IEEE COMPUTER

O SOCIETY REPRINT

IEEE COMPUTER SOCIETY
1109 Spring Street, Suite 300

Silver Spring, MD 20910

IEEE
COMPUTER

SOCIETY &
PRESS E(P:'

ON THE ACCELERATION OF TEST GENERATION ALGORITHMS

Hideo Fujiwara

and Takeshi Shimono

Department of Electronic Engineering
Osaka University
2-1, Yamada-Oka, Suita
Osaka, 565 JAPAN

ABSTRACT

In order to accelerate an algorithm for test
generation, it is necessary to reduce the number of
backtracks in the algorithm and to shorten the pro-
cess time between backiracks. In this paper we
consider several techniques to acecelerate test gen-
eration and present a new test gemeration algorithm
called FAN (FANout-oriented test gemeration algo-
rithm). It is shown that FAN algorithm is faster
and more efficient than the PODEM algorithm report-
ed by Goel. We also present an automatic test gen-
eration system composed of the FAN algorithm and
the concurrent fault simulation. Experimental re-
sults on large eombinational eircuits of up to 3000
gates demonstrate that the system performs test gen-
eration very fast and effectively.

I. INTRODUCTION

With the progress of LSI/VLSI technology, the
problem of fault detection for logic circuit is be-
coming more and more difficult. As the logic cir-
cuits under test get larger, generating tests is
becoming harder. Recent work has established that
the problem of test generation even for monotone
circuits is NP-complete [1]. Hence, it appears that
the computation is, for the worst case, exponential
with the size of the circuit. One approach to over-
come this is to take several techniques known as
design for testability. The techniques using shift
registers such as LSSD [2], Scan Path [3], etc.
allow the test generation problem to be completely
reduced to one of generating tests for combinational
circuits. Hence, for these LSSD type circuits it
is sufficient to develop a fast and efficient test
generation algorithm only for combinational circuits.

Many test generation algorithms have been pro-
posed over the years [4]-[9]. The most widely-used
is the D-algorithm reported by Roth [5]. However,
it has been pointed out that the D-algorithm is
extremely inefficient in generating tests for combi-
national circuits that implement error correction
and translation functions. To improve this point,

a new test generation algorithm called PODEM was
recently developed by Goel [8]. Goel showed that
the PODEM algorithm is significantly faster than

the D-algorithm by presenting the experimental re-
sults. Indeed, the PODEM algorithms has succeeded
in reducing the number of occurrence of backtracks
in comparison with the D-algorithm. However, there
still remain many possibilities to reduce the number
of backtracks in the algorithm.

In order to accelerate an algorithm for test
generation, it is necessary to reduce the number of

98

0731-3071/83/0000/0098%01.00 © 1983 IEEE

occurrence of backtracks in the algorithm and to
shorten the processing time between backtracks. In
this paper we consider several techniques to accel-
erate test generation and present a new algorithm
for generating tests called FAN (FANout-oriented
test generation algorithm). FAN is a complete algo-
rithm in that it will generate a test if one exists.
Experimental results on large combinational circuits
of up to 3000 gates demonstrate that the FAN algo-
rithm is faster and more efficient than the PODEM
algorithm over these circuits. We also present an
automatic test generation system composed of the FAN
algorithm and the concurrent fault simulation [10],
which performs test generation very fast and effect-
ively over the above large combinational circuits.

II. ACCELERATION OF ALGORITHM

We assume that the readers are familiar with
the D-algorithm and the PODEM algorithm, and so we
shall use some terminologies such as D-frontier, D-
drive, implication, line justification, backtrace,
etc., without definitions (see [5,8] for definitions).
In this paper, we shall consider multi-input and
multi-output combinational circuits composed of AND,
OR,NAND, NOR and NOT gates. The type of fault model
assumed here is the standard stuck fault, i.e., all
faults can be modeled by lines which are stuck at
logical 0 (s-a-0) or stuck at logical 1 (s-a-1). A
fault consisting of a single stuck line is called a
single fault. We shall focus our attention only on
detecting single stuck faults.

