
Test Resource Partitioning and Optimization for SOC Designs

Erik Larsson+* and Hideo Fujiwara*

Embedded Systems Laboratory+ Graduate School of Information Science*

Linkopings Universitet Nara Institute of Science and Technology,

SE-582 83 Linkoping, Sweden 8916-5 Takayama, Ikoma, Nara 630-0101, Japan

erila@ida.liu.se fujiwara@is.aist-nara.ac.jp

Abstract1

We propose a test resource partitioning and optimization
technique for core-based designs. Our technique includes
test set selection and test resource floor-planning with the
aim of minimizing the total test application time and the
routing of the added TAM (test access mechanism) wires. A
feature of our approach is that it pinpoints bottlenecks that
are likely to limit the test solution, which is important in the
iterative test solution development process. We demonstrate
the usefulness of the technique through a comparison with
a test scheduling and TAM design tool.

1 Introduction
Developing an efficient test solution for an SOC (System-
on-Chip) design is a complicated task due to the wide range
of design options and the high number of issues to be
optimized. A typical SOC design consists of a set of
connected pre-designed cores and dedicated UDL (user-
defined logic) blocks. Each testable unit (core, UDL block
and interconnection) has its test method and the task when
developing a test solution is to:

 • perform test set selection for each testable unit,
 • floor-plan the test resources (test sources and test sinks)

corresponding to the selected test sets,
 • design the TAM (test access mechanism) to connect the

selected test resources and the testable units design, and
 • determine the order of the tests, i.e. schedule the test

with the objective to minimize the test application time and
the routing of TAM wires (added for test data
transportation) while considering test conflicts and power
constraints.

The four items, test set selection, test resource floor-
planning, TAM design and test scheduling, are highly inter-
dependent. The test time can be minimized by scheduling
the tests as concurrent as possible, however, the possibility
of concurrent testing depends on the size of the TAM
connecting the test resources. The placement of the test
resources has a direct impact on the length of the TAM
wires. Finally, the way the test sets for each testable unit are

partitioned over the test resources impacts the TAM design.
We have proposed an integrated technique for test

scheduling and TAM design minimizing both the test
application time and the TAM design while considering test
conflicts and power consumption [7,9]. In this paper, we
address the creation and optimization of the TRS (test
resource specification). The objective of our work is to
create a TRS that together with the design specification will
be the inputs to a test scheduling and TAM design tool and
hence result in an efficient test solution, i.e. minimal test
application time and minimal routing of the TAM wires. We
analyze the complexity of the design space and we propose
an estimation-based TRS creation technique. We also
address the refinement of a test specification by proposing
an iterative approach where design bottlenecks are detected
using Gantt charts [2].

The rest of the paper is organized as follows. In Section
2 we review previous work and preliminaries such as
system modelling are described in Section 3. Our technique
for test resource partitioning and optimization is presented
in Section 4. The experimental results are in Section 5 and
finally conclusions are in Section 6.

2 Related Work
Several approaches addressing issues that are to be
considered when developing a SOC test solution have been
proposed. Zorian proposed a scheduling technique that
minimizes the test time while considering test power
consumption [15]. The technique assumes that each testable
unit has its pre-determined and dedicated BIST (Built-In
Self-Test) resource. Iyengar et al. investigated the use of
preemptive test scheduling, which means that the pre-
determined tests can be interrupted and resumed later. It
actually means that the test sets are partitioned on-the-fly
into several test sets. Sugihara et al. investigated the
partitioning of test sets into on-chip test (BIST) and off-chip
test using an ATE (Automatic Test Equipment) [14]. Jervan
et al. also investigated test set partitioning by making use of
processor cores and memories for test vector generation and
storage [6]. Arabi proposed a technique to reduce test time
by test identical cores simultaneously [1]. The power
consumption is becoming a problem since exceeding the
power limitation may damage the system. Saxena et al.
proposed a gating scheme reducing the test power

1. This work has been supported by the Japan Society for the Pro-
motion of Science (JSPS) under grant P01735 and the Swedish
National Program on Socware.

