
Design for Consecutive Transparency of RTL Circuits

Tomokazu Yoneda and Hideo Fujiwara
Graduate School of Information Science, Nara Institute of Science and Technology

8916-5 Takayama, Ikoma, Nara, 630-0101, Japan
Tel : +81-743-72-5226 Fax : +81-743-72-5229

tomoka-y, fujiwara @is.aist-nara.ac.jp

Abstract
This paper presents a design-for-consecutive-

transparency method that makes a core (RTL circuit)
consecutively transparent using integer linear program-
ming. Consecutive transparency of a core guarantees
consecutive propagation of arbitrary test/response se-
quences from the core inputs to the core outputs with
some latency. Therefore, it is possible to apply/observe
arbitrary test/response sequences to/from an embedded
core consecutively at the speed of system clock by using
interconnects and consecutively transparent cores in an
SoC. Experimental results show that the proposed method
introduces lower area overhead compared to the bypass
method that adds direct paths from PIs to POs with
multiplexers.
keywords: design for testability, systems-on-a-chip, test
access mechanism, consecutive transparency, consecutive
testability, register transfer level

1 Introduction
A fundamental change has taken place in the way dig-

ital systems are designed by making it possible to design
an entire system, containing millions of transistors, on a
single chip. In order to cope with the growing complexity
of such systems, designers often use pre-designed, reusable
megacells known as cores. Core-based systems-on-a-chip
(SoC) design strategies help companies significantly reduce
the time-to-market and design cost for their new products.
However, it is difficult to test SoCs after fabrication[1].

In order to make an SoC testable, the following three con-
ditions have to be satisfied. (1)There exist a test pattern
source (TPS) and a test response sink (TRS) for each core.
The TPS generates the test patterns for the embedded core
and the TRS observes the test responses. The TPS as well
as the TRS can be implemented either off-chip or on-chip.
(2)There exists a test access mechanism for each core. The
test access mechanism propagates test patterns and test re-
sponses. It can be used for on-chip propagation of test pat-
terns from a TPS to the core-under-test, and for on-chip
propagation of test responses from the core-under-test to a
TRS. (3)Interconnects that exist between cores are testable.
A major problem to make an SoC testable concerns

accessibility of embedded cores. Several design-for-
testability (DFT) techniques have been proposed. There are
three main approaches to achieve accessibility of embedded
cores. The first approach is based on test bus architectures
by which the cores are isolated from each other in test mode
using a dedicated bus [4, 5, 6, 7, 8] or flexible TESTRAIL
[9] around the cores to propagate test data. The second ap-
proach uses boundary scan architectures [2, 3] to isolate
the core during test. The third approach uses transparency
[11, 12, 13, 10] for embedded cores to reduce the problem
to one of finding paths from TPS to core inputs and from
core outputs to TRS.

Under the design environment for SoCs, pre-computed
test sets are provided for each core. These test sets may
contain functional vectors, scan vectors or ordered test se-
quences for non-scan designed sequential circuits. They
may be for logic faults such as stuck-at faults or timing
faults such as delay faults. Moreover, some cores may be
able to be at-speed testable in order to increase the coverage
of non-modeled and performance-related defects. For that
reason, it is necessary to apply an arbitrary test sequence to
each core and observe its response sequence from the core
consecutively at the speed of the system clock. We call such
a test access consecutive test access. Although the test bus
approach allows consecutively test access for cores, it does
not guarantee consecutive test access for interconnects. On
the other hand, boundary scan and transparency approaches
allow test access for both cores and interconnect. However,
they do not support consecutive test access.
There are two works [14, 15] realizing the consecutive

test access for both cores and interconnects. In [14], we
proposed a kind of testability of SoCs called consecutive
testability. A consecutively testable SoC consists of consec-
utively transparent cores and can achieve consecutive test
access to all cores and all interconnects (Figure 1). Consec-
utive transparency of a core guarantees consecutive propa-
gation of arbitrary test/response sequences from the core in-
puts to the core outputs with some latency. Therefore, it is
possible to apply/observe arbitrary test/response sequences
to/from an embedded core consecutively at the speed of sys-
tem clock by using interconnects and consecutively trans-
parent cores in an SoC. In [15], a synthesis-for-transparency

1

IEEE 3rd Workshop on RTL and High Level Testing (WRTLT'02) , pp. 18-23, Nov. 2002.

