a TRS. (3)Intercon-
nects that exist between cores are testable.

A major difficulty to make SoC testable concerns ac-
cessibility of embedded cores. Several techniques of
design-for-testability (DFT) have been proposed. There
are three main approaches to achieve accessibility of em-
bedded cores. The first approach is based on fest bus
architectures[2, 3, 4]. The second approach is based on
boundary scan architectures|5, 6]. The third approach uses
transparency[8, 9, 10] or bypass mode[7] for embedded
cores to propagate test patterns and responses.

Under the design environment for SoCs, it is also impor-
tant to test timing faults such as delay faults as well as logic
faults such as stuck-at faults. For that reason, it is neces-
sary to be capable of applying test patterns and observing
the responses consecutively at speed of system clock. We
call such a test access consecutive test access. Although test
bus approach is consecutively test accessible, it is difficult
to test interconnects. On the other hand, boundary scan,
transparency, and bypass mode approaches are able to test
interconnects, they are not consecutively test accessible.

In [11], assuming that TPS and TRS are implemented
only off-chip (i.e., embedded cores are tested by using ex-
ternal automatic test equipment), we proposed a new testa-
bility of SoCs called consecutive testability. A consec-
utively testable SoC consists of consecutively transparent
cores only and can achieve consecutive test access to all
cores and all interconnects.

In this paper, we consider SoCs that include BISTed
(Built-In Self Tested) cores and opaque cores as well as
non-BISTed cores and consecutively transparent cores, and
extend the concept of consecutive testability of SoCs so that
TPS and TRS implemented both on-chip and off-chip can
be dealt with. Then, we present a DFT method to make



a given SoC consecutively testable. Consecutive testabil-
ity of an SoC guarantees that, for each core (for each in-
terconnect), by using consecutive transparencies of other
cores and interconnects, test patterns can be fed into the core
(the interconnect, respectively) from TPS and the responses
can be propagated to TRS consecutively at speed of system
clock. Therefore, consecutively testable SoCs can achieve
high quality of test since any test sequence for a core can
be applied to the core from TPS and any response sequence
can be observed at TRS consecutively at speed of system
clock.

This paper is organized as follows. In section 2, we intro-
duce an SoC model. In section 3, we introduce the consec-
utive transparency, the consecutive testability, and present
a new test methodology for testing SoCs. In section 4, we
present a graph model for an SoC. In section 5, we present
a DFT method for consecutive testability. Section 6 con-
cludes this paper.

2 Systems-on-a-Chip

An SoC consists of hardware elements and intercon-
nects. A hardware element is a primary input (PI), a pri-
mary output (PO), or a core. For the sake of uniformity,
user-defined logic can be considered as another core. Each
individual core is testable by either external test or built-in
self test. In case a core is testable by external test, a pre-
computed test set is available for the core which, if applied
to the core, will result in a very high fault coverage. We in-
troduce ports of each hardware element as interface points
in a natural fashion: signals enter into a hardware element
through its input ports, and exit through its output ports. For
convenience, we regard a PI as an output port and a PO as
an input port. An interconnect connects an output port with
an input port. Any number of interconnects can connect to
the same output port (i.e., fanout is allowed), but only one
interconnect can connect to the same input port. It is not
necessary that interconnects are of the same bit width.

3 A Test Methodology for Systems-on-a-Chip
Based on Consecutive Testability

We present a new test methodology for SoCs based on
consecutive testability. Figure 2 illustrates a consecutively
testable SoC and the consecutive test access to Core 3. A
control signal is provided for each core by a test controller
(either off-chip or on-chip). Each control signal of a core
determines the current test mode of the core called a config-
uration. The types of configurations are consecutive trans-
parencies and functions as a TPS and a TRS. Core 1 works
as a TPS for Core 3. Core 2 realizes a consecutive trans-
parency of shaded output port and Core 4 realizes a con-
secutive transparency of shaded input port. Consecutive
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Figure 1. Systems-on-a-Chip

transparency of an input port guarantees that any input se-
quence applied to the input port can propagate to some out-
put ports consecutively at speed of system clock, and con-
secutive transparency of an output port guarantees that any
output sequence that appears at the output port can propa-
gate from some input ports consecutively at speed of system
clock. Consecutive testability of an SoC guarantees that, for
each core (for each interconnect) in the SoC, by selecting
configurations of other cores, any test sequence can be con-
secutively fed into the core (the interconnect, respectively)
from TPSs and any response sequence can be consecutively
propagated to TRSs through consecutive transparencies of
other cores and interconnects. We define the consecutive
transparency of a core and the consecutive testability of an
SoC in the following subsections.

