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Abstract. Acyclic partial scan design is an efficient DFT
method. This paper presents a scheduling method for re-
ducing the number of scan registers for acyclic structure.
In order to estimate the number of scan registers during
scheduling, we propose provisional binding of operational
units, and show a force-directed scheduling algorithm with
the provisional binding. Experimental results show that the
number of scan registers in the resulting RTL datapaths can
be reduced by our method combined with the binding algo-
rithm for acyclic partial scan.

1 Introduction
Design-for-testability (DFT) at register-transfer level

(RTL) is an important approach to the reduction of testing
cost. RTL DFT is suitable for today’s VLSI design style
— The design modification for testability is transparent for
RTL designers, and the area/delay penalty by the DFT is
alleviated by logic synthesis.

Acyclic partial scan design is an efficient DFT method.
In this DFT, some of flip-flops in a sequential circuit are re-
placed by scan flip-flops so that the resultant kernel circuit
becomes acyclic. Test generation for an acyclic sequential
circuit can be performed by applying a combinational test
generation algorithm to its time-expansion model [1], and
hence a complete test set for an acyclic sequential circuit
can be obtained efficiently. Such structure-based DFTs [1]-
[4] can be applied to RTL designs since structural properties
in RTL designs are generally succeeded to logic level cir-
cuits by logic synthesis. An efficient algorithm for finding a
minimum set of scan registers that break all feedback loops
in a circuit has been proposed in [5]. Thus, we can obtain
testable circuits with low hardware overhead efficiently.

High-level synthesis refers to transforming an abstract
behavioral description into an RTL circuit. Taking DFTs
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applied to the resultant RTL circuits into account during
high-level synthesis, i.e., high-level synthesis for testability
can reduce the area/delay penalty, and bring out the effect
of the RTL DFTs [6]. Many techniques on high-level syn-
thesis for partial scan design have been proposed [7]-[12].

In this paper, we consider a method of high-level syn-
thesis for acyclic partial scan design. High-level synthe-
sis mainly consists of two tasks: scheduling and binding.
Takasaki et al. [12] proposed a binding algorithm for mini-
mizing the number of scan registers so as to make the kernel
acyclic for a given scheduled data flow graph (DFG) or be-
havior description while keeping the area/performance op-
timality. Experimental results in [12] show that the bind-
ing method can minimize the number of scan registers for
many scheduled DFGs. In this paper, we propose a schedul-
ing method for reducing the number of scan registers for
acyclic structure. In order to estimate the number of scan
registers during scheduling, we propose provisional bind-
ing of operational units, and show a force-directed schedul-
ing algorithm [13] with the provisional binding. Experi-
mental results show that the combination of the scheduling
algorithm with the provisional binding and the binding al-
gorithm [12] can further reduce the number of scan regis-
ters for acyclic structure compared to that of the scheduling
algorithm without the provisional binding and the binding
algorithm for some example DFGs.

2 High-Level Synthesis for Acyclic Structure
2.1 High-level synthesis flow

High-level synthesis (HLS) transforms a behavioral in-
formation, which is represented by a data flow graph (DFG)
(Fig. 1(a)), into a register-transfer level (RTL) design (Fig.
1(c)). In a DFG, a vertex represents an operation with a type
(adder, multiplier, and so forth), and an edge represents a
variable. Our HLS system derives an optimal RTL datap-
ath in which the number of resources (operational units and
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(a) Data flow graph: GD (b) Scheduled DFG: GsD (c) RTL datapath for GD

Figure 1. Input and output of high level synthesis.

registers) are minimum for a given DFG with a latency con-
straint, which is an upper bound of the execution time. In
addition, it aims to minimize the number of scan registers
required for cycle breaking in the resultant RTL circuits.

HLS mainly consists of two tasks: scheduling and bind-
ing. The former, scheduling, is to minimize the upper
bound of the number of operational units for each operation
type (adder, multiplier, and so on) under a latency constraint
by assigning each operation to an appropriate control step.
The result of the scheduling is represented by a scheduled
DFG (Fig. 1(b)).