Figure 1. Consecutive test access for core3

approach was presented to make cores single-cycle trans-
parent by embedding multiplexers. This single-cycle trans-
parency is a special case of consecutive transparency of [14]
such that the latency of the consecutive transparency is re-
stricted to zero, i.e., single-cycle transparency is the con-
secutive transparency with zero latency. Therefore, the area
overhead for making cores consecutively transparent with
some latency can be generally lower than that for making
cores single-cycle transparent (i.e., transparent with zero la-
tency).
In this paper, we consider a core as a register transfer

level (RTL) circuits, and propose a design-for-consecutive-
transparency (DFCT) method that makes a core consecu-
tively transparent using integer linear programming (ILP).
The DFCT method realizes consecutive transparency with
low area overhead by utilizing paths that exist in data path
part of an RTL circuit. It is possible to realize consec-
utive transparency to add bypass routes from PIs to POs
with multiplexers independently of internal structure of an
RTL circuit. Experimental results show that the proposed
method introduces lower area overhead compared to the by-
pass method.
The rest of this paper is organized as follows. Sec-

tion 2 gives the definitions of consecutive transparency and
RTL circuits. In section 3, we introduce the design-for-
consecutive-transparency method. Experimental results are
discussed in section 4. Finally, section 7 concludes this pa-
per.

2 Preliminaries
2.1 RTL Circuits

In RTL description, a circuit generally consists of a con-
troller and a data path as shown in Figure 2. The former is
represented by a finite state machine (FSM) and the latter

Figure 2. An RTL circuit

is represented by hardware elements (e.g. registers, multi-
plexers (MUXes) and operational modules) and signal lines
connecting them. Each of the controller and the data path
has primary inputs from the outside of the circuit and pri-
mary outputs to the outside of the circuit. The controller
also has status inputs from the data path and control outputs
to the data path. Similarly, the data path also has control in-
puts from the controller and status outputs to the controller.
The signals from the controller to the data path are called
control signals, and the signals from the data path to the
controller are called status signals.
A data path consists of hardware elements and signal

lines. Hardware elements are primary inputs (PIs), pri-
mary outputs (POs), control inputs, status outputs, regis-
ters, MUXes and operational modules. We introduce ports
of each hardware element as interface points in a natural
fashion: signals enter into a hardware element through its
input ports, and exit through its output ports. Input ports of
a hardware element can be classified into data input ports
and control input ports. Similarly, output ports of a hard-
ware element can be classified into data output ports and
status output ports. A signal line connects two ports with
some bit width. Any number of signal lines can connect to
the same output port (i.e. fanout is allowed), but only one
signal line can connect to the same input port. In order to
simplify the discussion, the following restrictions are intro-
duced into data path architecture. (1)All signal lines have
the same bit width. (2)Control input ports of a hardware
element are connected directly to control inputs of the data
path. And status output ports of a hardware element are
connected directly to status outputs of the data path.

2.2 Port Graph

Definition 1 Port Graph
We define a port graph G V E as a directed graph to
represent an RTL circuit.

V VPI VPO Vport where
VPI is the set of all PIs in the RTL circuit,

2

Figure 3. A port graph

VPO is the set of all POs in the RTL circuit,
Vport is the set of all ports in the RTL circuit.

E x y V V

Figure 3 illustrates a port graph corresponding to an RTL
circuit as shown in Figure 2.

2.3 Consecutive Transparency of aCore (RTL cir-
cuit)

Definition 2 Consecutive transparency of a core
Let I i be the ith bit of a PI I, and O j be the jth bit
of a PO O. Suppose that there exists a configuration (test
mode) of a core which can realize a path P between I i
and O j . P is called a consecutively transparent path if
any input sequence applied to I i can be consecutively ob-
served at O j after some latency, and then I i and O j
are said to be consecutively transparent. Moreover, a core
is called to be consecutively transparent if, for each PI/PO
of the core, there exists a configuration that can make all
bits of the port consecutively transparent.

3 Design for Consecutive Transparency
In this section, we present a design-for-consecutive-

transparency (DFCT) method that makes an RTL circuit
consecutively transparent using integer linear program-
ming.

