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SPIRIT: A Highly Robust Combinational Test
Generation Algorithm

Emil Gizdarskj Member, IEEEand Hideo FujiwaraFellow, IEEE

Abstract—in this paper, an efficient test pattern generation algorithms in the future. ATPG has become a basic process that
(TPG) algorithm for combinational circuits based on the Boolean determines efficiency of many other processes. For example, the
satisfiability method (SAT) is presented. The authors propose g stness of the TPG algorithms is a critical parameter for input

a new data structure for the complete implication graph that ducti o1 In thi st borted fault
increases the precision of implication process. Next, they examine reduction [2]. In this case, just one aborted fault may cause a

approaches like a single-cone processing, single path-orientedfailure to identify compatibility between two inputs (compati-
propagation, and backward justification and show that they bility classes) that could reduce by 50% the test application time

are efficient to improve robustness of TPG algorithms. Finally, for the counter-based exhaustive built-in self-testing (BIST).
the authors propose efficient techniques and heuristics for these This motivates us to work on the robustness of the TPG algo-

approaches. The resultant automatic test pattern generation . . .
system, called SPIRIT (Satisfiability Problem Implementation for rithms. To do so, we study the most successful TPG algorithms:

Redundancy Identification and Test generation), combines the (Structural) PODEM ([3], FAN [4], TOP [5], SOCRATES [6],
flexibility of the SAT-based TPG algorithms with the efficiency of [7], ATPG [8], and ATOM [9], (algebraic) Nemesis [1], TRAN
the structural TPG algorithms. Experimental results demonstrate  [10], TEGUS [11], and TIP [12], [13].

the robustness of the proposed TPG algorithm. Without fault . . . .
simulation, SPIRIT is able to achieve 100% fault efficiency for a The mostimportant techniques implemented in SPIRIT (Sat-

large set of benchmark circuits in a reasonable amount of time.  iSfiability Problem Implementation for Redundancy Identifica-

Index Terms—Boolean satisfiability, staic and dynamic tion and Test generation) are briefly described as follows:

learning, stuck-at faults, test generation. * 9-V [14] and 16-V [15] algebra for more precise implica-
tion process and search space reduction;
|. INTRODUCTION » X-path check [3] for early detection of inconsistency

during propagation;

unique sensitization [4] and structural dominators [5]-[7]
as efficient dynamic learning techniques during propaga-
tion;

static learning [6] as an efficient technique for deriving
new dependencies between signals during preprocessing;
* recursive learning [16] as an efficient dynamic learning
technique during propagation and justification;
single-cone processing [17] and single path-oriented prop-
agation [8], [12] as efficient approaches for search space
reduction;

backward justification [8], [18] as an alternative of for-
ward justification making decisions only on the primary

N recent years, substantial progress has been achieved in,

the field of electronic design automation (EDA) using the
Boolean satisfiability method (SAT). Originally motivated by
the work of Larrabee [1] in test generation, the SAT method has ,
been implemented to many other EDA applications. In general,
the SAT-based algorithms have two basic parametegerfpr-
manceassociated with the average CPU time per instance and
2) robustnessssociated with the probability that the algorithm
finds a solution or proves that solution does not exist within
given bounds, number of backtracks, and/or CPU time per in-
stance. In practical automatic test pattern generation (ATPG), ,
the performance and robustness are considered as two contra-

dicting parameters. For example, using costly TPG te.chniques inputs [3], headlines [4], and implication nodes [19]:
to reduce the worst case performance of a TPG algorithm may, ggolean satisfiability method as an elegant model of the

also decrease the average-case performance, while the reverse 1pg problem [1] allowing some powerful learning tech-
case may decrease the robustness of the TPG algorithm. As a niques to be used during the branch and bound search.

result, the practical TPG algorithms are incomplete in order to.l_he processes that determine the efficiency of TPG algo-

keep the performance of ATPG systems as high as possm}lg;‘ms are implication, propagation, justification, fault sched-

However, the increasing size and complexity of the integrate Ing and merging [20]-[22], and fault simulation [23]. Fig. 1

cireuits as WeII.as on going F:hanges in design-for-test teI;:rlrlj_presents the structure of the TPG algorithms , the basic part of
nology will require more attention on the robustness of the T

