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Abstract1

We propose a technique integrating test scheduling, scan
chain partitioning and test access mechanism (TAM) design
minimizing the test time and the TAM routing cost while
considering test conflicts and power constraints. Main
features of our technique are (1) the flexibility in modelling
the systems test behaviour and (2) the support for
interconnection test of unwrapped cores and user-defined
logic. Experiments using our implementation on several
benchmarks and industrial designs demonstrate that it
produces high quality solution at low computational cost.

1 Introduction
The testing of System-on-Chip (SOC) designs is a crucial
problem mainly due to the increasing design complexity,
which leads to high test data volumes. High test data
volumes are causing to two major problems depending on
each other; (1) how design a minimal test access mechanism
(TAM) and (2) how design a test schedule minimizing test
time under test conflicts and power constraint.
The work-flow designing an SOC test solution can be

divided into two consecutive parts; an early design space
exploration followed by an extensive optimization for the
final solution. For the former, we have proposed an
integrated technique for test scheduling and TAM design
minimizing test time and TAM cost [2]. The advantage of
the technique is its low computational cost making it useful
for iteratively use in the early design space exploration
phase. For extensive optimization for the final solution, we
have proposed a technique based on Simulated Annealing,
which is used only a few times justifying its high
computational cost [3]. We have, independently, proposed
an integrated test scheduling and scan chain partitioning
(test parallelization) technique under power constraints [4].
In this paper, we integrate test scheduling, scan-chain

partitioning and TAM design with the objective to minimize
test time and TAM routing cost while considering test
conflicts and power constraint. An aim is to reduce the gap
between the design space exploration and the extensive
optimization, i.e. produce a high quality solution in respect

to test time and TAM cost at a low computational cost. We
have analyzed our previous approach and noted the TAM
design part is of low quality. Further features of our
proposed approach are that we support:

• testing of user-defined logic (UDL),
• testing of unwrapped cores,
• memory limitations at test sources,
• bandwidth limitations on test sources and test sinks,
• embedding cores in core.

We have implemented our technique and performed several
experiments on benchmarks including a large Ericsson
design with 170 tests. Our tool and its modelling are made
general, which is an advantage since it can be used to model
the test behavior of not only scan tested systems.
The organization of the paper is as follows. An overview

of related work is in Section 2 and the considered test
arguments are discussed in Section 3. The system model is
described in Section 4 and our integrated test scheduling,
test parallelization and TAM design technique is presented
in Section 5. The paper is concluded with experimental
results in Section 6 and conclusions in Section 7.

2 Related Work
In order to minimize the test application time, it is desirable
to schedule the tests as concurrent as possible, however,
constraints and limitations must be considered. For
instance, only one test can be applied at a time to each
testable unit and power constraints must be carefully
considered otherwise the system can be damaged.
Several test scheduling approaches have been proposed

[5,1,6,7]. All are minimizing the test time but taking
different issues into consideration. For instance,
Chakrabarty proposed a test scheduling technique for core-
based systems considering external and BIST test conflicts
[5]. The technique proposed by Zorian minimizes the
number of control lines for BIST (Built-In Self-Test)
systems under power constraint [1]. The test conflicts in
such systems are few due to that each testable unit has its
dedicated test resources. For general systems, Chou et al.
[6] and Muresan et al. [7] have proposed techniques to
minimize test time under power limitations and conflicts.
An approach designing the TAM and scheduling the tests is
proposed by Cota et al. [14].
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3 Test Arguments
3.1 Test Power Consumption
The power consumption during testing is usually higher
compared to normal operation due to that high activity is
desired in testing to activate as many faults as possible and
minimizing the test time. Chou et al. [6] introduced a test
power model by denoting a fixed test power value to each
test set. Zorian [1] and Muresan et al. [7] have used the
assumption. We will also use it in our approach.