3.1 Problem Formulation
A consecutively transparent circuit has consecutively

transparent paths for each PIs and POs. When a given RLT
circuit does not have such paths for each PIs(POs), DFCT
elements are added in order to make the circuit consecu-
tively transparent as follows.

Case I : There exits a path from the PI(PO) to a PO(PI)
through a MUX or register, and normal operational
mode (control signals from controller) can not propa-
gate an arbitrary sequence through the path due to hold
behavior of the register or switching behavior of MUX.

Figure 4. Fix control signal on desired value

Figure 5. Thru function

DFCT elements: AND gate, OR gate and MUX
In order to propagate an arbitrary sequence through the
path, we fix the control signal (from controller to the
MUX or register) on the desired value by DFCT ele-
ments as follows (Figure 4).

In case 0-controllability is necessary on the con-
trol signal, an AND gate is added to the control
signal.
In case 1-controllability is necessary on the con-
trol signal, an OR gate is added to the control
signal.
In case general-controllability is necessary on the
control signal, an MUX is added to the control
signal.

Case II : There exits a path from the PI(PO) to a PO(PI)
through an operational module, and the path can not
propagate an arbitrary sequence.

DFCT element: thru function
In order to propagate an arbitrary sequence through the
path, we augment the module with thru function if nec-
essary (Figure 5).

Case III : There exits no path from the PI(PO) to a PO(PI).

DFCT element: MUX
In order to propagate an arbitrary sequence from the
PI(PO) to a PO(PI), we add a direct path from the
PI(PO) to a PO(PI) with MUX (Figure 6).

Added DFCT elements are controlled by signals from a
test controller. Figure 7 shows a test architecture of the pro-
posed method. In this figure, 0-controllability of MUX1,
thru function of adder2 and 1-controllability of reg2 are
added, and a consecutively transparent path (shaded line)
is realized by the control signal from the test controller.

3

Figure 6. Addition of a path with MUX

Figure 7. Test architecture of the proposedmethod

Definition 3 The design for consecutive transparency
(DFCT) is formulated as the following optimization prob-
lem.
Input: An RTL circuit (a port graph)
Output: A consecutively transparent RTL circuit
Optimization: Minimizing hardware overhead (i.e., hard-
ware of added DFCT elements)

3.2 DFCT Algorithm
In this subsection, we propose a DFCT algorithm. The

algorithm consists of the following two steps.

Step 1 For a given port graph (an RTL circuit), add edges
which can be realized by DFCT elements.

Step 2 For each PI and PO, induce constraints such that the
PI (PO) has a consecutively transparent path, and for-
mulate DFCT as an ILP problem to minimize hardware
overhead.

Step 1: Addition of edges to a port graph
For a port graph, the algorithm adds edges and vertices

as follows (Figure 8).

a dummy input vertex and edges from the dummy in-
put vertex to all v VPI

Figure 8. Addition of edges and cost to a port graph

a dummy output vertex and edges from all v VPO to
the dummy input vertex

edges from data input ports of a MUX to a
data output port of the MUX (These edges are
realized by AND gates for 0-controllability, OR
gates for 1-controllability, and MUXes for general-
controllability.)

edges from data input ports of a operational module
to a data output port of the operational module (These
edges are realized by thru functions.)

edges from a data input port of a register to a
data output port of the register (These edges are
realized by AND gates for 0-controllability, OR
gates for 1-controllability, and MUXes for general-
controllability.)

edges from each PI to all PO in data path (These edges
are realized by MUXes.)

edges from each PI to all PO in controller (These edges
are realized by MUXes.)

Then, the algorithm defines cost of each edge as the
hardware cost that is necessary to realize the edge by
DFCT elements (i.e. AND gate, OR gate, thru function
and MUX), and defines capacity of each edge as 1. Figure
8 shows , examples of the hardware costs when all signal
lines in the data path have n bit width.

Step 2: An ILP formulation for DFCT
For the port graph extended in Step 1, DFCT is formu-

lated as an ILP problem represented by equations (1) to (8)
with the following 0-1 variables.

xv e
1 Edge e E is used as a part of consecutively
transparent path for port v VPI VPO.

0 otherwise

4

xe

1 Edge e E is used as a part of
consecutively transparent path for
more than one port v VPI VPO.

0 otherwise

Minimize:

∑
e E

xe cost e (1)

cost e is a constant value which represents the hardware
cost to realize edge e with a DFCT element.