PG systems. Accordingly, the methods are on the top of the
pyramid and they have the highest impact on the efficiency of
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/"\ model. In this sense, we may consider that a single stuck-at

Méthods combinational TPG is a simplified model of the practical TPG

/ \ problem having much lower complexity than the practical TPG
f\(pproacheg problem itself and some related problems like redundancy iden-

/’Techniques\\ tificati_on gnd equivalence_ checking. _Therefore, a failure of a

# — < combinational TPG algorithm to achieve complete fault cov-
/ _ Heuristics erage in a reasonable amount of time for relatively small bench-

Fig. 1. The structure of TPG algorithms. mark circuits having a restricted set of primitives indicates that

the robustness of this TPG algorithm is not enough. ATPG is in-

The premier SAT-based algorithms [1], [10], [11] translatgolved in many processes where the requirements for the com-
the TPG problem into a characteristic formula that represerieteness as well as quality of test patterns defined by the max-
both thelogical andstructural constraints for the possible so-imum number of specified bits and/or detected faults per pat-
lutions. The formula is usually written in a conjunctive normdlern could be critical. Therefore, ATPG systems have to be able
form (CNF) where one sum is called a clause. Clauses with off@achieve the required level on completeness in the most effi-

two, three, or more variables are called unary, binary, ternagjent way. In this sense, the robustness of ATPG systems will
andknary clauses, respectively. become an important parameter in the future. Then the ques-

Since a test pattern for a fault @ input vectorthat sensi- tions are: 1) whether the SAT method is able to gives an ade-
tizes the fault under consideration and propagates the fault @gate model and efficient solution for the practical ATPG and
fect to a primary output or an observable point, a test patteth Whether the gap between the existing test technology and
is found iff both the fault and a propagation path to an ofiest quality requirements will motivate an implementation of a
servable point are sensitized and all unjustified lines are just{pplementary SAT-based engine in the existing ATPG systems
fied. If one of these conditions cannot be satisfied, the fault @le to achieve higher robustness when this is required. We be-
proved as undetectable. This definition considerably incread@ye that this work is a step in the right direction.
the efficiency of the SAT-based TPG algorithms. For example, The rest of the paper is organized as follows. In Section II,
the premier SAT-based TPG algorithms [1], [10], [11] considét System overview of SPIRIT is provided. In Sections IlI-V,
that a test pattern is found when the characteristic CNF foke discuss implication, propagation, and justification and
mula is satisfied, i.e., all clauses in the formula evaluate to Rresent techniques and heuristics to improve the efficiency of
This approach potentially increases the complexity of the TFese processes. Section VI provides experimental results and
problem. The recent SAT-based TPG algorithms [13], [24] alszection VII concludes the paper.
check for an empty J-frontier instead of whether all clauses
in the CNF formula are satisfied. In [13], it was shown that
SAT-based model also allows an efficient implementation of a
forward justification approach typical for the premier structural Clearly, the performance and robustness for the TPG algo-
TPG algorithms [3], [4], [19]. In this way, the SAT-based TPGithms are two contradicting parameters; therefore, it is impor-
algorithms demonstrate an ability to incorporate all structurtnt to find a set of approaches, techniques, and heuristics able
techniques and heuristics. As a result, the main difference be-guarantee both high performance and robustness of the TPG
tween the structural and SAT-based TPG algorithms is in thégorithms. For example, switching between two approaches for
implication process. The advantages of the SAT-based TPG @lepagation: (1) single path-oriented propagation and (2) prop-
gorithms are: 1) more elegant and unified model of the TP&yation and justification for each path segment was very suc-
problem as well as 2) potentially faster and more precise impdessful in [8]. In[12], it was shown that these two approaches are
cation process based on efficient learning techniques [13], [26fthogonal. Also, switching between the basic TPG approaches,
[26]. The disadvantage of SAT-based TPG algorithms is highehole-circuit and single-cone processing, can be effective to
memory usage because the implication graph in fact duplicateshieve both the high robustness and performance of the TPG
the circuit netlist. algorithms. Obviously, the whole-circuit processing approach