3.2 Scan-chain partitioning
The test time for scan tested cores depends on the number
of assigned TAM wires. If a single TAM wire is assigned to
a core, all scan chains are formed into a single chain and the
test time becomes high. On the other hand, if a high number
of TAM wires are assigneed, the scan-chains at the core are
distributed over the TAMwires and the test time is reduced.
The test power depends on the activity in the system and

by disabling the scan-chains the test power can be reduced
[10]. Consider an example of a core with n scan chains. If n
TAM wires are assigned, all n chains are active at the same
time. The test time is low but the test power consumption
becomes high. On the other hand, if a single TAM wire is
assigned to the core, all chains are forming a single chain,
which results in a high test time. The test power
consumption can be the same as in the case with several
TAMs since all flip-flops in the scan chains are active.
However, each of the scan chains can be loaded one at a
time and that reduces the activity to 1/n [10].

3.3 Test Resource Limitations
A test source usually has a limited bandwidth. For instance,
an external tester may only support a limited number of
scan chains at a time [9]. The memory limitation at a test
source may also put a limitation on the testing [9] and there
could also be a limitation in number of available pins.

3.4 Interconnection Test
Interconnection test is used to test interconnection between
cores as well as UDL placed between cores. An example of
an interconnection test is illustrated in Figure 1. The test
vectors are transported from the test source r1 to the
wrapped core c1 using the TAM. The wrapper at c1 is put in
external test mode in order to perform interconnection test
and the UDL, b31, is receiving the test vector. The test
response is captured at the wrapper (also in external mode)
at core c2. In this example, a TAM is required connecting
the test source r1 and core c1 and from core c2 connecting
test sink s1. Surrounding cores and UDL blocks such as b32
in this example could interfere during an interconnection
test. If so, b31 and b32 cannot be tested concurrently.

4 System Modelling
In this section, we describe our system model and the input

specification to our test design tool. We illustrate the
modelling and the input specification using an example. We
also describe the TAM style we are assuming.
We make two observations regarding the cores in a core

based environment, there is no specification:
1. given when a UDL block becomes a core,
2. saying a core must be placed in a wrapper.

In our system modelling, we assume that all parts to be
tested can be partitioned into cores where some cores are
placed in wrappers while other cores are not, wrapped and
unwrapped. It means that the UDL blocks are seen as cores
that are not placed in wrappers, i.e. they are unwrapped.
A system with a tests method for each testable part could

results in a system as in Figure 1. We model such a system
by extending our previous system model [2]: design with
test,DT = (C, B, T, Rsource, Rsink, pmax, source, sink), where:
C = {c1, c2,..., cn} is a finite set of cores; each core, ci∈C, is
characterized by:
(xi, yi): placement denoted by x and y coordinates and

each core consists of a finite set of blocks ci={bi1, bi2,...,
bim} where m>0. Each block, bij∈B, is characterized by:
minbwij: minimal TAM bandwidth,
maxbwij: maximal TAM bandwidth.

Each block, bij, is attached with a finite set of tests, bij={tij1,
tij2,..., tijk} and each test, tijk∈T, is characterized by:

τijk: test time,
pijk: test power,
memijk: required memory for test pattern storage.
clijk: constraint list with blocks required for the test.

Rsource = {r1, r2,..., rp} is a finite set of test sources where

Figure 1. Modelling the example system.
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each test source, ri∈Rsource, is characterized by:
(xi, yi): placement denoted by x and y coordinates,
vbwi : vector bandwidth,
vmemi: size of vector memory.

Rsink = {s1, s2,..., sq} is a finite set of test sinks; where each
test sink, si∈Rsink, is characterized by:
(xi, yi): placement denoted by x and y coordinates,
rbwi: response bandwidth,

source: T→Rsource defines the test sources for the tests;
sink: T→Rsink defines the test sinks for the tests;
pmax: maximal allowed power at any time;
The input specification for the example system (Figure 1) to
our test design tool is outlined in Figure 2. The maximal
allowed power limit is given under [Global Constraints] and
at [Cores] the placement (x,y) and the blocks at each core
are specified. The placement (x,y) of each test source, its
possible bandwidth, and available memory are given at
[Generators]. At [Evaluators], the placement (x,y) and the
maximal allowed bandwidth for each test sink is given. For
each of the tests the following is specified under [Tests], the
test name, test power, test time, test source (test pattern
generator), test sink (test response evaluator), minimal and
maximal bandwidth, memory requirement and optional
interconnection test with another core. For instance, test t2
is an interconnection test between core c1 and core c2
(Figure 2). The tests for each block are specified at [Blocks]
and under [Constraints], the blocks required in order to
apply a test are listed. Note, the possibility to specify idle
power for each block, which is implemented but to simplify
the discussion it is excluded from the system model above.
The advantages of this model are that we can model a