3.1 Consecutive Transparency of a Core

Definition 1: Consecutive transparency of a core

Let /(i) be the ith bit of an input port /, and O(j) be the
Jjth bit of an output port O. Suppose that there exists a
configuration of a core which can realize a path P between
I(i) and O(}j). P is called a consecutively transparent path
if any input sequence applied to /(i) can be consecutively
observed at O(j) after some latency, and then (i) and O( )
are said to be consecutively transparent. Moreover, a core
is called to be consecutively transparent if, for each port of
the core, there exists a configuration that can make all bits
of the port consecutively transparent. |

Figure 3 illustrates various configurations of a consec-
utively transparent core. A consecutively transparent core
has generally several configurations, and each configuration
can be identified by an ID number. By selecting a config-
uration of a core, consecutively transparent paths of an I/O
port are realized and the I/O port can be made consecutively
transparent. For each configuration, all consecutively trans-
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Figure 2. Consecutive Test Access

parent paths between an input port and an output port are
represented as one consecutively transparent path.

We classify consecutively transparent paths into three
types, PA (Propagation AND), PO (Propagation OR), and
JA (Justification AND). PA and PO are types of consecu-
tively transparent paths for input ports to propagate test re-
sponses. JA is a type of consecutively transparent paths for
output ports to justify test sequences. Figure 3(a) illustrates
type PA such that any input sequence applied to an input
port I; propagates to only one output port O;. Figure 3(b)
illustrates type PA such that any input sequence applied to
an input port I, propagates to two output ports(O; and O3),
where any input sequence of bit width W (1) is bit-sliced
(W(L) = w2+ w3) and observed at two output ports (O;
and O,). Figure 3(c) illustrates type PO such that any in-
put sequence applied to I3 propagates to two output ports
(01 and 0O;), where any input sequence of bit width W (I3)
is fanouted (W (I3) = w4 = w5) and observed at two output
ports (O1 and O3).

3.2 Test Pattern Source and Test Response Sink

The test pattern source (TPS) generates test patterns for
cores and interconnects, and the test response sink (TRS)
observe the test responses. TPS and TRS can be imple-
mented either off-chip or on-chip. In this paper, we classify
TPS and TRS into the following three types (Figure 4).
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Figure 3. Various Configurations of a Consecu-
tively Transparent Core

a core (i.e.,on-chip) and used for testing the core itself
(Figure 4(c)). A core which has this type of TPS and
TRS can be self-testable.

2. Soff
Sorr is a type of TPS and TRS implemented off-chip
by external automatic test equipment (Figure 4(a)).
TPS of type S,rs can generate any test sequence of
any length, and TRS of type S,/ can observe any re-
sponse sequence of any length consecutively at speed
of system clock.

3. Son

Son 1s a type of TPS and TRS implemented inside of a
core (i.e.,on-chip) and used for testing other cores (Fig-
ure 4(b)). Since TPS and TRS of type S,, are imple-
mented on-chip, memory spaces for them are limited.
Therefore, TPS and TRS of type S,, cannot deal with
arbitrary long sequences like TPS and TRS of type
Sorf. However, within the limited memory spaces,
TPS of type S,, can generate any test sequence and
TRS of type S,, can observe any response sequence
consecutively at speed of system clock. A core which
can be tested by TPS and TRS of type S, can be also
tested by TPS and TRS of type S,¢. A core which has
TPS and TRS of type S,, has several configurations
(Figure 5), and each configuration can be identified by
an ID number. By selecting a configuration of the core,
the core can realize functions as a TPS and a TRS.