The latter binding procedure is further divided into oper-
ational unit binding and register binding. Here we consider
that operational unit binding is followed by register binding.
In these procedures, each operation (variable) in the DFG
scheduled by the above procedure is assigned to an opera-
tional unit (register) in the resultant RTL datapath, i.e., the
binding determines which each operation (variable) shares
an operational unit (register) with. As a result, an optimal
datapath with minimum numbers of operational units and
registers is obtained (Fig. 1(c)).

2.2 Binding algorithm
The optimal operational unit binding problem is reduced

to the minimum clique partitioning problem for a compati-
bility graph of operations. In a compatibility graph GC (Fig.
2) for a scheduled DFG GsD, a vertex corresponds to an op-
eration, and an edge v1 v2 denotes that operations v1 and
v2 are compatible, i.e., they can share an identical opera-
tion. Note that two operations v1, v2 are compatible when
they are assigned to different control steps in the scheduled
DFG GsD. A clique in compatibility graph GC means that
all the operations in the clique can share one identical op-
erations, and hence the goal of binding is to partition the
compatibility graph with a minimum number of cliques. An
efficient heuristic algorithm for the minimum clique parti-
tioning problem has been proposed [14].

Recall that our goal is to minimize the number of scan
registers for acyclic partial scan while minimizing the num-
ber of resources under a given latency constraint. In or-
der to take the number of scan registers into account during
the above-mentioned minimum clique partitioning, by fo-
cusing on the fact that sharing may cause a loop, Takasaki
et al. [12] represented the strength or possibility of the re-
quirement for scan registers as a weight on an edge in the
compatibility graph, and presented an algorithm for finding
a minimum weighted clique partitioning.

In [12], edges v1 v2 in compatibility graph GC are clas-
sified into three cases based on the relation of two opera-
tions v1 and v2 in the scheduled DFG GsD, and accordingly
edges are weighted as follows1.

v1 and v2 are adjacent. The sharing must make a self-
loop. A self-loop must need a scan register, and there-
fore the weight is large.

v1 and v2 are not adjacent, but reachable. This makes a
(global) feedback loop. There must exist at least one
scan register on a path between v1 and v2. This, how-
ever, implies that an assignment of some variable on
the path to a scan register is sufficient. Hence, the
weight is relatively small.

There is no path between v1 and v2. In this case, no loop
is made, and hence the weight is zero.

Based on the above weighting, the weight of a clique is
defined as the sum of weights of edges in the clique. A
heavy clique is regarded as a sharing that requires scan reg-
isters strongly. Thus, the problem (minimizing the number
of scan registers with the minimum number of resources) is
solved by finding a minimum clique partitioning such that
the sum of weights of the cliques is minimum.

1In [12], the weight is specified in more detail according to the sched-
uled control steps of operations and the number of variables between them.
However, we need not such a specified weight in the following discussion,
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Figure 2. Compatibility graph: GC for adders
in GD.

Example 1: Fig. 2(a) shows the compatibility graph GC
for adders in the scheduled DFG GsD. Fig. 2(b) shows the
weights of edges and the optimal clique partitioning. In this
example, large and small weights are given by 100 and 10,
respectively, for the simplicity. The number of cliques is
two, and hence, the number of adders in the resultant RTL
circuits becomes two. The sum of weights of cliques is
10 10 20, which is the minimum. Note that the weight
of any other clique partitioning whose number of cliques
is also two is larger than 20 (e.g., 1 2 3 4
derives weight 200).

Similarly, register binding is performed, and thus an op-
timal RTL datapath can be obtained.