system with wide range tests (scan tests and non-scan tests
such as delay, timing and cross-talk tests) and constraints,
for instance we can model:
• interconnection test for UDL (unwrapped cores),
• any combination of test resources, for instance a test
source can be on-chip while the test sink is off-chip and
vice versa,

• any number of tests per block (testable unit),
• memory requirements at test sources,
• bandwidth limitations at test resources,
• constraints among blocks, which allows modelling of
constraints such as cores embedded in cores.

Initially, no TAM exists in the system. Our technique adds
a set of TAMs, tam1, tam2,..., tamn where each tami is a set
of wires with bandwidth ni. We assume that we can partition
the TAM connected to a set of cores freely, which means we
are not limited to assigning all wires in a TAM to one core
at a time or dedicate TAM wires to a single core.
The TAM is modelled as a directed graph, G=(N, A),

where a node ni in N corresponds to a member of C or
Rsource or Rsink. An arc, aij∈A, between two nodes ni and nj
indicate the existence of a wire and a wire wk is a set of arcs,
for instance a wire wk from c1 to c3 passing c2 is given by
the two arcs: {a12, a23}.

To model the assignment of cores to TAM wires
connecting a test source, nsource, a set of cores, n1, n2,..., nn,
and a test sink, nsink, we use:

where [] indicates that the nodes (cores) are included
(assigned) in this TAM but not ordered.
The length, lj, of a test wire, wj, is given by:

where ni=nsource and nl=nsink and the function adist gives
the absolute distance between two nodes, i.e:

A set of wires form a tami and the routing cost is:

and the total TAM routing cost in the system is given by:

The total cost for a test solution is given by: α×test
time+β×ctam where test time is the total test application
time, ctam (defined above) is the total wiring cost, and α and
β are designer specified constants determining the relative
importance of the test time and the TAM cost.

5 Our Approach
In this section we describe our approach to integrate test
scheduling, scan-chain partitioning and TAM design. For a

Figure 2. Test specification of the system in Figure 1.

# Example design
[Global Constraints]
MaxPower = 25
[Cores] name x y {block1, block2,..., block n}

c1 10 30 {b11}
c2 10 20 {b21, b22}
c3 20 30 {b31, b32}

[Generators] name x y maxbw memory
r1 10 40 3 100
r2 10 10 1 100

[Evaluators] name x y maxbw
s1 20 40 4
s2 20 10 4

[Tests] name pwr time tpg tre minbw maxbw mem ict
t1 10 15 r1 s1 1 2 10 no
t2 5 10 r1 s2 2 4 5 c2

// for all tests in similar way
t12 15 20 r1 s2 2 2 2 no

[Blocks] #Syntax: name idle pwr {test1, test2,..., test n}
b11 1 {t1, t2, t3}
b21 1 {t4, t5}

// for all blocks in similar way
b32 2 {t11, t12}

[Constraints] Syntax: test {block1, block2,..., block n}
t1 {b11}
t2 {b11, b21, b22, b31, b32}

// constraint for all tests in similar way
t12 {b11}

nsource n1 n2 … nn,,[ , ] n ksin→ → 1

adist ni n1,( ) adist nk 1– nk,( ) adist nn nl,( )+
k 2=

n

+ 2

adist ni nj,( ) xi xj– yi yj–+= 3

tamlengthi li bandwidthi×= 4

ctam tamlengthi
i∀

n

= 5



given floor-planned system with tests, modelled as in
Section 4, we have to:

• determine the start time for all tests,
• determine the bandwidth for each test,
• assign each test to TAM wires,
• determine the number of TAMs,
• determine the bandwidth of each TAM, and
• route each TAM,

while minimizing the test time and the TAM cost
considering constraints and power limitations. Compared to
our previous approach [2,3,4] the following summarizes the
improvements:

• Test scheduling. In [2] when a test was selected and all
constraints were satisfied, a TAM was designed. The
approach always minimized test time at the expense of
the TAM cost. In this approach, a cost function includ-
ing test time and TAM cost guides our algorithm.