21st IEEE VLSI Test Symposium (VTS'03), pp. 319-324, April-May 2003.

consumed during the shift process [13]. Hetherington et al.
discussed several important test limitations such as ATE
bandwidth and memory limitations [4]. All the addressed
problems are each important. However, it is also important
to consider them all from a system test perspective.

3 SOC Test Model
A system consisting of three testable units, core A, core B
and a UDL block will serve as an example system
(Figure 1). Each testable unit is tested by applying at least
one set of test vectors (test stimuli) where each test set is
stored or generated at a test source and the test response is
stored or analyzed at a test sink. Each testable unit may have
its dedicated test source and test sink or may share either
test source or test sink with other testable units or may share
both test source and test sink. The test resources (test source
and test sink) can be placed on-chip or off-chip where an
ATE is a typical off-chip test resource and an LFSR (Linear-
Feedback Shift-Registers) is a typical on-chip test source. In
general, any combination of test resources is possible. The
test stimuli at a test source can be generated off-chip and
analyzed on-chip. It is also possible to store the test stimuli
in an on-chip memory making the test source on-chip and
storing the test response in a test sink placed off-chip.

A testable unit can also be tested by several test sets. One
test set can be for stuck-at fault testing, one for at-speed
testing and one for functional testing. Furthermore, it is also
possible to test a testable unit with one test set stored at an
ATE, one test set generated by an LFSR, and one test set
stored in a memory. The test solution is highly dependent on
the partitioning of the test sets for the testable units. A
limited test set at an ATE often results in the same fault
coverage as a larger test set generated by an LFSR.
However, an LFSR, if it is dedicated to a testable unit, does
not require a TAM, i.e. the routing is minimized.

Executing a test at a testable unit means that the test
stimuli is transported from the required test source to the
testable unit and the test response is transported from the
testable unit to the required test sink. The test data (test
stimuli and test response) is transported using TAM wires.
A test wrapper is the interface between the testable unit and
the TAM added in order to ease test access. A testable unit
with a test wrapper is wrapped while a testable unit with no
wrapper is unwrapped [11]. For instance in Figure 1, core A
is place in a wrapper making it wrapped while the UDL

block has no wrapper making it unwrapped.
The testing of a wrapped testable unit is different from

the testing of an unwrapped. The testing of the wrapped
core A is performed by placing the wrapper in internal test
mode and test stimuli is transported from the required test
source using a set of TAM wires to the core and the test
response is transported from the core using a set of TAM
wires to the test sink. In the case of an unwrapped testable
unit such as the UDL block (Figure 1), the wrappers at core
A and B are placed in external test mode. The test stimuli is
transported from the required test source on the TAM via
core A to the UDL block and the test response is transported
via core B to the TAM and to the test sink.

A wrapper can at any time be in one of the three modes;
internal mode, external mode and normal operation mode.
It means that testing of core A and the UDL block cannot be
performed at the same time due to the wrapper, there is a test
conflict. A test conflict also occurs when a testable unit is to
be tested by several test sets since it is only possible to apply
one test set at each testable unit at a time. And finally, a test
conflict may occur when test resources are shared.

The input specification to a test design tool consists of
two parts, the design specification and the test resource
specification. The SOC test integrator is given a design
specification and the task is to design a test schedule and
design the TAM while minimizing the test application time
and the TAM routing while considering test conflicts and
test power constraints. The design specification is
determined, however, the test resource specification is to be
determined by the SOC test integrator. The problem is for a
given design specification to develop a test resource
specification, which together with the design specification
will result in an efficient test solution. The development of
a test resource specification include:

 • the test set selection for each testable unit,
 • the placement of each test source, and
 • the placement of each test sink.

The number of design options when developing the test
resource specification can be high. Assume that each block
(testable unit) bij∈B at a core ci has |Tij| possible
combinations of test sets where each test set can be placed
at nij positions and each test set can be modified in mij ways
where a high number of TAM wires reduces the test time
and vice versa. The number of possibilities are:

For a small system consisting of only two cores; each
with two test sets where each test set have two possible
placements and each test set can be modified in two ways,
the number of design alternatives are: (2×2×2)2=64.