In this section, aiming at the acceleration of
test generation, we shall point out some defects of
the PODEM algorithm and consider several effective
techniques to eliminate these disadvantages.

In generating a test, the algorithm creates a
decision tree in which there is more than one choice
available at each decision node. The initial choice
is arbitrary but it may be necessary during the exe-
cution of the algorithm to return and try another
possible choice. This is called a backtrack. In
order to accelerate the algorithm, it is necessary

a) to reduce the number of backtracks, and

b) to shorten the processing time between back-
tracks. Particularly, the reduction of the number
of backtracks is important.

Heuristics should be used to achieve an effi-
cient search. The PODEM algorithm adopted heuristics
in the backtrace operation as follows:

® If the current objective level is such that it
can be obtained by setting any one input of the

current gate to a controlling state, e.g., 0

for an AND/NAND gate or 1 for an OR/NOR gate,

then choose that input which can be most easily

set.

@ If the current objective level can only be ob-
tained by setting all inputs of the current gate
to a non-controlling state, e.g., 1 for an AND/
NAND gate or 0 for an OR/NOR gate, then choose
that input which is hardest to set, since an
early determination of the inability to set the
chosen input will prevent fruitless time spent
in attempting to set the remaining inputs of
the gate.

In this heuristics we can use controllability mea-
sures. In the PODEM algorithm as well as the D-
algorithm, the D-frontier usually consists of many
gates, and a choice of which gate to D-drive through
next must be made. To decide this choice, PODEM
adopted heuristics using a very simple observability
measure as follows:

® As a D-frontier to D-drive, choose a gate clos-
est to a primary output.

In this heuristics we can use other observability
measures. Methods for determining controllability/
observability measures are available in published
literature such as [11].

In order to reduce the number of backtracks, it
is important to find the nonexistence of the solution
as soon as possible. In the "branch and bound" algo-
rithm, when we find that there exists no solution
below the current node in the decision tree, we
should backtrack immediately to avoid the subsequent
unnecessary search. The PODEM algorithm seems to

lack the careful consideration in this point.
®In each step of the algorithm, determine as many
signal values as possible which can be uniquely
implied.

To do this we take the implication operation
which completely traces such signal determination
both forwards and backwards through the circuit.
Moreover, we can take other techniques as follows:

@® Assign a faulty signal value D or D which is
uniquely determined or implied by the fault
under consideration.

As an example, consider the circuit of Fig. 1. For
the fault L s-a-1, we assign the value D to the line
L and 1's to the inputs J, K, and E. Then after the
implication operation we have a test pattern for the
fault without backtracks as shown in Fig. 1(a). On
the other hand, in PODEM, the initial objective _
(L,0) is determined to set up the faulty signal D

to the line L, and then the backtrace procedure
starts. As shown in Fig. 1(b), the backtrace pro-
cedure causes a path to be traced from the initial
objective line L backwards to a primary input B.

The assignment B=0 implies L=1. This contradicts
the initial objective, and setting L to D fails and
a backtrack occurs. As seen in this example, the
assignment of Fig. 1(a) is a condition necessary for
a test of the fault L s-a-1. By assigning the values
which are uniquely- determined we can avoid the un-
necessary choice.