Subject to:

1. For each PI vpi VPI ,

1 ∑
e Eoutvpi

xvpi e (2)

∑
e Einvdo

xvpi e 1 (3)

∑
e Einv

xvpi e ∑
e Eoutv

xvpi e

for all v V vpi vdo
(4)

vdi and vdo denote dummy input vertex and dummy
output vertex, respectively. Einv and Eoutv denote the
set of all input edges and the set of all output edges,
respectively.

2. For each PO vpo VPO,

1 ∑
e Eoutvdi

xvpo e (5)

∑
e Einvpo

xvpo e 1 (6)

∑
e Einv

xvpo e ∑
e Eoutv

xvpo e

for all v V vdi vpo
(7)

3. For each edge e E ,

xe xv e for all v V (8)

Equations (2), (3) and (4) are constraints such that the
port graph has flow of value 1 from PI vpi to dummy output
vertex vdo. For each vertex, these equations guarantee that
the sum of input flows is equal to the sum of output flow.
Similarly, equations (5), (6) and (7) are constraints such that
the port graph has flow of value 1 from dummy input vertex

Table 1. Characteristics of RTLBenchmarkCircuits

vdi to PO vpo. Equations (1) and (8) minimize hardware
overhead. We can find consecutively transparent paths for
all PIs and POs with minimum hardware overhead by the
solving above ILP problem, and DFCT elements are added
to realize those paths.
In this paper, we showed the method to minimize hard-

ware overhead only. However, we can avoid delay overhead
by making costs of the edges in critical paths of a circuit
high.

4 Experimental Results
In this section, we present experimental results obtained

by the proposed method. Circuit characteristics of RTL
benchmark circuits used in the experiments are shown in
Table 1. These circuits are examples used popularly. In
our experiments, we used Design Compiler (Synopsys) to
synthesize those benchmark circuits. In this table, columns
“#PI” and “#PO” of columns “Controller” and “Datapath”
denote the number of PIs and POs of respective parts. Col-
umn “ bit ” denotes the bit width of data paths. Column
“Area” denotes the total area after synthesis. Here, areas
are estimated using gate equivalent of library cell area.
The area and pin overhead of the proposed method are

shown in Table 2. We used the lp solve package from Eind-
hoven University of Technology [16]. The running time is
negligible (less than 0.1 second) for all four benchmark cir-
cuits on a SUN Ultra 5 workstation. Columns “Thru”, “By-
pass MUX”, “Controllability for control signal” and “Test
controller” in column “Proposed” of column “Area over-
head” denote the area overhead of the proposed method
added by thru functions, bypass MUXes, primitive gates
on control signal and test controller, respectively. Column
“Bypass MUX only” of column “Area overhead” denotes
the area overhead of the bypass method that adds direct
paths from PIs to POs with MUXes.
From the experimental results, we can see that the pro-

posed method introduces lower area overhead compared to
the bypass method in all circuits. In the proposed method,
we can guarantees that a consecuitvely transparent path for
each PI/PO can be realized by adding at most one MUX
since we consider utilization of existing paths in data path
as well as addition of bypass routes with MUXes. Column
“Pin overhead” in Table 2 denotes the number of additional
pins for consecutive transparency. In proposed method, we

5

Table 2. Hardware Overhead

need log2 n 1 additional pins. Here, n is a total number
of PIs and POs of a circuit. These additional pins are used
for identifying modes of the circuit (i.e. normal mode and
consecutively transparent modes (configurations)). Since
circuits are embedded into an SoC as cores, those additional
pins of the circuits for consecutive transparency do not re-
sult in pin overhead of the SoC directly.

5 Conclusions
In this paper, we proposed a design-for-consecutive-

transparency method that makes an RTL circuit consecu-
tively transparent using integer linear programming. The
DFCT method realizes consecutive transparency with low
area overhead (average 3.1%) by utilizing paths that ex-
ist in data path of an RTL circuit. Experimental results
show that the proposed method introduces lower area over-
head compared to the bypass method. Consecutive trans-
parency of a core guarantees consecutive propagation of ar-
bitrary test/response sequences from the core inputs to the
core outputs with some latency. Therefore, it is possible to
apply/observe arbitrary test/response sequences to/from an
embedded core consecutively at the speed of system clock
by using interconnects and consecutively transparent cores
in an SoC.