• Scan chain partitioning (test parallelization). In [4] we
maximized the bandwidth for each test, which resulted
in a low test time, however, the draw-back is a higher
TAM cost. Now, a cost function guides our algorithm.

• TAM design. In [2] when a test was selected and a free
TAM existed, it was selected. If an extension was
required, an extension was made minimizing the addi-
tional TAM. A disadvantage of the approach is illus-
trated in Figure 3 where a test D is to be connected
using the dashed line. A re-routing as A,C,D,B would
include D at no additional cost.

The cost function guiding our algorithm is: :

where: tijk is a test using taml and tamlengthl is the cost of
the tam wiring (Eq. 4), τstart: is the time when tijk can start,
and the designer specified factors ftam and ftime are used to
set the relative importance between test time and TAM cost.

5.1 Bandwidth Assignment
Scan chain partitioning allows a flexible bandwidth
assignment for each test depending on the bandwidth
limitations at the block under test and the bandwidth
limitations at the test resources.
The test time (see Section 3.2) for a test tijk at block bij at

core ci is given by:

and the test power:

where bwij is the bandwidth [4].
Note, that the test times can often be determined very

precisely, however, other issues such as power consumption

is not given at such accuracy; justifying our estimations.
Combining the TAM cost and the test time (Equation 7),

we get for each block bij and its tests tijk:

where: and k is the
index of all tests at the block. To find the minimum cost of
Equation 9, the derivative in respect to bw. Naturally, when
selecting the bwij, we also consider the bandwidth
limitations at each block.

5.2 Test scheduling
Our test scheduling algorithm is outlined in Figure 4. First,
the bandwidth is determined for all blocks (Section 5.1) and
the tests are sorted based on a key (time, power or
time×power). The outmost loop terminates when all tests
are scheduled. In the inner loop, the first test is picked and
after calling the create tamplan (Section 5.3) and based on
the cost function a TAM is selected or designed for the test.
If the TAM factor is important, a test can be delayed in order
to use an existing TAM. If all constraints are satisfied, the
test is scheduled and the TAM assignment is executed.
Finally, all TAMs are optimized.

5.3 TAM Planning
In the TAM planning phase, we:

• create the TAMs,
• determine the bandwidth of each TAM,
• assign tests to the TAMs, and
• determine the start time for each test.

The difference compared to our previous approach is that in
the planning phase we only determine the existence of the
TAMs but not their routing.
For a selected test, the cost function is used (create

tamplan(τ' , test) Figure 5) and if a test is to be scheduled,
the time (τ’) when the test is to start and its TAM are
determined. If all constraints are satisfied, the TAM plan is
determined (execute (tamplan)) (Figure 6).
To compute the cost of extending a TAM wire with a

node, the length of required additional wire length is
computed. Since the order on a TAM is not decided, we
need an estimation technique and for most TAMs, the

Figure 3. Illustration of our previous TAM design.
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Figure 4. Test scheduling algorithm.

for all blocks bandwidth = bandwidth(block)
sort the tests descending based on time, power or time×power
τ=0
until all tests are scheduled

until a test is scheduled
tamplan = create tamplan(τ, test) // see Figure 5 //
τ' = τ + delay(tamplan)
if all constraints are satisfied

schedule(τ' )
execute(tam plan) // see Figure 6 //
remove test from list

τ = first time the next test can be scheduled
order (tam) // see Figure 8 //



largest contribution comes from connecting the nodes at the
largest distance from each other. The rest of the nodes can
be added on the TAM at a limited additional cost (extra
routing). However, for TAMs with a high number of nodes,
the number of nodes becomes important. Our estimation of
the wire length considers both cases.
1. The nodes N (test sources, test sinks and cores) are
evenly distributed over the area, i.e. A = width×height
= (Nx×∆)×(Ny×∆) = Nx×Ny×∆2 where Nx and Ny are the
number of cores on the x and y axis, respectively:

2. The estimated length, eli, of a wire, wi, with k nodes is:

It means that we compute the maximum between the length
as the longest created wire and the sum of the average
distances for all needed arcs (wire parts). An example, let
nfurthest be the node creating the longest wire, and nnew the
node to be added, the estimated wiring length after inserting
nnew is given by (Eq. 11):

For a TAM, the extension is given as the summation of
all extensions of the wires included in the TAM that are
needed in order to achieve required bandwidth. The TAM
selection for a test tijk is based on the TAM with the lowest
cost according to:

Using this cost function, we get a trade-off between

adding a new TAM and delaying a test on an existing TAM.
For a newly created TAM, the delay for a test is 0 (since no
other test is scheduled on the TAM and the test can start at
time 0):

5.4 Example
The TAM assignment is illustrated using an example with
four blocks (testable units) placed as in Figure 7(a) and one
test per block; the test time is attached to each block. In the
example, all tests use the same test resources and no
bandwidth limitations exists. Assuming an initial sorting
based on test time, i.e. A, D, B, C and success for the
schedule at first attempt for each test and the cost function
uses ftam:ftime set to 3:1 in Figure 7 (b) and to 3:2 in (c).
The design flow for the TAM design is illustrated in

Table 1. In step 1, A is selected; no TAM exists in the design
and the cost for a new to be created is 90, which comes from
the distance between TG→A→SA times the tam factor (3).
It is a new tam, which means there is no delay for the test;
it is scheduled at time 0 to 50. In the second step for D, the
TAM created in step 1 can be extended or a new TAM can
be created. Both options are estimated. The cost of a new
TAM, TG→A→SA, is 150 while the cost of an extension of
T1, TG→[A,D]→SA, is 110, computed as TAM extension
20×3 and delay on TAM 50×1. The delay on the TAM is due
to that A occupies the TAM during 0 to 50.

5.5 TAM Optimization
Above we created the TAMs for the system, assigned each
test to a TAM and determined the bandwidth. In this section,
we determine the routing of each of the TAMs, order(tam)
(Figure 4) and it is based on a simplification of an algorithm
presented by Caseau and Laburthe [13]. The notation
TG→[A,D]→SA was used to indicated that core A and D
were assigned to the same TAM, however, the order in
[A,D] was not determined (Equation 1), which is the
objective in this section. We use:

to model that a TAM from nsource to nsink connects the cores
in the order nsource, n1, n2,..., nn, nsink.

∆ A Nx Ny×⁄= 10

eli max1 j k≤ ≤ l nsource nj n ksin→ →( ) ∆ k 1+( )×,{ }= 11

el′i max
min

l nsource nnew nfurthest n ksin→ → →( )

l nsource nfurthest nnew n ksin→ → →( )

∆ k 2+( )×

=

el′i eli–( ) ftam delay taml tijk,( ) ftime.×+×= 12

Figure 5. TAM estimation, i.e. create tamplan(τ, test).

for all tams connecting the test source and test sink used by the test,
select the one with lowest total cost
tam cost=0;
demanded bandwidth=bandwidth(test)
if bandwidth(test)>max bandwidth selected tam
demanded bandwidth=max bandwidth(tam)
tam cost=tam cost+cost for increasing bandwith of tam;

time=first free time(demanded bandwidth)
sort tams ascending according to extension (τ, test)
while more demanded bandwidth
tam=next tam wire in this tam;
tam cost=tam cost+cost(bus,demanded bandwidth)
update demanded bandwidth accordingly;

total cost=costfunction(tam cost, time, test);

Figure 6. TAM modifications based on create tamplan
(Figure 5), i.e. execute (tamplan).

demanded bandwith = bandwidth(test)
if bandwidth(test)>max bandwidth selected virtual tam
add a new tam with the exceeding bandwidth
decrease demanded bandwidth accordingly

time=first time the demanded bandwith is free sufficient long
sort tams in the tam ascending on extension (test)
while more demanded bandwidth
tam=next tam in this tam;
use the tam by adding node(test) to it, and make it busy
update demanded bandwidth accordingly;

new t ti jk( )cos l source tj( ) ci k tj( )sin→ →( ) ftam× .=

Figure 7. Example.
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The TAM routing algorithm is outlined in Figure 8. The
algorithm is applied for each of the TAMs and initially in
each case, the nodes (test sources, cores, and test sinks) on
a TAM are sorted descending according to:

where the function dist gives the distance between two
cores, or a test source to a core, or a core to a test sink, i.e:

First the test source and the test sink are connected
(Figure 8). In the loop over the list of nodes to be connected,
each node is removed and added to the final list where the
extension is least according to:

where source≤i<sink
We use the TAM, TG→[C,D,A,B]→SA, from the

example in Figure 7(a) to illustrate the algorithm, see Table
2. At step 0, the nodes are ordered, C,D,A,B, and a
connection is added between TG and SA. At step 1, in the
loop over the sorted list, C is picked and inserted between
TG and SA and the TAM is modified accordingly. At step
2, D is inserted satisfying Eq. 16. The algorithm continues
until all nodes are removed, resulting in a TAM:
TG→A→C→D→Β→SA.

5.6 Complexity
The worst case complexity for the test scheduling when the
TAM design is excluded, is of O(|T|3) where T is the set of
tests. For the TAM design there are two steps; assignment
and ordering. The assignment can be done in:
O(|T|×log(|T|)) and the optimization O(|n|2) for a TAM with
n cores. However, the optimization is performed after the
assignment and the complexity of the test scheduling,

O(|T|3), and the tam design assignment, O(|T|×log(|T|)),
gives a total complexity of O(|T|4×log(|T|)).

6 Experimental Results
We have implemented our technique and made a
comparison with previously proposed approaches using the
Ericsson [3], System L [2], System S [12], ASIC Z [1], an
extended version of ASIC Z, and Muresan [7]. All
benchmarks are also to be found at [8].
When referring to our technique, unless stated, the

reported results are from using sorting based on an initial
sorting of the test based on the key: t×p and our previous
techniques are referred to as SA (Simulated Annealing) [3]
and DATE [2]. For our approach a factor (ftam:ftime) is given
to guide our algorithm depending on the importance of test
time and TAM cost (see Section 5). The final cost of a test
solution is evaluated using: α×test time+β×TAM cost where
α and β are designer specified constants determining the
relative importance of the test time and the TAM cost (we
use α=1 and β=1 unless stated). SA also uses the function.
For the experiments we have used a Pentium II 350 MHz

processor with 128 Mb RAM. Our previous results referred
to as DATE [2] and SA [3] were performed on a Sun Ultra
Sparc 10 with 450 MHz processor and 256 Mb RAM [2,3].
To simplify the comparison we assume the two to be equal.

6.1 Test Scheduling
We have made experiments comparing our test scheduling
technique with previously proposed techniques, Table 3.
For instance, the optimal solution on design Muresan is 25
time units, which is found by SA after 90 seconds while our
technique finds it within 1 second.

6.2 Test Scheduling and TAM design
The results on integrated test scheduling and TAM design
are collected in Table 4. On ASIC Z when not considering
idle power, our technique with (2:1) produces a result 2.4%
from the result produced by SA within 1 second while SA
required 865 seconds.

Table 1. Illustration of TAM assignment.

Step Test/block Length TAM options Cost Schedule on selected Selected TAM
1 A 50 New:TG→A→SA 30×3+0×1=90 0-50 New:TG→A→SA