Consider the circuit of Fig. 2(a). Suppose
that the D-frontier is {G2}. When the D-frontier
consists of a single gate, we often have specific
paths such that every path from the site of D-front-
ier to a primary output always goes through those
paths. In this example, every path from the gate G2
to a primary output passes through the paths F-H and
K-M. In order to propagate the value D or D to a
primary output we have to propagate the fault signal
along both F-H and K-M. Therefore, if there exists
a test in this point, paths F-H and K-M should be
sensitized. Then we have the assignment C=1, G=1,
J=1, and L=1 to sensitize them. This partial sensi-
tization which is uniquely determined is called a
unique sensitization. In Fig. 2(a) after the impli-

cation of this assignment we have A=1, B=0, F=D and

(a) Fault signal assignment
and implication

(b) PODEM

Fig. 1. Effect of fault signal assignment

(b) PODEM

Fig. 2. Effect of unique sensitization

H=D without backtracks. On the other hand, PODEM
sets the initial objective (F,0) to propagate the
fault signal to the line F and performs the backtrace
procedure. If the backtrace performs along the path
as shown in Fig. 2(b), we have to assign 0 to A, and
we have J=0 and K=1 by the implication. Though no
inconsistency appears in this point of time, an in-
consistency or the disappearance of the D-frontier
will occur in the future when the fault signal pro-
pagates from H to K.

® When the D-frontier consists of a single gate,

apply a unique sensitization.

As seen in the above examples, in order to reduce
the number of backtracks it is very effective to find
as many values as possible which are uniquely deter-
mined in each step of the algorithm. This is because
the assignment of the uniquely determined values
could decrease the number of possible selection.

The execution of the techniques mentioned above
may result in specifying the output of a gate G but
leaving the inputs of G unspecified. This type of
output line is called an unjustified line. It is
necessary to specify input values so as to produce
the specified output values. In PODEM, since all the
values are first assigned only to the primary inputs
and only the forward implication is performed, un-
justified lines never appear. However, if we take
the techniques mentioned above, the unjustified lines
may appear and thus in this case some initial object-
ives will be produced simultaneously so as to justify
them. This will be managed by introducing a multiple
backtrace procedure which is an extention of the
backtrace procedure of Goel [8].

When a signal line L is reachable from some fan-
out point, that is, there exists a path from some
fanout point to L, we say that L is bound. A signal
line which is not bound is said to be free. When a
free line L is adjacent to some bound line, we say
that L is a head line. As an example, consider the
circuit of Fig. 3(a). In the circuit, A,B,C,E,F,G,
H,and J are all free lines, and K,L, and M are bound
lines. Among the free lines, J and H are head lines
of the circuit since J and H are adjacent to the
bound lines L and M, respectively.

The backtrace procedure in PODEM traces a single
path backwards to a primary input. However, it
suffices to stop the backtrace at a head line by the
following reasons. The sub-circuit composed of only
free lines and the corresponding gates is a fanout-
free circuit since it contains no fanout-point. For
fanout-free circuits, line justification can be per-
formed without backtracks. Hence we can find the
values on the primary inputs which justify all the
values on the head lines without backtracks. It is
sufficient, or even efficient, to let the line just-
ification for head lines wait to the last stage of
test generation.

® Stop the backtrace at a head line, and postpone

the line justification for the head line to the

later.
To illustrate this, consider the circuit shown in
Fig. 3(a). Suppose that we want to set J=0 and don't
know at the current stage that there exists no test
under the condition J=0. In PODEM, the initial ob-
jective is set to (J,0) and the backtrace may result
in the assignment A=1. Since the value of J is still
not determined, PODEM starts again the backtrace
procedure, and get the assignment B=0. A=l and B=0
imply J=0. Here, by hypothesis, there exists no test

under J=0, and thus an inconsistency occurs for the
current assignment and PODEM must backtrack to
change the assignment on B as shown in Fig. 3(b).
In this case, if we stop the backtrace to the head
line 3, we can decrease the number of backtracks as
shown in Fig. 3(c).

Performing a unique sensitization, we need to
identify paths which would be uniquely sensitized.
Also, we need to identify all the head lines in the
circuit. These must be identified and those topolo-
gical information should be stored in some manner
before the test generation starts. The computation
time of these preprocess can be, however, as small
as negligible compared with the total computation
time for test generatiom.