3.3 Consecutive Testability of a System-on-a-Chip

In this subsection, we introduce a new testability of an
SoC called consecutive testability. In this paper, we assume
that the following informations are given as an SoC.

e Connectivity information between cores

e Test informations of each core
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— type of TPS/TRS that can test the core
(SBIST or Soff or Son)

— configurations if the core is consecutively trans-
parent

— configurations if the core has TPS/TRS of type
Son

The length of a test sequence required to test an in-
terconnect is usually much shorter than that required to
test a core. Hence, we assume all interconnect can be
tested by TPS/TRS of type S,,. In order to test a core,
it is necessary to apply test patterns consecutively to all
input ports of the core simultaneously. On the other hand,
it is not necessary to observe all output ports of the core
simultaneously. It is sufficient only to observe one output
port at a time. Therefore, we define the consecutive test
accessibility of a core and the consecutive test accessibility
of an interconnect as follows.

Definition 2: Consecutive test accessibility of a core

A core C is said to be consecutively test accessible if the
following two conditions are satisfied at the same time for
each output port O of C.

1. Any test sequence generated by the TPS required to
test C can be applied to all input ports of C consecu-
tively at normal system clock (consecutive controlla-
bility of C for TPS).

2. Any response sequence appeared at O can be propa-
gated to the TRS required to test C consecutively at
normal system clock (consecutive observability of O
for TRS). u

Definition 3: Consecutive test accessibility of an intercon-
nect
For an interconnect E that connects an output port O with
an input port /, E is said to be consecutively test accessible
if O and [ satisfies the following two conditions at the same
time.
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Figure 5. Various Configurations of a Core that has
TPS and TRS of type S,,,

1. Any test sequence generated by the TPS required to
test £ can be applied to O consecutively at normal sys-
tem clock (consecutive controllability of £ for TPS).

2. Any response sequence appeared at / can be propa-
gated to the TRS required to test £ consecutively at
normal system clock (consecutive observability of /
for TRS). L

Then, we define the consecutive testability of an SoC as
follows.

Definition 4: Consecutive testability of an SoC

An SoC is said to be consecutively testable if all cores
and all interconnects in the SoC are consecutively test
accessible. |

4 Graph Modeling

In this section, we define a core connectivity graph to
represent an SoC, and consider the consecutive testability
on the graph.

Definition 5: Core connectivity graph
We define a core connectivity graph G = (V,E,A) as a fol-
lowing directed graph to represent an SoC.

e V =VpUVpoUV,;,,UV,, where
Vpy is the set of all PIs of the SoC,
Vpo is the set of all POs of the SoC,
Vin is the set of all input ports of cores in the SoC, and
Vour 18 the set of all output ports of cores in the SoC.

o E=FE . UE,,; where
Ecore = {(x,¥) € Vin X Vo | input port x is connected
to output port y by a consecutively transparent path},



Figure 6. Core Connectivity Graph

and
Enet = {(3,x) € Vour X Viyy | output port y is connected
to input port x by an interconnect}.

e Labeling function A : E — 26IXTxW yhere
C is the set of all cores in the SoC,
I is the set of all ID numbers of configurations,
T ={JA,JO,PA,PO | types of consecutively transpar-
ent path (JO is for fanouted interconnects) }, and
W is the set of all bit widths of e € E.
Especially for e € E,,

Ae) = {{0,0,J0, bit width of e}, {0,0, PO, bit width
ofe}} [ |

Figure 6 illustrates a core connectivity graph G which
corresponds to the SoC of Figure 1. Figure 7 illustrates
edges labeled by A which correspond to the core of Figures
3and 5.

We refer to a vertex that has no input edge as a source,
and a vertex that has no output edge as a sink. For a core
connectivity graph G, selecting a configuration of a core is
to leave edges which have labels of the configuration and to
remove other edges from the core.

Then, we define a justification subgraph of a core, a
justification subgraph of an interconnect and a propagation
subgraph of a port as subgraphs of a core connectivity
graph.

Definition 6: Justification subgraph of a core

Let G = (V,E,)) be a core connectivity graph of an SoC
and Gy = (V;,E;,\) be an acyclic subgraph of G. For a
core ¢ € C, Gy is called a justification subgraph of c if Gy
satisfies all the following conditions.