Currently, the practical ATPG systems are structural and thas a higher degree of freedom for application of efficient tech-
implication process is performed directly on the netlist in orderiques and heuristics for reducing the number of test patterns
to keep the memory usage as low as possible. In the era of #mel improving the performance of TPG algorithm and fault sim-
32-computers, this was the main restriction because the existiigtion. This approach is also more efficient for easy-to-prove
ATPG technology requires processing the whole integrated aiedundant faults because the single-cone processing approach
cuit, having a couple of million gates, at a time. Also, the pracsually needs more than one test session to prove that a fault is
tical ATPG requires an efficient method for processing tristatendetectable with respect to each primary output where the fault
logic, incompletely specified blocks (X-sources), and thousandfect can be observed. However, the single-cone processing ap-
of busses repeatedly, controlling and observing through eproach is able to reduce the size of the TPG problem and al-
bedded memories, getting adequate fault coverage, and cdoas more efficient application of many TPG techniques. As a
pressing many faults in a single test pattern while satisfying bresult, this approach is able to achieve higher robustness than
contention and many other restrictions [27], [28]. Clearly, athe whole circuit processing approach. Taking this into account,
these requirements increase the complexity of the TPG problera consider that a two-phase TPG algorithm switching different
known as NP-complete [29] and the complexity of the TP@pproaches, techniques, and heuristics will be able to improve

Il. SYSTEM OVERVIEW
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For the circuit: (XvYy): (XvYv2): e
* Read circuit description

* Construct fault list M D
* Calculate justification coefficients a e
and sort gate inputs N O

* Build implication graph ®<——® 0 @

* Static learning @

For each primary output (cone):
* Mark subgraph (formula)
* Extract dominators

Fig. 3. Implications for binary and ternary clauses.

* Calculate propagation coefficients 111 B CONFLICT
and sort fanout branches A 110 C=1
A
For each fault (test session): B 100
* 16-V search space reduction - 011
* Single path oriented propagation 0 8 (1>
* Backward justification — 0
< Fault simulation [A|B]|C| ==>[000 je— INITIALIZATION

Fig. 2. SPIRIT flowchart. Fig. 4. Representation of direstimplications.

the basic parameter;: performange, robustness, and the nurpb&Lnieq by two node¥ andX. Each binary clauseX v Y) is

of test patterns. In th|'s case, the first phase can bg baseq Or_‘rgiﬁesented by two implication&(— Y) and ¥ — X). This
whole circuit processing approach as well as adaptive switchiGshown in Fig. 3(a). In this case, the implication graph repre-
between different approaches for propagation and justificatiafynis only the binary clauses and the formula can be easily ma-
This phase is oriented to generate test patterns for the mosﬁﬁfulated since a binding procedure requires only a partial tra-

detectable faults as well as to prove the easy-to-prove redund@iys s of the implication graph and checking theary clauses
faults while keeping performance high and reducing the num

of test patterns. The second phase is based on the single-Cofg [12] and [13], an efficient data structure representing all
processing and single path-oriented propagation. This phasg)i§;ses of the CNF formula has been presented. The resultant
oriented to increase the robustness of TPG algorlthm, i.e., 9&fplication graph is calledompleteand contains two types of
erate complete test setand prove all redundantfaults in areag@lyes. while the first type of nodes represents the variables, the
able amount of time. In this way, the application of orthogonakcong type of nodes, callednodeshere, symbolize an con-
strategies (approaches and heuristics) as well as efficient tg‘?fh'ction operation or simplg directA-implication In the com-
niques is important to improve the basic parameters of ATFte implication graph, each ternary clause is uniquely repre-
systems. _ sented by three direet-implications; see Fig. 3(b). The advan-

_ Inthis work, we will focus on the robustness of the TPG algQgge of this approach is that it allows more than one value as-
rithms and present some efficient techniques and heuristics {8 ment to be performed simultaneously using bit-parallelism.
the second phase of the TPG algorithms based on the followifige gisadvantage of this approach is that it requires dedicated

approaches: single-cone processing, single path-oriented peRAsformation of thé-nary clauses into ternary in order to be
agation, and backward justification. We will examine the effe¢s . ded into the complete implication graph.

tiveness of the proposed techniques and heuristics as well as try

to identify which of them are essential to achieve complete tegt New Data Structure for the Complete Implication Graph

coverage for the processed benchmark circuits. For simplicity, _. . -
we reduce the number of the implemented techniques butrié};ﬂg. 4 depicts the proposed data structure of the complete im
C

