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Abstract
This paper presents a design-for-consecutive-

transparency method that makes a soft core (RTL
description) consecutively transparent using integer linear
programming. Consecutive transparency of a core guar-
antees consecutive propagation of arbitrary test/response
sequences from the core inputs to the core outputs with
some latency. Therefore, it is possible to apply/observe
arbitrary test/response sequences to/from an embedded
core consecutively at the speed of system clock by using
interconnects and consecutively transparent cores in an
SoC. Experimental results show that the proposed method
introduces lower area overhead compared to the bypass
method that adds direct paths from PIs to POs with
multiplexers.
keywords: design for testability, systems-on-a-chip, test
access mechanism, consecutive transparency, consecutive
testability, register transfer level

1 Introduction

A fundamental change has taken place in the way digital
systems are designed by making it possible to design an
entire system, containing hundred millions of transistors, on
a single chip. In order to cope with the growing complexity
of such systems, designers often use pre-designed, reusable
megacells known as cores. Core-based systems-on-a-chip
(SoC) design strategies help companies significantly reduce
the time-to-market and design cost for their new products.

However, it is difficult to test SoCs after fabrication[1].
A major problem to make an SoC testable concerns acces-
sibility of embedded cores. Several design-for-testability
(DFT) techniques have been proposed. There are three main
approaches to achieve accessibility of embedded cores. The
first approach is based on test bus architectures by which
the cores are isolated from each other in test mode using a
dedicated bus [4, 5, 6, 7, 8] or flexible TESTRAIL [9] around
the cores to propagate test data. The second approach uses
boundary scan architectures [2, 3] to isolate the core during
test. The third approach uses transparency [11, 12, 13, 10]
for embedded cores to reduce the problem to one of finding
paths from PIs to core inputs and from core outputs to POs.

Under the design environment for SoCs, pre-computed
test sets are provided for each core. These test sets may

contain functional vectors, scan vectors or ordered test se-
quences for non-scan designed sequential circuits. They
may be for logic faults such as stuck-at faults or timing
faults such as delay faults. Moreover, some cores may be
able to be at-speed testable in order to increase the coverage
of non-modeled and performance-related defects. For that
reason, it is necessary to apply an arbitrary test sequence to
each core and observe its response sequence from the core
consecutively at the speed of the system clock. We call such
a test access consecutive test access.

There are two works [14, 15] realizing the consecutive
test access for both cores and interconnects. In [14], we
proposed a kind of testability of SoCs called consecutive
testability and consecutively transparency of cores. Consec-
utive transparency of a core guarantees consecutive propa-
gation of arbitrary test/response sequences from the core in-
puts to the core outputs with some latency. Therefore, con-
secutively testability of SoCs guarantees that it is possible
to apply/observe arbitrary test/response sequences to/from
an embedded core consecutively at the speed of system
clock by using interconnects and consecutively transparent
cores. In [15], a synthesis-for-transparency approach was
presented to make cores single-cycle transparent by em-
bedding multiplexers. This single-cycle transparency is a
special case of consecutive transparency of [14] such that
the latency of the consecutive transparency is restricted to
zero, i.e., single-cycle transparency is the consecutive trans-
parency with zero latency. However, the area overhead for
making cores single-cycle transparent (i.e., transparent with
zero latency) is generally higher than that for making cores
consecutively transparent with some latency.

Cores are classified into three types: soft (RTL descrip-
tion), firm (netlist) or hard (layout). In [14], we assumed
that the internal design of all cores cannot be modified by
DFT due to IP (Intellectual Property) protection and when
a core in a given SoC is not consecutively testable, direct
paths from PIs to the core (from the core to POs) are added
by inserting test multilexers in the proposed DFT. In this
way, we can bypass a core with multiplexers independently
of internal structure of the core. However, when a core is
delivered as soft core, we can modify internal design of the
core. In this paper, we propose a design-for-consecutive-
transparency (DFCT) method that makes a soft core consec-
utively transparent using integer linear programming (ILP).
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The DFCT method realizes consecutive transparency by uti-
lizing paths that exist in data path part of an RTL circuit.
Experimental results show that the proposed method intro-
duces lower area overhead compared to the above men-
tioned bypass method. Therefore, by preparing a consec-
utively transparent version of each soft core in addition to
original core, we can expect that the proposed DFT method
in [14] introduces lower area overhead for making a given
SoC consecutively testable.

The rest of this paper is organized as follows. Sec-
tion 2 gives the definitions of consecutive transparency and
RTL circuits. In section 3, we introduce the design-for-
consecutive-transparency method. Experimental results are
discussed in section 4. Finally, section 7 concludes this pa-
per.