1. All input ports of ¢ are sinks in G, and there exists no
sink except for all input ports of ¢ in G;.

2. For each edge u € E;, u has a label of either JO or JA.

el : {{c,2,PA, w2}, {c,4,JA,w6}}
e2: {{c,2,PA,w3}}

e3: {{c,1,PA, wl},{c,5,JA, w7}}
e4: {{c,3,PO,w4}}

e5: {{c, 3,PO, w5}, {c,5,JA,w8}}
e6: {{c,6,JA, w9}}

e7: {{c,7,JA,wl10}}

e8: {{c,8,PA,wll}}

Figure 7. Label by A

3. Let G’ = (V',E',\) be a subgraph of G obtained by
selecting a configuration for each core. For each edge
ucky,

(a) u contains all input edges of u in G', and

(b) u contains only one output edge of u in G’ when
output edges have labels of JO in G'. |

Lemma 1: Let Vs be the set of all source vertices in G of
core c. Then c is consecutively controllable for Vg

proof: By Definition 5 and condition 2 of Definition 6, all
edges in Gy can be used to apply test patterns consecutively
at speed of system clock since each edge in G, represents
either a consecutively transparent path or an interconnect,
and has a label of either JO or JA. By condition 1 of Defini-
tion 6, there exist simple paths from more than one element
in Vg to each input port of c¢. By condition 3 of Definition
6, all edges in the same core have the same ID number of
configuration since only one configuration is selected for
each core. Let v be the vertex in V,,; (i.e., v is an output
port of a core). If a configuration to realize a consecutive
transparency of v is selected, all consecutively transparent
paths for v exist in G; (condition 3(a) of Definition 6). If
a configuration to realize a consecutive transparency of v is
not selected, v is a source vertex in Gy. By condition 3(b)
of Definition 6, it is possible to apply any test sequence for
all simple paths at the same time.

Therefore, we can see that any test sequence generated
at Vg can be applied to all input ports of ¢ along all simple
paths in G; consecutively at speed of system clock. Hence,
the Lemma is proved. u

Definition 7: Justification subgraph of an interconnect

Let G = (V,E,\) be a core connectivity graph of an SoC
and G; = (Vy,E;, ) be an acyclic subgraph of G. For an in-
terconnect e = (y,x) € Ener, Gy is called a justification sub-
graph of e if Gy satisfies all the following conditions.

1. Only yis a sink in Gj.
2. For each edge u € Ey, u has a label of either JO or JA.

3. Let G' = (V',E',\) be a subgraph of G obtained by
selecting a configuration for each core. For each edge



ueky,

(a) u contains all input edges of u in G', and

(b) u contains only one output edge of  in G’ when
output edges have labels of JO in G'. |

Lemma 2: Let Vs be the set of all source vertices in G; of
interconnect e. Then e is consecutively controllable for Vg
proof: The Lemma is proved similarly to Lemma 1. u

Definition 8: Propagation subgraph of a port

Let G = (V,E,)) be a core connectivity graph of an SoC
and Gp = (Vp,Ep,\) be an acyclic subgraph of G. For a
vertex v € V, Gp is called propagation subgraph of v if Gp
satisfies all the following conditions.

1. Only v is a source in Gp.
2. For each edge u € Ep, u has a label of either PO or PA.

3. Let G’ = (V',E',A) be a subgraph of G obtained by
selecting a configuration for each core. For each edge
uckEp,

(a) u contains all output edges of u in G’ when the
output edges have labels of PA, and

(b) u contains more than one output edge of u in G’
when the output edges have labels of PO in G'.
|

Lemma 3: Let Vg be the set of all sink vertices in Gp of
vertex v. Then v is consecutively observable for Vg
proof: By Definition 8 and condition 2 of Definition 6, all
edges in Gp can be used to propagate test responses con-
secutively at speed of system clock since each edge in Gp
represents either a consecutively transparent path or an in-
terconnect, and has a label of either PO or PA. By condition
1 of Definition 8, there exist simple paths from v to each
element in Vg. By condition 3 of Definition 8, all edges in
the same core have the same ID number of configuration
since only one configuration is selected for each core. Let
V' be the vertex in V;, (i.e., V' is an input port of a core).
If a configuration to realize a consecutive transparency of
Vv is selected and the consecutively transparent paths for v/
are type PA, all consecutively transparent paths for v/ exist
in Gp (condition 3(a) of Definition 8). If a configuration to
realize a consecutive transparency of V' is selected and the
consecutively transparent paths for v/ are type PO, there ex-
ist at least one consecutively transparent path for v in Gp
(condition 3(b) of Definition 8). If a configuration to realize
a consecutive transparency of V' is not selected, v/ is a sink
vertex in Gp.