: . ication graph for two-inputND gate. To represent &nary
clude some techniques that look promising for further reseal ; . .
. ause, this data structure hds\2nodes organized as a one-di-
on the robustness of TPG algorithms. mensional array and /&bit key dynamically calculated by the
The flow chart of SPIRIT is shown in Fig. 2. In contrast t y y ey y y

. ) . inding procedure. Each bit of ttiebit key corresponds to one
the premier SAT-based TPG algorithms [1], [10], [11], SI:)IRlvariable in thek-nary clause. A bit is set to 1, if the corre-

builds an implication graph and performs static learning once . . . o o
N . ; sponding variable is specified and theary clause is still un-

for the whole circuit since these are prominent and time-con= . : : :
s%tlsﬁed. A conflict occurs when all the variables ik-aary

suming steps. Using single path-oriented propagation, we avQ o . i
extracting the specific structural constraints for propagatic?rlwause are specified and the cIaL_Jse still eval_uates t00.In the pro

: : . osed data structure, the following conventions are used: 1) we
of each fault [1], [10], [11]. Using single-cone processing, w!

I i . ﬁ%present a gate instead df-mary clause. In this case, a modifi-
apply a “divide-and-conquer” strategy and keep the size of th€'. X .
. cation of this structure is necessary to be able to represent gates

TPG problem as small as possible. :

having more than oné-nary clause, for exampl&or gates
and tristate buffers. 2) The less significant bit(s) of thieit key
corresponds to the gate output. In this way, we easily identify
The first step in satisfying a CNF formula is to construdhe unjustified lines and the type afimplications — forward or

an implication graph. More formally, each variab¥eis rep- backward. 3) We need one extra bit in thdit key to represent

I1l. | MPLICATION PROCESS
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101010 j» CONFLICT the virtual truth tables of the primitives of one type maybe dif-
101000 ferent, i.e, the memory usage for this data structure may increase
100101 B> CONFLICT significantly.
1882)?8 —{C=1] [_|B=0 The disadvantgge of the prqpo_spd dr_:tta structure is that it. can
700001 }—{ B=1] be used for re!at!v_ely_small primitives, i.e., the number Qf sig-
011001 B CONFLICT nals of each primitivé is restricted. For example, when a virtual
011000 truth table is built for each type of primitives, i.e., the indirect
010110 > CONFLICT A-implications are not included into the complete implication
010100 |—»{ C=0| graph, then the memory required i& Dytes per type (for the
010010 B= virtual truth table) andk + 2 bytes per primitive whei < 7.
010007 —+{ B=0 | A reduction of the size of the virtual truth tables can be achieved
88188? mAwl using_appropriate ha_sh functions. In this case, the virtual truth
500110 ||_|A=1 table includes a restricted sett®fnodes, for example, all com-
_N__ 000101 —{ A=0 | binations of specified signals plus all combinations of one un-
[A]A]B|B|C[C|=>[000000 }¢ INTIALIZATION specified signal. In this way, the virtual truth table of a complex

primitive havingk signals will be(k + 1)2" bytes.
Fig. 5. Representation of direatimplications for two-inpuxor gate.
B. Static and Dynamic Learning