® Multiple backtrace, that is, concurrent tracing

more than one path is more efficient than the

backtrace along a single path.
Consider the circuit of Fig. 4. For the objective
to set C=0, PODEM repeats backtrace three times
along the same path C-B-A and also along the same
path C-F-E before the value 0 is specified on C by
the implication. Thus, we can see that the back-
trace along a single path is inefficient and wastes
the time which may be avoided. From this point of
view, we could guess that the multiple backtrace
along plural paths is more efficient than the single
backtrace.

In the backtrace of PODEM, an objective is
defined by an objective logic level 0 or 1 and an
objective line which is the line at which the objec-
tive logic level is desired. An objective which
will be used in the multiple backtrace is defined
by a triple:

(s, n.(s), n,(s))

where . L

s is an objective line,

no(s) is the number of times the objective
logic level 0 is required at s, and

(a) Illustrative circuit

(b) PODEM (c) Backtracking at
head lines
Fig. 3. Effect of head lines

nl(s) is the number of times the objective logic
level 1 is required at s.

The computation of n,.(s) and n_(s) will be
described later. The mulgiple backfrace starts with
more than one initial objective, that is, a set of
initial objectives. Beginning with the set of init-
ial objectives, a set of objectives which appear in
the midst of the procedure is called a set of current
objectives. A set of objectives which will be obain-
ed at head lines is called a set of head objectives.
A set of objectives on fanout-points is called a set
of fanout-point objectives.

An initial objective required to set 0 to a line

s is
(s,no(s),nl(s)) = (s,1,0)

and, an initial objective required to set 1 to s is
(s,no(s),n (s)) = (s,0,1)

Working breadth=first from these initial object-
ives backwards to head lines, we determine next ob-
jectives from the current objectives successively
as follows:

1) AND gate: Let X be an input which is the easiest
to control setting 0. Then
nO(X) = nO(Y), nl(X) = nl(Y)
and for other inputs Xi
nO(Xi) =0, nl(Xi) = nl(Y)
where Y is the output of the AND gate.
2) OR gate: Let X be an input which is the easiest

to control setting 1. Then
ny(0 = ny(M, 1, (X = ¥

and for other inputs Xi

ng(X) = n (M), n (X)) = o.
3) NOT gate:
nO(X) = nl(Y), nl(X) = nO(Y).
4) Fanout-point:
) i
HaR) = Jom (XY, o, (X)-= deen=(X)
0 i=1 B B 1 i1 z Bl |

where line X fans out to Xl,...,Xk.

Fig. 5 shows an example to illustrate the com-
putation of no(s) and nl(s). The initial objectives

are (Q,0,1) and (R,1,0), i.e., Q and R are first
required to set 1 and 0, respectively. At the fanout

point H, nl(H) is obtained by summing nl(K) and

n (L). The flowchart of Fig. 6 describes the multi-
ple backtrace procedure. Each objective arrived at
a fanout-point stops its backtracing while there
exist other current objectives. After the set of
current objectives becomes empty, a fanout-point
objective closest to a primary output is taken out,
if one exists. If the fanout-point objective
satisfies the following condition, the objective
becomes the final objective in the backtrace process
and the procedure ends at the exit (D) in Fig. 6.
The condition is that the fanout-point p is not
reachable from the fault line and both n.(p) and
n,(p) are nonzero. In this case, we assign a

value (0 if nO(P)gﬁl(p) of 143f no(p)<nl(p)) to the

fanout-point and perform the implications. The
first part of the condition is necessdry to guar-
antee that the value assigned is binary, that is,
neither D nor D.