We will use our proposed system model [7,9], which we
partition into a design specification and a test resource
specification. A design specification can be modelled as aFigure 1. Example system.

pr
im

ar
y

ou
tp

ut

pr
im

ar
y

in
pu

t

wrapper
core A

scan chain
scan chain
scan chain
scan chain

wrapper
core B

scan chain
scan chain

UDL

system

wrapper
cell

T ij nij mij××
i 1 j, 1= =

B

∏

[7]: design, D = (C, B, pmax), where: C = {c1, c2,..., cn} is a
finite set of cores; each core, ci∈C, is characterized by:

(xi, yi): placement denoted by x and y coordinates and
each core ci consists of a finite set of blocks Bi={bi1, bi2,...,
bim} where m>0.

Each block, bij∈Bi, is characterized by:
minbwij: minimal TAM bandwidth,
maxbwij: maximal TAM bandwidth.

pmax: maximal allowed power at any time;

Each testable unit is viewed as a block and several blocks
form a core. An unwrapped core such as the UDL block in
Figure 1 is modelled as a block at core A (bC in Figure 2).
The wrapper at Core A will feed the test stimuli to the UDL
block (bC) and core B will fed the test response from the
UDL block to the TAM and therefore is coreB listed at ict
for test C. The constraint list for test C include the blocks
required for the testing bC (the UDL block) (Figure 2).

An advantage of having blocks within cores and a
constraint list is that we can model testable blocks
embedded within cores. Furthermore, it is possible to model
test interference between different tests.

The core placement is given by (x,y) coordinates. We
make use of a single point for each core since TAM routing
is a complicated problem. For each block minbw and
maxbw are given. For instance, the four scan chains at core
A (Figure 1) can form one single wrapper chain and the
minimal bandwidth is one. It is, however, also possible to
form four wrapper chains making the maximal bandwidth
equal to four. Five wrapper chains would not reduce the test
time and therefore the designed will specify four as the
maximum in this case.

A test resource specification [7], TRSk = (T, Rsource, Rsink,
source, sink) where each block, bij, at core, ci, is attached
with a finite set of tests, Tij={tij1, tij2,..., tijoij

} and each test,
tijoij

∈Tij, is characterized by:
τijoij: test time,
pijoij: test power,
memijoij: required memory for test pattern storage.
clijoij: constraint list with blocks required for the test.

Rsource = {r1, r2,..., rp} is a finite set of test sources where
each test source, ri∈Rsource, is characterized by:

(xi, yi): placement denoted by x and y coordinates,
vbwi : vector bandwidth,
vmemi: size of vector memory.

Rsink = {s1, s2,..., sq} is a finite set of test sinks; where each
test sink, si∈Rsink, is characterized by:

(xi, yi): placement denoted by x and y coordinates,
rbwi: response bandwidth,

source: T→Rsource defines the test sources for the tests;
sink: T→Rsink defines the test sinks for the tests;

Each block (testable unit) can be tested by a set of tests
where each test set is given by its test time, power
consumption, memory requirement for test vector storage
and a list of blocks required during testing.

The placement for each test sources and test sink is given
by (x,y) coordinates. For test sources the placement, its
maximal allowed bandwidth and the size of the memory are
given and for test sinks the placement and the maximal
allowed bandwidth are given. The functions, source and
sink, connects a test with its test source and its test sink.

The input specification to the test tool, for the example
system shown in Figure 1, is shown in Figure 2; it is the
design specification and the test resource specification. For
each design, we can have several specifications. Our
problem is to select the test resource specification that leads
to the best test solution.

4 Test Resource Selection
In this section we describe our estimation technique and
how it is used to develop a test solution. The total cost of a
test solution is given by the test application time and the
amount of routed TAM wires. It can be computed as:

where τtotal is the test time (end time of the test with highest
test time), TAM is the routing length of all TAM wires, and,
α and β are user-defined constants used to determine the
importance of test time in relation to TAM cost.