2 Preliminaries

2.1 Consecutive Transparency of a Core

Definition 1 Consecutive transparency of a core
Let I i be the ith bit of a PI I, and O j be the jth bit
of a PO O. Suppose that there exists a configuration (test
mode) of a core which can realize a path P between I i and
O j . P is called a consecutively transparent path if any in-
put sequence applied to I i can be consecutively observed
at O j after some latency, and then I i and O j are said to
be consecutively transparent. Moreover, a core is called to
be consecutively transparent if, for each PI/PO of the core,
there exists a configuration that can make all bits of the port
consecutively transparent.

2.2 Consecutive Testability of a System-on-a-Chip

In [14], we proposed a new test methodology based
on consecutive testability of SoCs and consecutive trans-
parency of cores. Figure 1 illustrates a consecutively
testable SoC and the consecutive test access to/from Core
3. A control signal is provided for each consecutively trans-
parent core by a test controller (either off-chip or on-chip).
Each of the control signal determines the current test mode
of the core called a configuration. In Figure 1, a configura-
tion of each core is determined and consecutively transpar-
ent paths for shaded ports are realized. Consecutive testa-
bility of an SoC guarantees that, for each core (for each in-
terconnect) in the SoC, by selecting configurations of other
cores, arbitrary test sequence can be consecutively fed into
the core (the interconnect, respectively) from PIs and its re-
sponse sequence can be consecutively propagated to POs
through consecutively transparent paths in other cores and
interconnects.

In [14], we assumed that the internal design of all cores
cannot be modified by DFT due to IP protection and when
a core in a given SoC is not consecutively testable (Fig-
ure 2(a)), direct paths from PIs to the core (from the core
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Figure 1. Consecutive test access for core3

Figure 2. DFT for consecutive test access

to POs) are added by inserting test multilexers in the pro-
posed DFT (Figure 2(b)). However, when a core is de-
livered as soft core, we can modify internal design of the
core. In this paper, we propose a design-for-consecutive-
transparency (DFCT) method that makes a soft core con-
secutively transparent by utilizing paths that exist in data
path part of an RTL circuit (Figure 2(c)). Experimental re-
sults show that the proposed method introduces lower area
overhead compared to the above mentioned bypass method.
Therefore, by preparing a consecutively transparent version
of each soft core in addition to original core, we can expect
that the proposed DFT method in [14] introduces lower area
overhead for making a given SoC consecutively testable.

2.3 RTL Circuits
In RTL description, a circuit generally consists of a con-

troller and a data path as shown in Figure 3. The former is
represented by a finite state machine (FSM) and the latter
is represented by hardware elements (e.g. registers, multi-
plexers (MUXes) and operational modules) and signal lines
connecting them. Each of the controller and the data path
has primary inputs from the outside of the circuit and pri-

2



Figure 3. An RTL circuit

mary outputs to the outside of the circuit. The controller
also has status inputs from the data path and control outputs
to the data path. Similarly, the data path also has control in-
puts from the controller and status outputs to the controller.
The signals from the controller to the data path are called
control signals, and the signals from the data path to the
controller are called status signals.

A data path consists of hardware elements and signal
lines. Hardware elements are primary inputs (PIs), pri-
mary outputs (POs), control inputs, status outputs, regis-
ters, MUXes and operational modules. We introduce ports
of each hardware element as interface points in a natural
fashion: signals enter into a hardware element through its
input ports, and exit through its output ports. Input ports of
a hardware element can be classified into data input ports
and control input ports. Similarly, output ports of a hard-
ware element can be classified into data output ports and
status output ports. A signal line connects two ports with
some bit width. Any number of signal lines can connect to
the same output port (i.e. fanout is allowed), but only one
signal line can connect to the same input port. In order to
simplify the discussion, the following restrictions are intro-
duced into data path architecture. (1)All signal lines have
the same bit width. (2)Control input ports of a hardware
element are connected directly to control inputs of the data
path. And status output ports of a hardware element are
connected directly to status outputs of the data path.

2.4 Port Graph

Definition 2 Port Graph
We define a port graph G V E as a directed graph to
represent an RTL circuit.

V VPI VPO Vport where
VPI is the set of all PIs in the RTL circuit,
VPO is the set of all POs in the RTL circuit,
Vport is the set of all ports in the RTL circuit.
E x y V V

Figure 4 illustrates a port graph corresponding to an RTL
circuit as shown in Figure 3.