Acknowledgments
This work was sponsored in part by NEDO (New En-

ergy and Industrial Technology Development Organization)
through the contract with STARC (Semiconductor Technol-
ogy Academic Research Center) and supported in part by
Foundation of Nara Institute of Science and Technology un-
der the Grant for Activity of Education and Research. Au-
thors would like to thank Michiko Inoue and Satoshi Ohtake
(Nara Institute of Science and Technology) for their valu-
able discussion.

References
[1] Y.Zorian, E.J.Marinissen and S.Dey, “Testing embedded-core based

system chips,” Proc. 1998 Int. Test Conf., pp.130-143, Oct. 1998.

[2] N.A.Touba and B.Pouya, “Testing embedded cores using partial iso-
lation rings,” Proc. 15th VLSI Test Symp., pp.10-16, May 1997.

[3] L.Whetsel, “An IEEE 1149.1 based test access architecture for ICs
with embedded cores, ” Proc. 1997 Int. Test Conf., pp.69-78, Nov.
1997.

[4] S.Bhatia, T.Gheewala and P.Varma, “A unifying methodology for in-
tellectual property and custom logic testing,” Proc. 1996 Int. Test
Conf., pp.639-648, Oct. 1996.

[5] T.Ono, K.Wakui, H.Hikima, Y.Nakamura and M.Yoshida, “Inte-
grated and automated design-for-testability implementation for cell-
based ICs,” Proc. 6th Asian Test Symp., pp.122-125, Nov. 1997.

[6] P.Varma and S.Bhatia, “A structured test re-use methodology for
core-based system chips,” Proc. 1996 Int. Test Conf., pp.294-302,
Oct. 1998.

[7] K.Chakrabarty, “Design of System-on-a-Chip Test Access Archi-
tectures Using Integer Linear Programming,” Proc. 18th VLSI Test
Symp., pp.127-134, May 2000.

[8] K.Chakrabarty, “Design of System-on-a-Chip Test Access Architec-
tures under Place-and-Route and Power Constraints,” Proc. 37th De-
sign Automation Conf., pp.432-437, June 2000.

[9] E.Marinissen, R.Arendsen, G.Bos, H.Dingemanse, M.Lousberg and
C.Wouters, “A Structured and Scalable Mechanism for Test Access
to Embedded Reusable Cores,” Proc. 1998 Int. Test Conf., pp.284-
293, Nov. 1998.

[10] M.Nourani and C.A.Papachristou, “Structural fault testing of em-
bedded cores using pipelining,” Journal of Electronic Testing:Theory
and Applications 15, pp.129-144 1999.

[11] I.Ghosh, N.K.Jha and S.Dey, “A low overhead design for testabil-
ity and test generation technique for core-based systems-on-a-chip,”
IEEE Trans. on CAD, vol.18, no.11, pp.1661-1676, Nov. 1999.

[12] I.Ghosh, S.Dey, and N.K.Jha, “ A fast and low cost testing technique
for core-based system-chips,” IEEE Trans. on CAD, vol.19, no.8,
pp.863-877, Aug. 2000.

[13] S.Ravi, G.Lakshminarayana, and N.K.Jha, “ Testing of Core-Based
Systems-on-a-Chip,” IEEE Trans. on CAD, vol.20, no.3, pp.426-439,
Mar. 2001.

[14] Tomokazu Yoneda and Hideo Fujiwara, ”Design for Consecutive
Testability of System-on-a-Chip with Built-In Self Testable Cores,”
Journal of Electronic Testing: Theory and Applications (JETTA)
Special Issue on Plug-and-Play Test Automation for System-on-a-
Chip, Vol. 18, No. 4, Aug. 2002 (To appear).

[15] K.Chakrabarty, R.Mukherjee and A.Exnicios, “Synthesis of Trans-
parent Circuits for Hierarchical and System-on-a-Chip Test,” Proc.
IEEE International Conference on VLSI Design, pp.431-436, Jan.
2001.

[16] M.Berkelaar, lp solve, version 3.2, Eindhoven University of Tech-
nology, The Netherlans, ftp://ftp.ics.ele.tue.nl/pub/lp solve.

6