In PODEM, the assignment of a binary value is
allowed only to the primary inputs. In our algo-
rithm, FAN, we allow to assign a value to fanout-
points as well as head lines, and hence the back-
tracking could occur only at fanout-points and
head lines not at primary inputs. The reason why
we assign a value to a fanout-point p is that there
might exist a great possibility of an inconsistency
when the objective in backtracing has an inconsist-
ent requirement such that both no(p) and nl(p) are

nonzerc. So as to avoid the fruitless computation,
we assign a binary value to the fanout-point as
soon as the objective involves a contradictory
requirement. This leads to the early detection of
inconsistency which would decrease the number of
backtracks.
@ In the multiple backtrace, if an objective at
a fanout-point p has a contradictory require-
ment, that is, both n_ (p) and n,(p) are non-
zero, stop the backtrace so as To assign a
binary value to the fanout-point.
When an objective at a fanout-point p has no con-
tradiction, that is, either no(p) or nl(p) is zero,

the backtrace would be continued from the fanout-
point. If all the objectives arrive at head lines,
that is, both sets of current objectives and fanout-
point objectives are empty, then the multiple back-
trace procedure terminates at the exit (C) in Fig.
6. After this, we sort the set of head objectives
in the descending order of no+n1. Then taking out

2 head line one by one from the set of head object-
ives, we assign the correspoinding value to the
head line and perform the implication. For details

G,0,1) [(J0,1) Q,0.1
(K0l NJo)

Figs .

Computation of n, and n

1

see the flowchart of FAN algorithm shown in Fige. 7.

ITT. DESCRIPTION OF THE FAN ALGORITHM

The FAN test generation algorithm is similar to
PODEM based on the implicit enumeration process.
However, the FAN algorithm characterizes to put
empahsis on the following points:

1

2)

FAN pays special attention to fanout-points
in circuits.

FAN is a branch and bound algorithm which
adopts many techniques presented in the
preceding section so as to detect an in-
consistency as early as possible.

As mentioned in the preceding section, those
techniques would be very useful to decrease the num-
ber of backtracks, and thus FAN could be faster and

more efficient than PODEM.
algorithm is given in Fig. 7.

The flowchart of the FAN
Each box in the flow-

chart will be explained in the following:

1)

2

3)

4)

Assignment of fault signal: B
In this box 1, a fault signal D or D which
is uniquely determined is assigned.

Backtrace flag:

The multiple backtrace procedure of Fig. 6
has two entries: One entry is (A) where

the multiple backtrace starts from a set

of initial objectives, and the other entry
is (B) where the multiple backtrace starts
with a fanout-point objective to continue
the last multiple backtrace which terminat-
ed at a fanout-point. The backtrace flag
is used to distinguish the above two modes.

Implication:

We determine as many values as
possible which can be uniquely
implied. To do this we take the
implication operation which
completely traces such signal

new initial objectives.

5) Unique sensitization:

The unique sensitization is performed in
the manner mentioned in the previous sec-
tion (see Fig. 2). Although the unique
sensitization might leave some lines un-
justified, those lines will be justified by
the multiple backtrace.

6) Determination of a final objective:

The detailed flowchart of this box 6 is
described in Fig. 8. By using the multiple
backtrace procedure, we determine a final
objective, that is, choose a value and a
line such that the chosen value assigned to
the chosen line has a good likelihood of
helping towards meeting the initial object-
ives.

7) Backtracking:

The decision tree is identical to that of
PODEM, that is, an ordered list of nodes
with each node identifying a current assign-
ment of either 0 or 1 to one head line or
one fanout-point, and the ordering reflects
the relative sequence in which the current
assignments were made. A node is flagged
if the initial assignment has been reject-
ed and the alternative is being tried.

When both assignment choices at a node are
rejected, then the associated node is re-
moved and the predecessor node's current
assignment is also rejected.