4.1 Estimation of Test Application Time

Each test can be illustrated by an “area” defined by its test
time multiplied by its power consumption (Figure 3). The
test time can often be modified by the assignment of a
higher number of TAM wires. For instance, the four scan-
chains in Figure 4 (a) (Core A in Figure 1) can form a single

Figure 2. An input specification to the test tool [7]
of the example system in Figure 1.

Example design
[Global Constraints]
MaxPower = 25
[Cores] name x y {block1, block2,..., block n}

coreA 10 10 {bA, bC}
coreB 20 10 {bB}

[Generators] name x y maxbw memory
r1 0 10 3 100
r2 20 15 2 100

[Evaluators] name x y maxbw
s1 30 10 4
s2 20 5 4

[Tests] name pwr time tg tre minbw maxbw mem ict
testA 10 90 r1 s1 1 2 50 no
testB1 15 30 r1 s1 1 4 50 no
testB2 5 50 r2 s2 1 4 50 no
testC 15 10 r1 s2 1 2 20 coreB

[Blocks] name idle pwr {test1, test2,..., test n}
bA 0 {testA}
bB 0 {testB}
bC 0 {testC}

[Constraints] test {block1, block2,..., block n}
testA {bA}
testB1 {bB}
testB2 {bB}
testC {bC, bA, bB}

tcos α τtotal× β TAM×+= 1

wrapper chain connected to the single TAM wire. However,
it is also possible, if several TAM wires are assigned that
several wrapper chains are created as in Figure 4 (b). For a
test, the test time depends on the number of wires [10]:

The test power consumption highly depends on the
switching activity. Saxena et al. proposed a scan-chain
gating scheme that reduces the test power consumption
[13]. The advantage of the approach is that instead of
having the same test power independent of the number of
TAM wires as in Figure 4 (a) and Figure 4 (b) the test power
consumption becomes dependent on the number of
assigned TAM wires (see Figure 4 (b, c).) In Figure 4(c)
logic is to be added, however, the usage and routing of TAM
wires is reduced, which is of more importance [3]. The
relation between test power and number of TAM wires [10]:

where k=oij.
We now summarize the pijk×τijk for all testable units and

by dividing by Pmax we achieve the systems optimal test
application time, which we use as an estimate, τestimate [10]:

where k=oij, τijk is the test time and pijk is the test power
consumption at block bij at core ci, and Pmax is the total
power limit. The τestimate is computed ignoring test
conflicts, however, we use it is an estimate of the systems
test application time, i.e. we let τtotal=τestimate.

4.2 Estimation of TAM Cost

We estimate the length of a TAM wire using the city-block
or Manhattan distance function M(s,t):

where s and t are two points at coordinates (xs,ys) and (xt,yt).

The length lijk of the TAM wires required for executing
the test tijk is the summation of the length connecting the
test source r to the wrapped core receiving test data ci and
connecting the wrapped core receiving the test response cj
to the test sink s. The distance is given by:

where ci is the core receiving test vectors from test source r
and cj is the core sending the test responses to test source s.
In the case of a test at a wrapped core, ci=cj.

The cost costijk for a test tijk (k=oij) can be formulated as:

where α and β are the user-defined constants determining
the relative importance of test time and TAM, τijk is the test
time, tamijk is the number of TAM wires assigned to the test
and lijk is the length of the required TAM wires connecting
the required test source with the testable unit and the test
sink. For estimating the tamijk we derivate the cost function
in respect to tamijk and get:

and by letting cost’ijk=0 we compute:

We derivate a second time and get:

and by letting cost”ijk=0, we find that for tamijk>0 cost’’ijk
is always positive, i.e. a minimum.

The total TAM cost TAM is estimated as:

where T is the set of tests, tamijk is given by Equation 8 and
rounded off upwards and lijk is given by Equation 5.

In Equation 10 we divide with the number of tests (|T|)
because the tamijk and lijk are computed as if dedicated
TAM wires are required for each test. That is, there is not
more than one test for any TAM wire; TAM wires are not
shared. However, we assume that TAM wires can be shared.
We use the max for cases when a test require long wires.