2 D 30 New:TG→D→SA
T1:TG→[A,D]→SA

50×3+0×1=150
20×3+50×1=110

0-50-80 T1:TG→[Α,D]→SA,

3 B 10 New:TG→B→SA
T1:TG→[A,D,B]→SA

30×3+0×1=90
0×3+80×1=80 0-50-80 T1:TG→[A,D,B]→SA

4 C 10 New:TG→C→SA
T1:TG→[A,D,B,C]→SA

50×3+0×1=150
0×3+90×1=80

0-50-80 T1:TG→[A,D,B,C]→SA

1 A 50 New:TG→A→SA 30×3+0×2=90 0-50 T1:TG→A→SA

2 D 30 New:TG→D→SA
T1:TG→[A,D]→SA

50×3+0×2=150
20×3+50×2=160

0-30 T2:TG→D→SA

3 B 10
New:TG→B→SA
T1:TG→[A,B]→SA
T2:TG→[D,B]→SA

30×3+0×2=90
0×3+50×2=100
0×3+30×2=60

0-30-40 T2:TG→[D,B]→SA

4 C 10
New:TG→C→SA
T1:TG→[A,C]→SA
T2:TG→[D,B,C]→SA

50×3+0×2=150
20×3+50×2=110
0×3+40×2=80

0-30-40-50 T2:TG→[D,B,C]→SA

dist nsource ni,( ) dist ni n ksin,( )+ 14

dist ni nj,( ) xi xj–( )
2 yi yj–( )

2+= 15

min dist ni nnew,( ) dist nnew ni 1+,( ) dist ni ni 1+,( )–+{ } 16

Figure 8. Routing optimization of all TAMs.

add test source and test sink to a final list
sort all cores descending according to Eq. 16
while cores left in the list
remove first node from list and insert in the final list
insert direct after the position where Eq. 14 is satisfied



For the extended ASIC Z, the total cost using our
technique is in the range from 8% to 22% better than SA and
the results computed using our technique are made within 1
second compared to 4549 seconds using SA. The results
here also demonstrate the improvement regarding the TAM
cost using our technique.
For the experiments on the Ericsson design we have used

α=1 and β=2. In the previous approaches no bandwidth
limitations were given on the external tester [2,3], however,
here we assume a bandwidth limitation of 12. Our technique
(15:1) produces better results than SA both in respect to test
time (6.6%) and TAM (13.4) leading to a total cost 8.6%
lower, which was computed after 10 seconds compared to
15 hours of execution for SA. We have made experiments
with a variety of ftam:ftime values. For instance, experiments
neglecting time and only minimizing the TAM (1:0).
For System S, we have used α=1 and β=3100 and in our

previous approach we assumed that the external tester
supported several tests at the same time [3]. For our
approach, we assume that the external tester can support 2
tests concurrently, i.e. more limitation. The optimal test
time is found by SA, DATE and our (15000:1). As the ratio
ftam:ftime changes the TAM cost is reduced while the test
time show a modest increased leading to a lower total cost.

6.3 Scheduling, Parallelization and TAM design
We have performed experiments combining test scheduling,
TAM design and test parallelization, Table 4.

For System S (α=1 and β=3100) we have made two
experiments combining test scheduling, test parallelization
and TAM design where the results indicate the usefulness
(cost reduction in the range from 9% to 12%).
For System L we have used α=1 and β=30 and our

approach finds the optimal test time, which is also found by
SA and DATE. However, the results using SA and DATE do
not support TAM of higher bandwidth than 1 and therefore
only test time is reported (the experiments were performed
ignoring TAM design). In Our* we have forced the
bandwidth to 1. The lowest total cost is found for Our
(1:50). For the test time and TAM cost, when the former
increases, the latter decreases, which is expected.

7 Conclusions
Test time minimization and efficient TAM design is
becoming important due to the increasing amount of test
data to be transported in a SOC design. We have proposed
an integrated technique for test scheduling, scan chain
partitioning and TAM design, which minimizes test time
and TAM cost while considering test conflicts and power
limitations. In our approach it is possible to model a variety
of tests as well as tests of wrapped cores, unwrapped cores
and user-defined logic.We have implemented the technique
and made several experiments.

References
[1] Y. Zorian, “A distributed BIST control scheme for complex

VLSI devices”, Proc. of VLSI Test Symp., pp. 4-9,April 1993.
[2] E. Larsson and Z. Peng, “An Integrated System-On-Chip

Test Framework”, Proc. of Design, Automation and Test in
Europe Conference, pp 138-144, March 2001.

[3] E. Larsson, Z. Peng and G. Carlsson, “The Design and
Optimization of SOC Test Solutions”, Proc. of Int. Conf. on
Computer-Aided Design, pp. 523-530, Nov. 2001.