Q

1 LET. THE SET OF INITIAL OBJECTIVES SEI

THE SET OF CURRENT OBJECTIVES

determination both forwrads and
backwards through the circuit.
In PODEM, since all the values are
assigned only to the primary inputs
and only the forward implication
is performed, unjustified lines
never appear. However, in FAN,
since both forward and backward
implications are performed, the
unjustified lines might appear.
Therefore, so as to justify those
lines, the multiple backtrace is
necessary not only to propagate
the fault signal (D or D) but also
to justify the unjustified lines.
Continuation check for multiple
backtrace:
In this box 4, we check whether it
is meaningful to continue the back-
trace or not. We consider that it
is not meaningful to continue the
backtrace if the last objective was
to propagate D or D and the D-front-
ier has changed, or if the last
objective was to justify unjusti-
fied lines and all the unjustified L

—_ ®

IS THE SET OF~, TES

CURRENT DBJEETIV557
EMPTY ?
5 THE SET OF N0

| w0 FANOUT-POINT 0BJECT>—— =t
TIVES EMPTY, ?

7 ?
ES
TAKE QUT A CURRENT
OBJECTIVE

IS O0BJECTLVE

<CINe A HEAD LINE 7o—TES

TAKE OUT & FANOUT-
POINT OBJECTIVE

P CLOSEST TD A
PRIMARY OUTPUT

QBJECTIVE
REACHED A FANOUT-
POINT ?

YES

BY THE RULES (1)-(3) | ADD ng AND ny TO
DETEAMINE NEXT OBJECTIVES

AND ADD THEM TO THE SET
OF CURRENT OBJECTIVES

ADD THE CURRENT
OBJECTIVE TO
THE SET OF
CTIV
HEAD OBJECTIVES

THE CORRESPONDING
FANOUT-POINT
0BJECTIVE BY THE

RULE (B)

lines have been justified. When
it is not meaningful to continue,
the backtrace flag is set so as to
start the multiple backtrace with

102

Fig: 6.

Flowchart of multiple backtrace

8) Line justification of free lines:
We can find the values on the primary
inputs which justify all the values on
the head lines without backtracks. This
can be done by an operation identical to
the consistency operation of the D-algo-
rithm.

IV. EXPERIMENTAL RESULTS

We have implemented three programs, SPS (single
path sensitization), PODEM, and FAN test generation
algorithms, in FORTRAN on a NEAC System ACOS-1000.
The SPS is a test generation algorithm which is
restricted to sensitize only single paths and thus
it is simpler than the D-algorithm. These programs
were applied to a number of combinational circuits
shown in Table I.. The number of gates in these
circuits ranged from 718 to 2982. The results are
shown in Tables II and III. To obtain the data of
Tables II and III, three programs were executed to
generate a test for each stuck fault.

The number of times a backtrack occurs during
the generation of each test pattern was
calculated by the programs, and the
average number of backtracks is shown
in Table II. Since PODEM and FAN are
complete algorithms, given enough time,
both will generate tests for each test-
able fault. However, being limited in
computing time, we gave up to continue
test generation for the faults the
number of backtracks exceeds 1000.

Such faults are called aborted faults

[HCONSISTENCY

‘has also been implemented.

bilities to reduce the number of backtracks in the
algorithm. The FAN algorithm presented in this
paper adopts many techniques to reduce the number
of backtracks. Experimental results on large
combinational circuits of up to 3000 gates show
that the FAN algorithm is faster and more efficient
than the PODEM algorithm in computing time, the
number of backtracks and test coverage. An auto-
matic test generation system composed of the FAN
test generator and the concurrent fault simulator
The results on large
circuits show that computing time on an ACO0S-1000
were reasonable and the system achieved a high-
speed test generation.

ACKNOWLEDGMENT
We would like to express our thanks to Profs.

Hiroshi 0zaki and Kozo Kinoshita for their support
and encouragement on this work.

1
SET A FAULT SIGNAL

(2)

SET BACKTRACE FLAG

in Table III. The results shown in
Tables II and III demonstrate that,
though PODEM is faster than SPS, FAN
is more efficient and faster than both
PODEM and SPS. The average number of
backtracks in FAN is extremely small
compared with PODEM and SPS.