Therefor, we conclude that any response sequence
appeared at v can be propagate to Vg along all simple paths

in Gp consecutively at speed of system clock. Hence, the
Lemma is proved. L

Theorem 1: Let G = (V,E,A) be a core connectivity graph
of an SoC. An SoC is said to be consecutively testable if the
SoC satisfies the following two conditions.

1. For each output port v € V,,;,; of each core ¢ € C, there
exist one justification subgraph Gy of ¢ and one propa-
gation subgraph Gp of v where Gy and Gp are disjoint
and satisfy the following conditions.

o if TPS/TRS type required to test ¢ is Spyst
Gy =Gp =10

o if TPS/TRS type required to test ¢ is Sozf
Vs C Vpy, VE C Vpo

o if TPS/TRS type required to test ¢ is Sy,
Vs g (VPIU Vsource)a Vi g (VPO U Vsink)

2. For each interconnect e = (y,x) € E,, there exist one
Jjustification subgraph Gj of e and one propagation
subgraph Gp of x where G; and Gp are disjoint and
satisfy the following conditions.

o Vs C (VPI UVsource)a Vi - (VPO UVsink)

proof: The Theorem is proved by Definitions 2, 3, 4 and
Lemmas 1,2, 3. |

5 DFT for Consecutive Testability

This section presents a method for design-for-testability
(DFT) that makes a given SoC consecutively testable. We
assume that each individual core is testable by either exter-
nal test or built-in self test. In case a core is testable by
external test, a precomputed test set is available for the core
which, if applied to the core, will result in a very high fault
coverage. Additionally, we assume that the internal design
of the cores cannot be modified by DFT due to IP (Intellec-
tual Property) protection and control signals for configura-
tions can be controlled independently of normal operations.

In the rest of this paper, we consider the DFT under such
assumptions.

5.1 Problem Formulation

Each core (interconnect) in a consecutively testable SoC
is consecutively controllable for the required TPS and con-
secutively observable for the required TRS. In other words,
for each output port v of each core ¢ € C, a core connectiv-
ity graph G that represents a consecutively testable SoC has
one justification subgraph Gy of ¢ and one propagation sub-
graph Gp of v where G; and Gp are disjoint and satisfy the
condition 1 of Theorem 1. Similarly, for each interconnect
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e = (y,x) € Epe, there exist one justification subgraph G; of
e and one propagation subgraph Gp of x where Gy and Gp
are disjoint and satisfy the condition 2 of Theorem 1.

When a core (an interconnect) in a given SoC is not
consecutively controllable for the required TPS, paths from
the TPS are added by using test multiplexers (MUXs) in the
proposed DFT (Figure 8(a)). Similarly, when a core (an in-
terconnect) in a given SoC is not consecutively observable
for the required TRS, paths to the TRS are added by using
test MUXs (Figure 8(a)). When an interconnect-under-test
connects non-consecutively transparent core, it is necessary
to isolate the interconnect from the core in order to make the
interconnect consecutively test accessible. This isolation
is implemented by using test MUXs and registers (Figure
8(b)). Assuming that any SoC includes enough number
of TPSs and TRSs to make each core (each interconnect)
consecutively controllable and observable, we formalize
a DFT for making the SoC consecutively testable as the
following optimization problem.

Definition 9: DFT for consecutive testability

Input: An SoC ( a core connectivity graph)

Output: A consecutively testable SoC

Optimization: Minimizing hardware overhead (i.e., total
bit width of added MUXs and registers) ]

5.2 DFT algorithm

We propose a DFT algorithm for consecutive testability.
The algorithm consists of the following four stages.

Stage 1: Augment a given SoC so that all cores are
consecutively controllable for the required TPS.

Stage 2: Augment a given SoC so that all cores are
consecutively observable for the required TRS.

Stage 3: Augment a given SoC so that all interconnects are
consecutively controllable for the required TPS.

Stage 4: Augment a given SoC so that all interconnects are
consecutively observable for the required TRS.

Due to limitations of space, we only present a procedure
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Figure 9. Control Initial Graph G

of stage 1. However procedures for the other stages can be
presented in a similar fashion.