4.3 Example

The specification in Figure 2 is used to illustrate the cost
estimation (α=β=1). The estimated costs are in Table 1. The
estimated test time is computed as the summation of the
product time×power for each test divided by Pmax (Eq. 4).
For the example, the test time is computed to 70 . The wire
length (Eq. 5) and the bandwidth (Eq. 8) are computed for
each test and the TAM cost, which gives an estimate on the
TAM cost (Eq. 10).

4.4 Resource Utilization

The technique above is useful for the cost estimation of each
of the test specifications. Based on the ranking of the test
specifications the SOC integrator selects the test

τ'ijk τijk tamijk()⁄= 2

Figure 3. Test time and power consumption for a test.

test tijk

test time τijk

test power, pijk

p'ijk pijk tamijk×= 3

τestimate

τijk pijk×

Pmax

i 1 j, 1 k, 1= = =
∑= 4

Figure 4. Core design alternatives.

(a) (b)

te
st

po
we

r

test time te
st

po
we

r

test time
(c)

te
st

po
we

r

test time

lo
gi

c

scan chain
scan chain
scan chain
scan chain

scan chain
scan chain
scan chain
scan chain

scan chain
scan chain
scan chain
scan chain

wrapper

lo
gi

c

wrapperwrapper

M s t,() xs xt–= ys yt++

lijk M r i,()= M j s,()+ 5

tijkcos α τijk tamijk()⁄× β tamijk lijk××+= 6

t′ijkcos α– τijk tamijk()
2

⁄× β lijk×+= 7

tamijk α τijk× β lijk×⁄= 8

t″ijkcos 2 α× τijk tamijk()
3

⁄× β lijk×+= 9

TAM max tamijk lijk×
tamijk lijk×

T

i 1 j, 1 k, 1= = =

T

∑,

= 10

specification with the lowest cost. However, the estimation
technique does not consider test conflicts, and therfore a
technique is needed for it. A technique is also needed to
pinpoint bottlenecks, since it helps the SOC test integrator
to determine which resource to modify in the iterative
process when creating the test requirement.

A machine-oriented Gantt chart can be used to show the
allocation of jobs on machines [2]. We will use such a chart
where the resources are the machines and the tests are the
jobs. The Gantt chart is in Figure 5 for the example in
Figure 1 with the test specification in Figure 2 and each test
is assigned to the test resources it requires. For instance, test
B2 needs TG: r2 and TRE: s2.

An inspection of Figure 5 shows that TG:r2 and TRE:s2
are not limiting the solution. On the other hand, all
resources that are used more than τopt are limiting the
solution. The test source TG:r1 is the most critical one
followed by the test sink TRE:s1. These two test resources
are the obvious candidates for modification.

The test resource optimization algorithm (Figure 6) starts
with estimation and ranking of the design possibilities (line
1) and the loop at line 2 terminates when an efficient test
resource partitioning is found. At line 3, the best available
of the initially ranked solutions is selected and a second
loop starts at line 4. At line 5 a Gantt chart is created for the
test resource analysis. The limiting resource is identified
and at line 6 modifications are computed such that for each
test at the limiting resource one modification is allowed. A
modification means that the TAM is increased by one for
each test, which reduces the test time of each test. The best
new solution is selected and kept if better than the old
solution. If no new solution can be found, current TRS is
marked as used and the algorithm restarts with a new
unmarked TRS at line 3.

5 Experimental Results
We have made a comparison between the cost estimation
technique proposed in the paper and our previously
developed test scheduling and TAM design tool in [7]. We
have created a set of test specifications and for each such
specification we have estimated the cost and evaluated the
cost using the tool in [7]. Note that even though we only
created a few test specifications the number of possibilities
is high and will increase rapidly for larger designs. We have
made use of the design example with three testable units
(Figure 1) named core A, B and C where C is the UDL
block. For the cost estimation we have assumed that α=1
and β=1.