We have also implemented an auto-
matic test generation system composed
of FAN and the concurrent fault simulat-
or [10] in such a way that the fault
simulator is used after each test
pattern is generated to find what
other faults are detected by the tests.
Note that the test pattern is completed

by replacing the unspecified inputs
by 0's and 1's. These faults are
deleted from the fault list. The re-

sults of this system are shown in - & Eﬁsm[??Ei[‘”éﬁsé
p = NAT =

Table IV. Computing times on an < E%ﬁhsﬁﬁk?éﬁﬁs/’] TIVE T0 ‘E

ACOS-1000 (15 millions of instructions R '—'ﬁ <l e

per second) were reasonable and a high e : 1 -

speed test generation system has been sk L——l"“‘-”“ ’fﬂsﬁ-ﬁ"g :[mus

implemented as compared with the re- OBJECTIVE LINE

sults of PODEM-X [9].

V. CONCLUSIONS

(7]

15 THERE AN UNTRIED TES

EXIT: UNTESTRBLE
FAULT

The PODEM algorithm reported by
Goel succeeded in improving the poor
performance of the D-algorithm for
error correction and translation type
circuits. However, we have shown
that there still remain many possi-

103

Fig. 7.

[':_Im
IMPLICATION|
/‘k (4)

IS CONTINUATI W
4am:mucs 0&__0

"~ MEANINGFUL ?
V
SET BACKTRACE FLAG

|
| ves
i

FAULT SIGNAL
PROPAGATED TO A

PRIMARY OUTPUT ?
IS THERE ~_ MO
o AMY UNJUSTIFIED
BOUMD LINE.
THE NUMBER OF- (8)
ZERD TES IN D-FRONTIE] = !
H YES LINE JUSTIFICA-
TION OF FREE
LINES

ONE
(5) 4[5]

EXIT: TEST

SET BACKTRACE
FLAG

Flowchart of FAN algorithm

15 BACKTRACE

YES

FLAG ON ?

IS THE SET OF o

NO

FANOUT-POINT OBJECTIVES
EMPTY 2

YES

15 THE 3ET.
OF HEAD DBJECTIVE
EMPTY 2,

TAKE OUT A HEAD
OBJECTIVE

5 THI
HEAD LINE UN-
SPECIFIED ?

LET THE HEAD OBJECTIVE
3E FINAL 0BJECTIVE

YES

RESET BACKTRACE FLAG AND
LET ALL THE SETS OF
OBJECTIVES BE EMPTY

LET ALL THE UNJUSTIFIED
LIMES BE THE SET OF
INITIAL OBJECTIVES

PROPAGATED TO A
PIRMARY OUTPUT?

ADD A GATE [M
J-FRONTIER TO THE
SET OF INITIAL
OBJECTIVES

YES

HULTIPLE BACKTRACE MULTIPLE BACKTRACE
FROM A FANQUT-POINT FROM THE SET OF
| OBJECTIVE INITIAL OBJECTIVES

1 !

|

-
_~CONTRADICTCRY
EQUIREMENT AT A
EANQUT-POINT OCCURRE
?

MULIPLE 3ACKTRACE

OF FIG.6

|I LET THE FAMOUT-POINT OBJECTIVE
| BE FINAL DBJECTIVE TO ASSIGM

A VALUE

Fig. 8. Determination of final objective
Table I. Characteristic of Circuits
Number of Number of Number of Number of Number of N b £
Circuit Gates Lines Inputs Outputs Fanout- F:I:I:: 2
Points
#1 Error 718 1925 3 25 381 1871
Correcting
Circuit
#2 Arithmetie 1003 2782 233 140 454 2748
Logic
Unit
#3 ALp 1456 572 50 22 579 3428
#4 ALU and 2002 5429 178 123 806 5350
Selector
#5 ALU 2982 7618 207 108 1300 7550