3 Scheduling Algorithm with Provisional
Binding

Recall that the goal of our HLS is to reduce the number
of scan registers without obstructing the resource minimiza-
tion. Hence, when the scheduling algorithm finds more than
one candidates of operation assignment for the resource
minimization, it must select the best for scan register reduc-
tion of all the candidates. It is, however, difficult to know
the accurate number of scan registers for acyclic structure
during scheduling since the specific structure of resultant
RTL circuits is determined after the completion of the bind-
ing procedure, which succeeds the scheduling. Therefore,
as a method for estimation of the number of scan registers
during the schedule algorithm, we propose provisional op-
erational binding.

In the following discussion, as an example of the appli-
cations of provisional binding, we present a force directed
scheduling algorithm [13] with our provisional binding.
This provisional binding can be applied to other schedul-
ing algorithms.

3.1 Force-directed scheduling
In the scheduling procedure, some operations are as-

signed to control steps uniquely due to a latency constraint.
For example, when a latency constraint for DFG GD1 (Fig.

and hence the precise definition is omitted here.
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Figure 3. Data flow graph: GD1.

3) is 5, operations 1 4 6 and are uniquely assigned
to steps 1 2 3 and 4, respectively. On the other hand, the
remaining operations (highlighted in Fig. 3) still have flex-
ibilities on control steps to be scheduled. For example, op-
eration 2 can be assigned to either step 1 or step 2. The
difference te ts te 2 ts 1 of the start and end of the
time interval ts te where an operation v can be scheduled is
said to be the mobility of v. In this case, the mobility of 2
in Fig. 3 is 1. Note that the mobility of a scheduled opera-
tion is zero. Thus, the scheduling procedure is to determine
appropriate control steps for all the operations whose mo-
bilities are not zero.

The force-directed scheduling (FDS) algorithm [13] is
known to be an efficient algorithm for finding an optimal
scheduling. In this algorithm, it is supposed that operations
are connected to one another by a spring, and some force is
exerted on them. The force changes according to the assign-
ment of operation to control steps2, and a balanced status
(i.e., a case where the whole force is minimum) is regarded
as an optimal scheduling.

The sketch of the FDS algorithm is as follows.

For all operations v whose mobilities are not zero, force
f v t is calculated for all steps t ts te where v can
be scheduled. The method for precise calculation of
forces is omitted here (See [13]). If a control step t is
crowded by the operations whose type is the same as v
(i.e., the probability that many operations are assigned
to t is high), the force f v t becomes large, and accord-
ingly operation v will push out of step t. Otherwise, i.e.,
when step t is not crowed, f v t becomes small, and
consequently operation v will be pull into step t.
Select a minimum force f v t , and operation v is as-
signed to step t.

2Although the force of the original FDS algorithm can take various
factors in optimization (e.g., the number of registers) into account, here
we make the force represent only the factor concerned with the number of
operational units, for the sake of simplicity.
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Figure 4. Partially-scheduled DFG: GsD1.

According to the assignment, update the mobility of
each operation that is not assigned to any control step,
and repeat the above procedures until all operations are
scheduled.

Example 2: Consider DFG GD1 in Fig. 3. At the beginning
of the FDS, operations 2 3 5 and all have mobility
1, and they have not been scheduled. Note that the con-
trol steps of the other operations are uniquely determined.
Forces f 2 and f 5 3 are the minimum for all time
steps of all the unscheduled operations, and the FDS algo-
rithm chooses either of them. For example, if the former

2 is selected, operation is assigned to step 2.

3.2 FDS with provisional binding
As mentioned above, each operation is assigned to an

appropriate control step at every iteration in the FDS al-
gorithm. Here, suppose that a partially-scheduled DFG
GsD1 shown in Fig.4 is obtained in the progress of FDS.
In GsD1, operations 2 and 3, which are highlighted, are
not scheduled, and they both have mobility 1. The forces
f 2 1 f 2 2 f 3 1 and f 3 2 are all the same
and minimum. In such a case, i.e., when there exist two
or more candidates for the best assignment with forces, we
apply the provisional binding to the candidates to break the
tie.

Let A be a set of assignments v t whose force f v t
are minimum in a partially-scheduled DFG GsD. For each
assignment v t A, the weight wp v t is calculated by
the followings.