Figure 4. A port graph

3 Design for Consecutive Transparency
In this section, we present a design-for-consecutive-

transparency (DFCT) method that makes an RTL circuit
consecutively transparent using integer linear program-
ming.

3.1 Problem Formulation
A consecutively transparent circuit has consecutively

transparent paths for each PIs and POs. When a given RLT
circuit does not have such paths for each PIs(POs), DFCT
elements are added in order to make the circuit consecu-
tively transparent as follows.
Case I : There exits a path from the PI(PO) to a PO(PI)

through a MUX or register, and normal operational
mode (control signals from controller) can not propa-
gate an arbitrary sequence through the path due to hold
behavior of the register or switching behavior of MUX.

DFCT elements: AND gate, OR gate and MUX
In order to propagate an arbitrary sequence through the
path, we fix the control signal (from controller to the
MUX or register) on the desired value by DFCT ele-
ments as follows (Figure 5).

In case 0-controllability is necessary on the con-
trol signal, an AND gate is added to the control
signal.
In case 1-controllability is necessary on the con-
trol signal, an OR gate is added to the control
signal.
In case general-controllability is necessary on the
control signal, an MUX is added to the control
signal.

Case II : There exits a path from the PI(PO) to a PO(PI)
through an operational module, and the path can not
propagate an arbitrary sequence.

DFCT element: thru function
In order to propagate an arbitrary sequence through the
path, we augment the module with thru function if nec-
essary (Figure 6).

Case III : There exits no path from the PI(PO) to a PO(PI).
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Figure 5. Fix control signal on desired value

Figure 6. Thru function

DFCT element: MUX
In order to propagate an arbitrary sequence from the
PI(PO) to a PO(PI), we add a direct path from the
PI(PO) to a PO(PI) with MUX (Figure 7).

Added DFCT elements are controlled by signals from a test
controller. Figure 8 shows a test architecture of the pro-
posed method. In this figure, 0-controllability of MUX1,
thru function of adder2 and 1-controllability of reg2 are
added, and a consecutively transparent path (shaded line)
is realized by the control signal from the test controller.

m
Definition 3 The design for consecutive transparency
(DFCT) is formulated as the following optimization prob-
lem.
Input: An RTL circuit ( a port graph)
Output: A consecutively transparent RTL circuit
Optimization: Minimizing hardware overhead (i.e., hard-
ware of added DFCT elements)

3.2 DFCT Algorithm
In this subsection, we propose a DFCT algorithm. The

algorithm consists of the following two steps.
Step 1 For a given port graph (an RTL circuit), add edges

which can be realized by DFCT elements.
Step 2 For each PI and PO, induce constraints such that the

PI (PO) has a consecutively transparent path, and for-
mulate DFCT as an ILP problem to minimize hardware
overhead.

Step 1: Addition of edges to a port graph
For a port graph, the algorithm adds edges and vertices

as follows (Figure 9).
a dummy input vertex and edges from the dummy in-
put vertex to all v VPI
a dummy output vertex and edges from all v VPO to
the dummy input vertex
edges from data input ports of a MUX to a

Figure 7. Addition of a path with MUX

Figure 8. Test architecture of the proposedmethod

data output port of the MUX (These edges are
realized by AND gates for 0-controllability, OR
gates for 1-controllability, and MUXes for general-
controllability.)
edges from data input ports of a operational module
to a data output port of the operational module (These
edges are realized by thru functions.)
edges from a data input port of a register to a
data output port of the register (These edges are
realized by AND gates for 0-controllability, OR
gates for 1-controllability, and MUXes for general-
controllability.)
edges from each PI to all PO in data path (These edges
are realized by MUXes.)
edges from each PI to all PO in controller (These edges
are realized by MUXes.)

Then, the algorithm defines cost of each edge as the hard-
ware cost that is necessary to realize the edge by DFCT el-
ements (i.e. AND gate, OR gate, thru function and MUX),
and defines capacity of each edge as 1. Figure 9 shows ,
examples of the hardware costs when all signal lines in the
data path have n bit width.
Step 2: An ILP formulation for DFCT

For the port graph extended in Step 1, DFCT is formu-
lated as an ILP problem represented by equations (1) to (8)
with the following 0-1 variables.

xv e

1 Edge e E is used as a part of consecutively
transparent path for port v VPI VPO.

0 otherwise
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Figure 9. Addition of edges and cost to a port graph

xe

1 Edge e E is used as a part of
consecutively transparent path for
more than one port v VPI VPO.

0 otherwise
Minimize:
∑
e E

xe cost e (1)

cost e is a constant value which represents the hardware
cost to realize edge e with a DFCT element.
Subject to:

1. For each PI vpi VPI ,
1 ∑

e Eoutvpi

xvpi e (2)

∑
e Einvdo

xvpi e 1 (3)

∑
e Einv

xvpi e ∑
e Eoutv

xvpi e

for all v V vpi vdo

(4)

vdi and vdo denote dummy input vertex and dummy
output vertex, respectively. Ein

v and Eout
v denote the

set of all input edges and the set of all output edges,
respectively.