that a gate is justified. This is the most significant bit of thkit Deriving new relations between the signals is known as
key. In this way, the:-bit key becomes a negative integer whefiearning,” and it is a basic technique for many SAT-based
the gate is justified. Fig. 5 shows an example for two-inppg ~ algorithms. The learning itself can be performed either as a
gate. Sincexor gate has four ternary clauses and each varialjeeprocessing step, called “static learning,” or during the search
is represented as itself and its complement in the CNF formuitocess, called “dynamic learning.” In fact, if all implications
therefore thek-bit key has six bits to be able to represent aiire derived at each level of branch and bound search then
possible assignments for the variables involved. Accordingly,gBch instance can be solved without backtracking. Since the
variablesA andB are setto 1 and 0, thénbit key is(100 100)  deriving of all implications at each level of branch and bound
and variableC’ must be set to 1. Also, if variables andC are search could be costly, the deriving of as many implications
set to 0 and 1, theh-bit key is (010 010) and variableB must as possible and keeping the complexity of learning as low
be set to 1. as possible is an important problem. The premier learning
Moreover, the proposed data structure can be viewed as a pifecedures [4], [6] derive only indirect implications, while the
tual truth table that does not distinguished between input argtent learning procedures derive new clauses [26] and indirect
output signals such that each signal can be in logic value {0,1,A-implications [25]. The new relations (indirect implications,
andZ}. In this way, this data structure can effectively represent-implications, and clauses) added into a CNF formula that
complex tristate logic primitives defined by incompletely spe@re always valid are called static, while the relations validated
ified logic functions so that all direct implications andimpli- at a certain level of the branch and bound search are called
cations can be easily derived. Fig. 6 depicts an example of thignamic. Although it is a good idea to perform both learning
Fig. 6(a) and (b) shows a truth table and correspondimgry and search processes simultaneously [26], for simplicity, we
clauses for a primitive having four signals. Next, Fig. 6(c) showaippose here that all static relations between the signals are
for eachk-nary clause the number implications andmpli- derived by static learning during preprocessing. This approach
cations found using simulation and the proposed data structbedps us to clarify both the complexity and precision of the
where the extra implications derived by the proposed data str@xisting learning techniques as well as find more an effective
ture are shown in brackets. In this case, we consider that &pproach to avoid some negative effects of learning during test
A-implication can be found by simulation only whén- 1 sig- generation.
nals of the primitive are specified, i.e., a forward (or backward) The precision of static learning in [1] and [6] strongly de-
A-implication can be found if only the output signal (or only ongends on the order of value assignments since some new rela-
input signal) is unspecified. This example shows that the pretiens between the signals can be found if certain other relations
sion of implication process can be considerably improved usihgve already been included into the formula. To avoid this de-
the proposed data structure for the complete implication gragiendency, we assume an iterative computation of the indirect
In few words, the advantages of this data structure are th@plications [11], i.e., the iterative static learning procedure per-
it increases the precision of implication process and allowsferms both 0 and 1 value assignments through the variables until
unified representation of all primitives and implications. Firsgne full iteration produces no new implications.
all direct implications and\-implications are included into the o .
complete implication graph so that they can be easily fouffd Contradiction (Learning Rule 1)
without extra calculations during the branch and bound searchin [6], static learning is based on the contrapositive law,
Next, all indirectA-implications derived during static learning(X — Y) & (Y — X), calledlearning rule 1here. Clearly,
can be also included into the complete implication graph the 2CNF portion of a formula (only the binary clauses)
order to increase the precision of the implication process [25].fulfills the contrapositive law. This is not true when thenary
this case, each primitive has its own virtual truth table becauslauses are also included. For example, it is possible that a
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backward backward forward forward

ABC]|D ABC|D implications | A-implications | implications | A-implications
00O0]|1 00 X |1 0 (0) 4 (+2) 0 (0) 2 (+1)
00 1]1 01o0]o0 0 (+3) 3 (+6) 0 (0) 1(0)
01010 11011 0(0) 3 (+4) 0 (0) 1(0)
0112 X112z 0 (+2) 4 (+2) 0(0) 2 (+1)
100X L .
) (b) k-nary clauses (c) implications derived using simulation and the

011X proposed data structure for each k-nary clause
11 01

11 4
(a) truth table

Fig. 6. Representation of complex primitive.

A
B
C
D

Fig. 7. Network examples 1-3. EIFIDIG |=> 0000 }& INTIALIZATION

value assignment sets— 1 variables in ak-nary clause and Fig- 8. Representation of indirestimplications.