Make a provisional compatibility graph GC GsD v t for
another partially-scheduled DFG GsD v t obtained by
applying assignment v t to GsD. In GC GsD v t , a
vertex corresponds to an operation, and an edge v1 v2
denotes that operations v1 and v2 are compatible provi-
sionally. Here, two operations v1 and v2 are regarded
as (provisionally) compatible not only when they are as-
signed to different control steps, but also when either
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Figure 5. Provisional compatibility graphs for
GsD1.

of two operations has non-zero mobility (or is unsched-
uled). This is because an operation v1 whose mobility is
not zero can share an operational unit with the other v2
by assigning v1 to step t1 which is different from step t2
where v2 is assigned.
Each edge in GC GsD v t is weighted in the same way
as the binding method of [12] provided that the specific
weight is omitted as explained in the previous section
since the specification of weights is not possible before
the completion of scheduling, and such a rough weight-
ing is considered to be sufficient for estimating scan re-
quirement.
According to the above-mentioned weighting, the mini-
mum weighted clique partitioning problem is solved by
the method [12], and let weight wp v t for the assign-
ment v t in partially-scheduled DFG GsD be the weight
of the clique partitioning (the sum of clique weights).

We choose an assignment v t whose weight wp v t is
a minimum based on the above calculation as a solution for
breaking the tie of the minimum force selection.

Example 3: Figs. 5 (a) and (b) show the provisional com-
patibility graph GC GsD1 2 1 and GC GsD1 2 2 for
assignments 2 1 and 2 2 in GsD1, respectively. The
wights wp 2 1 and wp 2 2 are 40 and 220, respec-
tively. Similarly, the others wp 3 1 and wp 3 2 are
230 and 40, respectively. Assignments 2 1 and 3 2
are minimum, and hence assignment 2 1 is selected
here. Then, operation 2 is scheduled at step 1 by force-
directed scheduling. Note that assignment 3 2 results in
the same scheduling as 2 1 . After updating mobilities
and forces, the remaining unscheduled operation is 3 only,
and accordingly 3 is assigned to step 2 with minimum
force. As a result, a (completely) scheduled DFG GsD1 is
obtained. By applying the binding algorithm [12] to GsD1,
we can obtain an RTL datapath shown in Fig. 6(a), which
requires two scan registers for acyclic structure. Fig. 6(b)
shows an RTL datapath obtained by assignment 2 2 in-
stead of 2 1 mentioned above and applying the same
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Table 1. DFG characteristics.
DFG #PIs #POs #ops #vars
GD1 5 1 8 14
GD2 5 3 11 25
Lwf 2 1 5 7

Paulin 4 3 10 11
Jwf 1 1 17 20
Iir 1 1 17 22

Ewf 1 1 34 38

binding algorithm. The RTL datapath corresponding to
2 2 requires three scan registers for acyclic structure.

Thus, we can reduce the number of scan registers for acyclic
structure by scheduling with provisional binding.

4 Experimental Results
A force-directed scheduling algorithm in which our pro-

visional binding is embedded was implemented, and ap-
plied to several benchmark DFGs. For the experiments, a
workstation SUN Ultra 10 (UltraSPARC-IIi 440MHz, 1GB
Memory) was used. Table 1 shows the characteristics of
benchmark DFGs. Columns #PIs, #POs, #ops and #vars
denote the numbers of operations, primary inputs, primary
outputs and variables, respectively. The first DFG GD1 cor-
responds to the example used in the pervious section (Fig.
3).