The design data, core placement and global power
constraint of the system, is given in Figure 2. The test
resources are specified in Table 2 and the tests are in Table
3. We have created 8 test specifications for the system
(Table 4) and for each specification we have collected the
data from the estimation and the test scheduling and TAM
design tool (Table 5). We sorted the results based on the
total cost from the tool. For the test specifications with the
lowest total costs from the tool, our estimation technique
works best, which is important since it is at these
specifications the final test solution is likely to be found.

6 Conclusions
In this paper we have proposed a test resource partitioning
and optimization technique that produces a test resource
specification, the input to a test scheduling and TAM (test
access mechanism) design tool. We have shown the
complexity of the problem and proposed a technique at a
low computational cost. We have also proposed a technique
for the iterative improvement of a test specification by using
Gantt charts. The advantage of our technique is that it
pinpoints the bottlenecks in a test solution, which are the
candidates for modification. We have also made a
comparison with a test scheduling and TAM design tool.

testA testB1 testB2 testC Total

Time×
power
τijk×pijk

90×10=900 30×15=450 50×5=250 10×15=150 70
(Eq.4)

Wire length
lijk (Eq.5) 10+20=30 20+10=30 5+5=10 10+10=20 -

Bandwidth
tamijk(Eq.8) 2 1 2 1 -

TAM
lijkk×tamijkk

30×2=60 30×1=30 10×2=20 20×1=20 60
(Eq.10)

 Table 1. Cost estimation of the system in Figure 1.

Figure 5. A machine-oriented Gantt chart [2].

time

resources

TG: r1 testA testB1

τopt

test B2

τtotal

TG: r2

TRE: s1

TRE: s2

testC

testA testB1

test B2 testC

Figure 6. Test Resource Optimization Algorithm

1. evaluate and rank the TRS’ (test resource specification)
2. until an efficient test resource partitioning is achieved begin
3. select the best available TRS as initial solution
4. until cost of best solution is acceptable begin
5. create a Gantt chart of the TRS,
6. for all tests at the limiting resource begin
7. compute modification cost
8. end
9. if a better solution exists begin
10. select the solution with lowest cost as new best solution
11. end else begin
12. mark the TRS as used
13. restart with new TRS
14. end
15. end
16. end

References
[1] K. Arabi, “Logic BIST and Scan Techniques for Multiple

Identical Blocks”, Proceedings of VLSI Test Symposium
(VTS), pp. 60-65, April 2002.

[2] P. Brucker, “Scheduling Algorithms”, Springer-Verlag,
ISBN 3-540-64105-X, 1998.

[3] A. L. Crouch, “Design For Test”, Prentice Hall PTR, 1999.
[4] G. Hetherington et al., “Logic BIST for Large Industrial

Designs: Real Issues and Case Studies”, Proceedings of
International Test Conference (ITC), pp. 358-367, Sep. 1999.

[5] V. Iyengar and K. Chakrabarty, “Precedence-Based,
Preemptive, and Power-Constrained Test Scheduling for
System-on-a-Chip”, Proceedings of IEEE VLSI Test
Symposium (VTS), pp. 368-374, April 2001.

[6] G. Jervan, Z. Peng, R. Ubar, and H. Kruus, “A Hybrid BIST
Architecture and its Optimization for SoC Testing”,
Proceedings of International Symposium on Quality
Electronic Design (ISQED'02), pp. 273-279, March 2002.

[7] E. Larsson, K. Arvidsson, H. Fujiwara, and Z. Peng,
“Integrated Test Scheduling, Test Parallelization and TAM
Design“, Proceedings of Asian Test Symposium (ATS), pp.
397-404, November 2002.

[8] E. Larsson and Z. Peng, “An Integrated Framework for the
Design and Optimization of SOC Test Solutions”, Journal of
Electronic Testing: Theory and Applications, (JETTA), vol.
18, pp 385-400, August 2002.