the clause is still unsatisfied. Then a direcimplication is
performed and the last variable of the clause is set to a value
so that the clause is satisfied. For example, value assignment
B = 0 for the circuit in Fig. 7(a) sets variabld3 and E to 0
and clauseD v E Vv F) is still unsatisfied. Next, the binding
procedure performs forward-implication and sets the last
variable of this clausé’ to 0. Thus, backward indirect impli-
cation " = 1 — B = 1) is found by rule 1 (contradiction). rig. 9. Network example 4 [30].
Also, value assignmenbD = 1 for the circuit in Fig. 7(b)
sets variablest andC' to 0, and clause{ v B v C) is still  |earning rule 2+.First, assignmenB = 0 sets variable& and
unsatisfied. Next, the binding procedure performs a backwagdig 0 and clauseK vV F v D v @) corresponding to gate G
A-implication and sets the last variabfeto 1. Thus, forward s still unsatisfied. To take into account this new relation, the
indirect implication 8 = 0 — D = 0) is found by rule 1. learning procedure based on rule 2+ adds an indireichpli-
cationB = 1 to A-nodeG(0011); see Fig. 8. Next, assignment
D. Deriving IndirectA-Implications (Learning Rule 2+) H = 1 sets variable® andG to 0 and clauseX vV F v DV G)
In [30], some indirect implications are derived as an intersegorresponding to gate G is still unsatisfied. Since/Hgit key
tion of the implications for satisfying an unjustified line, called®f gate G is equal t¢0011), then all implications ofA-node
learning rule 2here. Let us consider how the static learning prd=(0011) are valid, i.e.,.B = 1 is a necessary assignment.
cedure based on rule 2 finds an indirect implicatiéh£ 1 — Clearly, learning rules 2 and 2+ are equivalent with respect
B = 1) for the circuit shown in Fig. 7(c). First, the iterativeto of the number of indirect implications derived during static
learning procedure calculates a transitive set for each value g&rning, while learning rule 2+ has lower complexity than rule
signment consisting of all direct and indirect implications de2 because there is no need to calculate transitive sets and an
rived by the transitive and contrapositive laws. For exampli#itersection of these sets. In addition, the indireeimplica-
since value assignme#nt = 1 sets variable® andG to 0, then tions derived during static learning can be used to find some
to satisfyk-nary clauseD vV E Vv F v G) either variableZ or I dynamic implications during branch and bound search and dy-
must be set to 1. However, each one of these value assignméatgic learning [25].
implies that variableB must be set to 1. SincB = 1 is an
intersection of the transitive sets of value assignméhts 1
andF = 1, B = 1 is a necessary assignment for satisfying The first complete learning algorithntecursive learning
k-nary clause D v E vV F' v G). Thus, an indirect implication calledlearning rule 3.Nhere, is introduced in [16]. If the level
(H =1 — B = 1)is found. Clearly, this indirect implication of recursionN is not restricted, then all implications can be
cannot be found by learning rule 1. found. For example, indirect implicatiod(= 0 — L = 0)
Example 1:Let us consider how an indirect implicationfor the circuit shown in Fig. 9 cannot be found by rules 1 and
(H =1 — B = 1) for the circuit in Fig. 7(c) can be found by 2, while this is possible by rule 3, first level recursive learning.
deriving indirectA-implications during static learning, calledDuring iterative value assignments through the variables,

E. Recursive Learning (Learning Rule 3.N)
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G. Derivingk-nary Clauses (Learning Rule 4)

This learning technique is introduced in [26] and has be-
come a basic attribute of the most successful SAT-solvers [31].
More formally, this technique utilizes an analysis to identify a
minimum set of value assignments involved in each conflict.
If the number of value assignments involved in the conflict is
less than a certain number, then a new clause is added into
the formula. Clearly, indirect implications amdimplications
for the existingk-nary clauses (gates) cannot represent all rela-
tions between the signals in the circuit. For example, if clause
(B v D v J)is derived and included into the formula during
static learning for the circuit shown in Fig. 10(c), then after as-
signmentD = 0 implication (/ = 1 — B = 1) can be found
without dynamic learning during branch and bound search. This
Fig. 10. Network examples 5 and 6. result cannot be achieved by static learning based onrules 1, 2+,

3.N without transformation of the circuit by auxiliary learning
the static learning procedure first finds indirect implicatior'iUIe 1A. In fact, the complex_lty of static learning base_d on rul_e
(E = 0 — H — 0) by rule 1, since value assignmehit — 1 _4does_n0t seem to be so_h|gh, especially when static learning
sets variableE to 1. Next, value assignmert — 0 sets is rgstrlcted to a set of variables, for gxample, the fanout stems
variablesE, F, andH to 0, and claused v G v H) is stil having many fanout branghes.. In.th|s case, the prqposed data
unsatisfied. To satisfy this clause, either varialler G must structure for thg complete |mpl|c§1t|on gra}ph may fguhtgte such
be set to 1, but both these assignments set variable O. approach. A disadvantage of this learning technique is that it