5.2.1 DFT for Consecutive Controllability of
Cores (Stage 1)

The objective of the first stage is to modify a given SoC
with minimum hardware overhead so that all cores are
consecutively controllable for the required TPS (i.e., each
core ¢ € C has a justification subgraph G; of ¢ where G,
satisfies the condition 1 of Theorem 1). The strategy of the
algorithm is that, for each core, first it creates control initial
graph, and second it creates control middle graph. Then
it induces conditions such that the control middle graph
satisfies the Definition 6 and the core is consecutively
controllable for the required TPS. Then it formalizes the
DFT as integer programming problem. All cores are
made consecutively controllable with minimum hardware
overhead by solving the integer programming problem.

Step 1: Creation of Control Initial Graph
The control initial graph G, of a core ¢ € C is created
from a core connectivity graph G as follows.

1. Remove the edges which have labels of ¢ and let the
vertices which correspond to the input ports of ¢ be
sinks.

2. Remove the edges which have labels of neither JA nor
JO.

3. We define the control initial graph G, as the set of
vertices and edges reachable to sinks.

Figure 9 illustrates a control initial graph G, . Each
edge in Gy, has a label of either JO or JA and the num-
ber beside e € E., represents a label of configuration ID.

Let A, be the set of cores that exist in G;,. Here, a core
¢’ € C that exists in G, means that there exists more than
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Figure 10. Control Middle Graph G;,
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one edge which has a label of ¢’ in G;,. Foreacha € A, let
By, be the set of all configuration IDs of a. We define Kj,
as the following equation.

K. = T[] Bu

a€Ay,
= Bjal XB]az ><B‘]a3 X ...

A control initial graph G, contains several configurations
for each core a € A;,, and consecutive transparency of each
core a € Ay, is not realized.

Step 2: Creation of Control Middle Graph
For each k € Kj,, the control middle graph Gy, is cre-
ated from a control initial graph G, as follows.

1. For each a € A,,, select a configuration that corre-
sponds to k.

2. We define the control middle graph G, as the set of
vertices and edges reachable to sinks.

Figure 10 illustrates a control middle graph Gy ,,. JO
and JA beside e € E represent types of consecutively trans-
parent path e. A control middle graph G, , contains only
one configuration for each core a € A;,, and consecutive
transparency of each core a € Ay, is realized.

For Gy, let Q}C_k R Qi_k and Q;(_k be the sets of all ver-
tices g € Gy, that satisfies the folloWing conditions respec-
tively (Figure 11).

L.
1. Q; , : qisasource.

2. Qik : ¢ has more than two output edges which have
labels of JO.

3. Qik : There exist cycles which contain g.
We define Oy, as follows.

Qs, =0j,U0;, U0,

1
Qe ={ql.q2.¢3} Sc kgl = {s1,2}

Q}flk ={q3} Sc,k,qZ ={s3,54}
Qs a2 Sekqa = (55.56)
2
Qjey ={q4} Sciqs = {57,588 ,59 ,510}
Q;c,k ={qg5} Scxgs = {s11}
3in VP i : vertex
. Si : simple path or cycle
q2 in Vsourccc,l‘ q ¥

Figure n. Q‘llc.k7 Q‘%c.k ’ Q‘:’}L'J(

Q%L_k and sz are the sets of all vertices that do not satisfy

. 1,PI 1,s0urce
the Definition 6. Moreover, we define Q" " and Q ]’Akoum as
C.K C.

follows.
LPI _ Al 1,source __ A1
Q. =91, Ve, Q) = Q) NMVisource

Then, let S, , be the set of all simple paths from g in Q;_,
to each sink vertex in Gy, .

Step 3: Integer Programming Formulation
We define the following variables as integer program-
ming variables.

| 1 core cis consecutively controllable for TPS
Y= 1 0 otherwise

{ 1 G, is consecutively controllable for TPS

dej = .
ok 0 otherwise
1 G, is consecutively controllable
dejg = for vertex g
0 otherwise
1 output edge r of vertex g is consecutively
Zgr = controllable for g

0 otherwise

_J 1 if MUX is inserted to simple path s
Ms=1 0 otherwise

= 1 if MUX is inserted to interconnect e
“7 | 0 otherwise

The following integer programming formulation min-
imizes the test overhead (i.e., total bit width of MUXs)



while making all cores consecutively controllable.
Minimize

2 Xe; - width(e;) (1)

e;€EN

Subject to:

1. for each core ¢ € C,
Ye 21 @)

2. For each core ¢ € C which can be tested by either S, ¢
or Son,

Y ack > ve A3)

kEKJL.