2. For each PO vpo VPO,
1 ∑

e Eoutvdi

xvpo e (5)

∑
e Einvpo

xvpo e 1 (6)

∑
e Einv

xvpo e ∑
e Eoutv

xvpo e

for all v V vdi vpo

(7)

3. For each edge e E ,
xe xv e for all v V (8)

Equations (2), (3) and (4) are constraints such that the port
graph has flow of value 1 from PI vpi to dummy output ver-
tex vdo. For each vertex, these equations guarantee that the
sum of input flows is equal to the sum of output flow. Simi-

Table 1. Characteristics of RTLBenchmarkCircuits

larly, equations (5), (6) and (7) are constraints such that the
port graph has flow of value 1 from dummy input vertex vdi
to PO vpo. Equations (1) and (8) minimize hardware over-
head. We can find consecutively transparent paths for all
PIs and POs with minimum hardware overhead by the solv-
ing above ILP problem, and DFCT elements are added to
realize those paths.

In this paper, we showed the method to minimize hard-
ware overhead only. However, we can avoid delay overhead
by making costs of the edges in critical paths of a circuit
high.

4 Experimental Results
In this section, we present experimental results obtained

by the proposed method. Circuit characteristics of RTL
benchmark circuits used in the experiments are shown in
Table 1. These circuits are examples used popularly. In
our experiments, we used Design Compiler (Synopsys) to
synthesize those benchmark circuits. In this table, columns
“#PI” and “#PO” of columns “Controller” and “Datapath”
denote the number of PIs and POs of respective parts. Col-
umn “ bit ” denotes the bit width of data paths. Column
“Area” denotes the total area after synthesis. Here, areas
are estimated using gate equivalent of library cell area.

The area and pin overhead of the proposed method are
shown in Table 2. We used the lp solve package from Eind-
hoven University of Technology [16]. The running time is
negligible (less than 0.1 second) for all four benchmark cir-
cuits on a SUN Ultra 5 workstation. Columns “Thru”, “By-
pass MUX”, “Controllability for control signal” and “Test
controller” in column “Proposed” of column “Area over-
head” denote the area overhead of the proposed method
added by thru functions, bypass MUXes, primitive gates
on control signal and test controller, respectively. Column
“Bypass MUX only” of column “Area overhead” denotes
the area overhead of the bypass method that adds direct
paths from PIs to POs with MUXes.

From the experimental results, we can see that the pro-
posed method introduces lower area overhead compared to
the bypass method in all circuits. In the proposed method,
we can guarantee that a consecuitvely transparent path for
each PI/PO can be realized by adding at most one MUX
since we consider utilization of existing paths in data path
as well as addition of bypass routes with MUXes. Column
“Pin overhead” in Table 2 denotes the number of additional
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Table 2. Hardware Overhead

pins for consecutive transparency. In proposed method, we
need log2 n 1 additional pins. Here, n is a total number
of PIs and POs of a circuit. These additional pins are used
for identifying modes of the circuit (i.e. normal mode and
consecutively transparent modes (configurations)). Since
circuits are embedded into an SoC as cores, those additional
pins of the circuits for consecutive transparency do not re-
sult in pin overhead of the SoC directly.

5 Conclusions

In this paper, we proposed a design-for-consecutive-
transparency method that makes a soft core consecu-
tively transparent using ILP. Consecutive transparency of
a core guarantees consecutive propagation of arbitrary
test/response sequences from the core inputs to the core
outputs with some latency. Therefore, it is possible to
apply/observe arbitrary test/response sequences to/from an
embedded core consecutively at the speed of system clock
by using interconnects and consecutively transparent cores
in an SoC. The DFCT method realizes consecutive trans-
parency with low area overhead (average 3.1%) by utilizing
paths that exist in data path of an RTL circuit. Experimental
results show that the proposed method introduces lower area
overhead compared to the bypass method. Therefore, by
preparing a consecutively transparent version of each soft
core in addition to original core, we can expect that the pro-
posed DFT method in [14] introduces lower area overhead
for making a given SoC consecutively testable.
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