In order to analyze the effect of our method, we used

not only (SS) our proposed scheduling algorithm (force-
directed scheduling algorithm with the provisional binding,
i.e., minimum clique partitioning with minimum weight),
but also (S) the force-directed scheduling algorithm with
minimum clique partitioning whose weight is maximum.
The latter scheduling (S) is considered to aim to raise the
number of scan registers obtained by the succeeding bind-
ing algorithm. In the same way as the previous section, in
the schedulings (SS) and (S), only the basic core of under-
lying force-directed scheduling algorithm is used, i.e., the
force represents the factor concerned with only the number
of operational units. Further, we used two binding algo-
rithms: (SB) the binding algorithm [12] for acyclic par-
tial scan (mentioned in Sect. 2.2, i.e., minimum clique
partitioning with minimum weight) and (B) the binding al-
gorithm by minimum clique partitioning with maximum
weight. Thus, we applied all the combinations (SS+SB),
(SS+B), (S+SB) and (S+B) to the benchmark DFGs, and
calculated the minimum number of scan registers that are
required for acyclic structure (i.e., for breaking all feedback
loops) in the resultant RTL circuits.

Table 2 shows the resulting RTL datapaths obtained by
the combinations of scheduling and binding algorithms.
The number Latency under each DFG name denotes a
given latency constraint, which is minimum for the DFG.
Columns #ops, #regs, #scans and #muxs denote the num-
bers of operational units and registers, the minimum num-
ber of scan registers for acyclic structure and the number of
two-input multiplexors, respectively. The numbers of oper-
ational units and registers are minimum under the latency
constraint for all DFGs. The computation time required for
scheduling is small: the time required by SS for Ewf was
about 0.3 second, which is the largest of all the schedulings.

From this table we can see that, by comparing SS+SB
(our method) to S+SB, our scheduling method with the pro-
visional binding reduces the number of scan registers. Fur-
thermore, the number of scan registers by SS+SB is the
smallest of all the algorithms. On the other hand, the num-
ber of scan registers by SS+B is not smaller than that by
S+SB for any DFG, i.e., our scheduling method without
the binding algorithm [12] for acyclic partial scan is not
effective. This is because our scheduling with provisional
binding performs on the premise that the following binding
algorithm aims to the reduction in scan registers.

Note that the number of multiplexors in a resultant RTL
circuit is important for area/ performance as well as the
number of scan registers. Hence, we pursued the number
of multiplexors as shown in the rightmost column of Table
2. From these results, we can see that our synthesis method
SS+SB can also reduce the number of multiplexors while
reducing the number of scan registers for acyclic structure,
even though neither SS nor SB takes the number of multi-
plexors into account. Recall that both of our scheduling SS
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Table 2. Results: RTL datapaths.
DFG Method #ops #regs #scans #muxs

(Latency)
GD1 SS+SB 4 6 2 8
(5) SS+B 4 8

S+SB 3 10
S+B 6 11

GD2 SS+SB 4 6 2 11
(5) SS+B 6 14

S+SB 3 12
S+B 6 16

Lwf SS+SB 3 4 1 4
(5) SS+B 4 4

S+SB 2 4
S+B 4 6

Paulin SS+SB 4 6 4 8
(5) SS+B 6 10

S+SB 4 8
S+B 6 10

Jwf SS+SB 4 7 4 16
(9) SS+B 7 16

S+SB 5 16
S+B 7 16

Iir SS+SB 4 7 4 13
(8) SS+B 7 16

S+SB 4 13
S+B 6 16

Ewf SS+SB 4 10 6 31
(16) SS+B 10 32

S+SB 8 30
S+B 10 34

and binding SB aim to reduce feedback loops by sharing
operational units and registers appropriately. Accordingly
we can consider that many paths that make loops share one
path, and consequently the number of paths coming into
a resource (operational unit or register) decreases success-
fully. It is a future work to analyze this phenomenon in
more detail.

Thus, the combination of SS+SB results in the most ef-
fective in reducing scan registers for acyclic structure.

5 Conclusions

In this paper, we presented a scheduling algorithm for
reducing the number of scan registers for acyclic struc-
ture. In order to estimate the number of scan registers dur-
ing scheduling, we proposed provisional binding of opera-
tional units. Experimental results show that a force-directed
scheduling algorithm in which our provisional binding is
embedded can reduce the number of acyclic scan registers
while keeping the area/performance optimality.
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