Table II. Normalized Computing Time and
Average Number of Backtracks

Normalized Computing Time Average Number of Backtracks
Circuit
SPS PODEM FAN 5PS PODEM FAN
#1 = i 1.3 1 1.2 4,9 1.2
#2 4.5 3.6 1 51.7 42,3 15.2
3 14.5 5.6 1 189.7 61.9 0.6
4 3.1 1.9 1 1.5 5.0 0.2
e 3.4 4,8 1 38.1 53.0 23,2
Table II1. Test Coverage
% Tested Faults % Aborted Faults % Untested Faults
Circuit
5PS PODEM FAR SP5 FODEM FAN SPS PODEM FAN
1 99.04 99.20 99,52 n.48 0.48 0,11 - 0.32 0.37
t2 91.15 94,25 95.49 4,70 3,49 1.38 = 2,26 3,13
i3 66.25 92.53 96.00 16.25 5.05 0 - 2,42 4,00
4 98,77 98,75 98.90 0.07 0.26 0 = 0.99 1,10
TS 94.73 94,38 96.B1 .54 4.79 2.17 - 0.82 1.02
Table IV. FAN Combined with Concurrent Simulator
Computing Time (seconds)
Circuit % Tested ¥ Aborted # of Test
FAN Concurrent Total Faults Faults Patterns
Simulator
f1 3.8 4.6 8.4 99,52 0.11 151
#2 34.6 3.7 38.3 95.74 1.13 159
f3 7.4 9.5 16.9 96,00 0 215
t 4 4,0 10.5 14.5 98,90 0 195
ts 76.5 18.9 95.4 98,20 0.78 283

105

[1]

[2]

(3]

[5]

[6]

[71

(8]

[9]

[10]

[11]

REFERENCES

H.Fujiwara and S.Toida, "The complexity of
fault detection: An approach to design for
testability," Proec. 12th Int. Symp. on Fault
Tolerant Computing, pp.l101-108, June 1982.
E.B.Eichelberger and T.W.Williams,"A logic
design structure for LSI testing," Proc. 1l4th
Design Automation Conf., pp.462-468, June 1977.
S.Funatsu, N.Wakatsuki, and T.Arima,''Test
generation systems in Japan,'" Proc. 12th
Design Automation Conf., pp.114-122, June 1975.
F.F.Sellers, M.Y.Hsiao and L.W.Bearnson, "
Aanlyzing errors with the Boolean difference,"
IEEE Trans. Comput., C-17, pp.676-683, July
1968.

J.P.Roth, "Diagnosis of automata failures:

A calculus and a method," IBM J. of Research
& Development, vol.l0, pp.278-291, July 1966.
C.W.Cha, W.E.Donath and F.Ozguner, '"9-V
algorithm for test pattern generaticn of
combinational digital eircuits," IEEE Trans.
Comput., C-27, pp.193-200, March 1978.
K.Kinoshita, Y.Takamatsu, and M.Shibata,''Test
generation for combinational circuits by
structure description functions," Proc. 10th
Int. Symp. on Fault Tolerant Computing, pp.
152-154, Oct. 1980.

P.Goel,"An implicit enumeration algorithm to
generate tests for combinational logic cir-
cuits,”" IEEE Trans. Comput., C-30, pp.215-222,
March 1981.

P.Goel and B.C.Rosales, "PODEM-X: An automatic
test generation system for VLSI logic struct-
ures,'" Proc. 18th Design Automation Conf.,
pp.260-268, July 1981.

E.G.Ulrich and T.Baker, "The concurrent simu-
lation of nearly identical digital networks,"
Proc. 10th Design Automation Conf., pp.l45-
150, June 1973.

L.H.Goldstein, "Controllability/observability
analysis of digital circuits," IEEE Trams.
Circuits and Systems, CAS-26, pp.685-693,
Sept. 1979.

	スキャン
	スキャン 1
	スキャン 2
	スキャン 3
	スキャン 4
	スキャン 5
	スキャン 6
	スキャン 7
	スキャン 8