Therefore,l, = 0 is a necessary assignment and indireé:? difficult to identify the type of indirect\-implications, for-
implications ¢ = 0 — L — 0) is found. These indirect ward or backward, derived as a result of adding new clauses. As

implications cannot be found by rule 2 because neither val & d'SCUS? _Iatelr n ,SeCt',On Vd'B’ It IS |mporta?]t tofgls_,tmgws?
assignment! = 1 nor G = 1 a priori implies L = 0. the type of implications in order to improve the efficiency o

branch and bound search during justification as well as decrease
the number of specified inputs.

F. Super Gate Extraction (Auxiliary Learning Rule A1)

Next we show how the super gate extraction, cabedil-
iary learning rule Alhere, and rule 2+ improve the implication
process. A super gate of gate X can be found by performingPropagation is a specific ATPG process that is not valid for
all direct backward implications of value assignmeéht= A other SAT-based applications. In general, the propagation is
whereA is a noncontrolling value of the gate outpXt[21]. based on the assumption that for each detectable fault at least

Example 2: Let us show how super gate extraction improvesne path exists that propagates the fault effect from the fault
static learning. For the circuit shown in Fig. 10(a), indirect imlocation to a primary output of the circuit. If such path does
plication = 0 — B = 0) can be found by rule 3.1 (first not exist, then the fault under consideration is undetectable or
level recursive learning). In the transformed circuit shown iredundant. Although there are different approaches for propa-
Fig. 10(b), gates D, E, and G are replaced by their super ggtgion, we address here only the single path-oriented propaga-
(three-inputanD gate). In this case, /(= 0 — B = 0)is a tion (SPOP)[8],[12]. Starting from the fault location forward to
direct implication. the primary output for the current test session, SPOP sensitizes

Example 3: Let us show how super gate extraction and dgath-segment by path-segment whepath-segmernis defined
riving A-implications improve branch and bound search and dgs a subpath starting at the fault location or a fanout branch and
namic learning. After static learning based on rule 2+, two indénding at a fanout stem or primary output. For the SPOP ap-
rectA-implications for gate | are found for the circuit shown irproach, the fanout stems are decision points and next path-seg-
Fig. 10(c). After value assignment = 0, these indirect\-im- ment is selected by initial sorting of the fanout branches using
plications validate dynamic implications € 1 — B = 1) and propagation coefficients (see Fig. 2). In this way, the SPOP ap-
(B =0— I =0).Using implication{ =1 — B = 1),dy- proach is an alternative to the D-frontier for the structural TPG
namic implication § = 1 — B = 1) can be found by dynamic algorithms and extracting structural constraints for the SAT-
learning based on rule 3.1 (first level recursive learning); othdsased TPG algorithms. The main advantage of the SPOP ap-
wise, dynamic learning based on rule 3.2 (second level recurspr@ach is that the easiest path for fault effect propagation ac-
learning) is necessary. If super gate extraction is applied befaarding to the selected criteria is sensitized first. In contrast, the
static learning, then dynamic implicatiod (= 1 — B = 1) alternative approaches can block the easiest propagation path by
can be found without dynamic learning. More precisely, in thestification of the current objectives (path-segment). The dis-
transformed circuit shown in Fig. 10(d), gates | and J form supadvantage of the SPOP approach is that during propagation the
gate J and the indireet-implications of this super gate derivednumber of the unjustified lines may increase considerably and
during static learning validate dynamic implicatioh £ 1 — itis possible that a sensitized propagation path cannon be justi-
B = 1) after assignmenb = 0 without dynamic learning. fied. Such a path is callednjustifiable To reduce the number

IV. PROPAGATION PROCESS
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In this particular case, backtracking during propagation can be
avoided by static learning. For example, if static leaning is per-
formed during preprocessing, then four indirect implications
will be found: ¢ =1 —- J =1),F =1 — K = 1),
(N=0— H =0),and ® = 0 — H = 0). Using these in-
direct implications, the inconsistency is found by value assign-
mentO = D during propagation. After static learning without
SSR, variable” and I’ are set to valueX/1 and the incon-
sistency will be found during justification because the indirect