3. For each element k € K,

z dc,k,q > |QJC_k| “Ack @

q€0y,

|0y, | is a constant value which represents the number
of elements in Qy , .

4. (a) Incase TPS type required to test ¢ is S, 7 for each

1,PI
vertex g € (Q)  — Ik )
Y, my > Seigl deg ©)
SE€Sc kg

(b) In case TPS type required to test c is S, , for each

vertex ¢ € (Q}C.k — (Q};i’ U Q}::)urce)),
2 mg > |Sc,k,q| 'dc,k,q (6)
Sesakq

5. For each vertex g € Qi-k’ let R.x, be the set of all
output edges of g. For each element r € R¢ 4, let S, .
be the set of all simple paths between r and all sink

vertices in Gy, . Then, for each vertex g € Qi_ n

Z 2q,r > dc,k,q (N

reRL\k.q

2 mg > |Sc,k7q - S:‘,k,q| "Zq,r ®)
SE(S('.k.qfsz_k_q)
6. For each vertex g € Qi i
D My > Sepgl-derg ®)

SESC.k.q

7. For each simple path s € S¢ x4,

z Xe > i (10)

e€Es

E;, represents the set of all edges which correspond to
interconnects in simple path s.

Equation (2) guarantees that all cores are consecutively
controllable for the required TPS. If TPS type required to
test a core is either Sy¢r or S,,, more than one Gy, must
be consecutively controllable for the TPS. This is guaran-
teed by equation (3). In order to make Gy, , consecutively
controllable for the TPS, all vertices in Q,,, must be con-
secutively controllable for the TPS. This is guaranteed by
equation (4). In order to make ¢ in Q}Ck consecutively con-
trollable for the TPS, all simple paths-in Se kg must be in-
serted MUXs and paths from TPS must be added. However,
if g is a vertex that represents the TPS required to test the
core, q is already consecutively controllable for the TPS.
This is guaranteed by equation (5) and (6). Each vertex ¢
in Q%C . has more than two output edges which have label of
JO, and all the edges propagate only the same sequence. In
order to make ¢ in Qik consecutively controllable for the
TPS, each edges of ¢ must propagate any test sequence at
the same time. This is guaranteed by equation (7) and (8).
In order to make ¢ in Qi . consecutively controllable for the
TPS, all cycles which contain ¢ must be broken by MUXs
and paths from TPS must be added. This is guaranteed by
equation (9). Equation (10) and guarantees that, let s be a
simple path and let E be the set of all edges which repre-
sent interconnects, insertion of MUX to s means that MUX
is inserted to more than one element in E.

Test MUXs are inserted to the edges obtained by solv-
ing the above integer programming problem (Figure 12),
and all cores can be made consecutively controllable with
minimum hardware overhead. However, in case TPS type
required to test core ¢ is Sy, it is necessary to add TPSs
of type Sozs (i.e., add vertices to Vpy) if the sum bit width
of edges that must be inserted MUXs to make ¢ con-
secutive controllable is larger than that of available TPSs
(i.e.,vertices in Vp; — Q}C’IZI). Similarly, in case TPS type re-
quired to test core ¢ is SO,,, it is necessary to add TPSs of
type Son (i.e., add vertices to Viguree) if the same condition
as above is satisfied.

Procedures for the other stages can be presented in a sim-
ilar fashion.

6 Conclusions

In the paper, we introduced a new testability called con-
secutive testability. For a consecutively testable SoC, test-
ing can be performed as follows. Test patterns of a core
are propagated to all input ports of the core from TPS, and
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Figure 12. Insertion of a MUX to an edge ¢; for
Consecutive Controllability

the test responses appeared at an output port of the core are
propagated to TRS consecutively at speed of system clock.
The propagation of test patterns and responses is achieved
by using interconnect and consecutive transparencies of sur-
rounding cores. All interconnects can be tested in a similar
fashion. Therefore, it is possible to test not only logic faults
such as stuck-at faults but also timing faults such as delay
faults that require consecutive application of test patterns
at speed of system clock. We also proposed a design-for-
testability method for making a given SoC consecutively
testable based on integer programming problem. Our future
work is to propose a DFT method for making cores consec-
utively transparent with minimum hardware overhead.
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