[9] E. Larsson, A. Larsson, and Z. Peng, “Linkoping University
SOC Test Site“, http://www.ida.liu.se/labs/eslab/soctest/

[10] E. Larsson and Z. Peng, “Test Scheduling and Scan-Chain
Division Under Power Constraint”, Proceedings of Asian
Test Symposium (ATS), pp. 259-264, November 2001.

[11] E. J. Marinissen et al., “On IEEE P1500’s Standard for
Embedded Core Test”, Journal of Electronic Testing: Theory
& Applications, (JETTA), vol. 18, pp 365-383, August 2002.

[12] S. Mourad and Y. Zorian, “Principles of Testing Electronic
Systems”, John Wiley & Sons, ISBN 0-471-31931-7, 2000.

[13] J. Saxena, K. M. Butler, and L. Whetsel, “An Analysis of
Power Reduction Techniques in Scan Testing”, Proc. of
International Test Conference (ITC), pp. 670-677, Oct. 2001.

[14] M. Sugihara, H. Date, and H. Yasuura, “Analysis and
Minimization of Test Time in a Combined BIST and External
Test Approach”, Proceedings of Design and Test in Europe
(DATE), pp. 134-140, March 2000.

[15] Y. Zorian, “A distributed BIST control scheme for complex
VLSI devices”, Proceedings of VLSI Test Symposium (VTS),
pp. 4-9, April 1993.

Name x y bw Memory Name x y bw

TG.A1 0 10 10 100 TRE.A1 30 10 10

TG.A2 0 10 5 50 TRE.A2 30 10 5

TG.B1 10 10 10 0 TRE.B1 10 10 10

TG.B2 10 10 10 25 TRE.B2 20 10 10

Table 2. Test resources (A-ATE, B-BIST,bw-bandwidth).

Test TG TRE Test
time

Test
power

Bandwidth
[min,max] M. C.

TestA1 TG.A1 TRE.A1 50 15 [1,5] 50 -

TestA2 TG.A2 TRE.A2 30 10 [1,5] 25 -

TestA3 TG.B1 TRE.B1 40 10 [1,10] 0 -

TestA4 TG.B1 TRE.B2 50 15 [1,10] 10 -

TestB1 TG.A1 TRE.A1 60 10 [1,5] 20 -

TestB2 TG.A2 TRE.B1 60 10 [1,4] 5 -

TestB3 TG.B2 TRE.A1 30 15 [1,5] 0 -

TestC1 TG.B2 TRE.B2 5 5 [1,5] 10 A,B

 Table 3. Test sets (M-memory, C-Constraint).

Test specification Core A Core B Core C (UDL)

1 TestA1 TestB1 TestC1

2 TestA2,TestA3 TestB1 TestC1

3 TestA2, TestA4 TestB1 TestC1

4 TestA3, TestA4 TestB1 TestC1

5 TestA1 TestB2, TestB3 TestC1

6 TestA2,TestA3 TestB2, TestB3 TestC1

7 TestA2, TestA4 TestB2, TestB3 TestC1

8 TestA3, TestA4 TestB2, TestB3 TestC1

 Table 4. Test specifications.

Test
specification

(Table 4)

Test time (τ) TAM cost (c) Total cost (t=α×τ+β×c)

Estimation,
τe

Tool [7,9]
τt

Difference (%)
|100×(τt-τe)/τt|

Estimation
ce

Tool [7,9]
ct

Difference (%)
|100×(ct-ce)/ct|

Estimation
te

Tool [7,9]
tt

Difference (%)
|100×(tt-te)/tt|

1 55 65 15.4 60 60 0 115 125 8.0

2 59 75 21.3 60 60 0 119 135 11.9

4 71 95 25.3 60 40 50.0 131 135 3.0

3 73 85 14.1 60 70 14.3 133 155 14.2

5 73 95 23.2 60 80 25.0 133 175 24.0

6 77 95 18.9 60 80 25.0 137 175 21.7

8 89 95 6.3 60 90 33.3 149 185 19.5

7 91 115 20.9 60 120 50.0 151 235 35.7

Average: 18.2 24.7 17.2

 Table 5. Experimental results sorted based on final total cost.