[4] E. Larsson and Z. Peng, “Test Scheduling and Scan-Chain
Division Under Power Constraint”, Proc. of Asian Test
Symposium (ATS), pp. 259-264, Nov. 2001.

[5] K. Chakrabarty, “Test Scheduling for Core-Based Systems
Using Mixed-Integer Linear Programming”, Trans. on CAD
of IC and Sys., Vol.19, No.10,pp. 1163-1174, Oct. 2000.

[6] R. Chou et al., “Scheduling Tests for VLSI Systems Under
Power Constraints”, Transactions on VLSI Systems, Vol. 5,
No. 2, pp. 175-185, June 1997.

[7] V. Muresan et al., “A Comparison of Classical Scheduling
Approaches in Power-Constrained Block-Test Scheduling”,
Proc. of International Test Conf., pp. 882-891, Oct. 2000.

[8] E. Larsson, A. Larsson, and Z. Peng, “Linkoping University
SOC Test Site“, http://www.ida.liu.se/labs/eslab/soctest/

Table 2. Illustration of TAM routing.

Step Selected Order before selection Length of each TAM partition Order after selection TAM length Remaining in list
0 - TG→SA 30 C,D,A,B
1 C TG→SA 0 TG→C→S 14+22=36 D,A,B
2 D TG→C→SA 18,2 TG→C→D→SA 14+10+14=38 A,B
3 A TG→C→D→SA 6,14,20 TG→A→C→D→SA 10+10+10+14=44 B
4 B TG→A→C→D→SA 20,14,14,6 TG→A→C→D→Β→SA 10+10+10+10+10=50 -

Table 3. Test scheduling results.

Design Approach Test time Difference
to optimum (%) CPU (s)

M
ur
es
an

[7
]

Optimal 25 - -
SA [3] 25 0 90

Muresan [7] 29 16.0 -
DATE [2] 26 4.0 1
Our (p) 25 0 1

Sy
ste
m
S

[1
2]

Optimal 1152180
Chakrabarty SJF 1204630 4.5 -
DATE [2] 1152180 0 1
Our 1152180 0 1

Sy
st
em

L
[2
]

Optimal 1077 - -
DATE [2] 1077 0 1
Our 1077 0 1

Designer 1592 47.8 -

Er
ic
ss
on

[3
]

Optimal 30899 - -
SA [3] 30899 0 3260

DATE [2] (t) 34762 12.5% 3
Our 30899 0 5



[9] G. Hetherington et al., “Logic BIST for Large Industrial
Designs: Real Issues and Case Studies”, Proc. of
International Test Conference. , pp. 358-367, Sep. 1999.

[10] E. Larsson and H. Fujiwara, “Power Constrained Preemptive
TAM Scheduling”, Formal proccedings of ETW, Corfu
Greece, May 2002.

[11] M. L. Bushnell and V. D. Agrawal,“Essentials of Electronic
Testing for Digital, Memory, and Mixed-Signal VLSI
Circuits”,Kluwer Academic Publisher,ISBN 0-7923-7991-8.

[12] K. Chakrabarty, “Test Scheduling for Core-Based Systems”,
Proc. of International Conference on Computer Aided
Design, page 391-394, San Jose, CA, Nov. 1999.

[13] Y. Caseau and F. Laburthe, “Heuristics for large constrained
vehicle routing problems”, Journal of Heuristics, vol.5, no.3,
pp. 281-303, October 1999.

[14] E. Cota et al., “Test Planning and Design Space Exploration
in a Core-based Environment”, Proceedings of DATE, 2002,
pp. 478-485, Paris, France, March 2001.

Table 4. Experimental results on (1)integrated test scheduling and TAM design and on (2) combined test scheduling,
TAM design and test parallelization. For results on System L with index 1 we compare with Our (1:15500).

Approach Design Approach
Test Application Time Test Access Mechanism Total

CPU
Test time (τ) Diff. to SA TAM cost (tam) Difference

to SA (%) Total cost α×τ+β×tam Diff. to SA
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Our (180:1) 60437 82.7% 4855 -29.7% 70147 49.6% 10s
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Our (15000:1) 996194 0% 180 12.5% 1554194 4.2% <1s
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