SAT possible SAT possible SoteliLy ' ) ‘ :
variables | assignments | variables | assignments implications derived by static learning are valid only for the
A 0,1 I {D} fault-free circuit.
B 0,1 J 0,1
C 0,1 K 0,1
D {1} L {0-D} B. Augmented Unique Sensitization
D’ —D M {0,D}
E 8'1 g {0{?'1}0} According to unique sensitization [4], if a gate belongs to all
G 0.7 B (’),1',—'[, potential propagation paths starting from the fault location, then
H 0,1 R D,—D this gate is callediniqueand must be sensitized. Unique sensi-

tization is based on a representation of the circuit as a directed
acyclic graphG = (V, E) where the set of nodes V contains all
primary inputs and gates having more than one input. If a direct

- L . th exists from A to B, then line B is said to achablefrom
of the sensitized unjustifiable propagation paths we use st I%e A. If no such path exists, then line B is said tourgeach-

learning [6], static 16-V search space reduction, and dynany lefrom line A. Also, if a unique gate exists, then all inputs of

learning by rule 3.1 (first level recursive learning) on the unju?a—. .
o . is gate that are unreachable from the fault location should be
tified lines. On the other hand, the propagation process can B? tg a noncontrolling value, i.e., the value that propagates the

sped up by avoiding nonsolution areas and deriving as many im- . . . .
plications as possible at each level of the decision tree. To do%iuf:t tzfcf:izti;lit\r)vzg?ﬂ;?oszfje.ulsr:rfg];t[r?&’ctzrealljglgrlw{n?nsaigfsltlzlgr
we apply the X-path check [3], unique sensitization [4] based ] :

structural dominators [5], [6] and dynamic learning by rule 3. xamp.le, if all paths starting from node Alinclude node B, then
[71. ine B is called astructural dominatorof A. Let us now con-

sider that a propagation path to line A is sensitized, then gate B
_ ) becomes aynamic unique gat&herefore, all inputs of gate B
A. Static 16-V Search Space Reduction (SSR) that are unreachable from the fault location must be set to a non-

SSRis a preprocessing step for each test session. SSR sfdrolling value. In this way, the fault effect will be propagated
from the fault location forward to the primary output and cal¥ia this gate. Clearly, unique sensitization is more efficient for
culates the possible value assignments in the set of {0,1, the single-cone processing approach than for the whole circuit
D) for each variable in the formula. SSR also takes into a®rocessing approach while calculating the structural dominators
count the number of the possible propagation paths and reduf®g£ach cone instead of the whole circuit makes this technique
values {0,1} when one propagation path is available. Using di?0re costly. Also, we found that many potential conflicts during
rectly observable points, some propagation paths can be redugpagation can be avoided if dynamic leaming is restricted to
and even the fault under consideration can be proved as un@@-aréa near to the primary output. The propagation procedure
tectable with respect to the current primary output during SSRased on this assumption has two extra steps.

For example, if a propagation path includes a line that is directly Step 1) This step is performed after the fault under consid-
observable for another primary output, then the values D} eration and all unique gates are sensitized. First, the
for the corresponding variable and, respectively, all propagation propagation procedure identifies all alternative de-

Fig. 11. Network example 7.

paths that include this line can be reduced. If the set of the pos-
sible value assignments of a variable is empty, then the fault
under consideration is proved as undetectable with respect to
the current primary output without search. In this way, SSR sets
more precise constraints for the search process and also vali-
dates some indirect implications for the faulty circuit. The next
example illustrates this.

Example 4: Let us consider the stuck-at-1 fault on line D
in Fig. 11(a). Fig. 11(b) shows the possible value assignments
for each variable after SSR. L&'-L-O-R be the first sensi-
tized propagation path. However, this propagation path is un-
justifiable because line N cannot be justified Rfis not a pri-
mary output, this may produce a sensitization of many propa-
gation paths until the alternative pdit+I-M-P-R is sensitized.

cisions for the end of the propagation path. Next,
some propagation paths near to the primary output
are invalidated by assigning valu2 and D to cer-
tain lines. Finally, a convergent gate for all valid
propagation paths is determined. Let us assume that
Al, ..., An are the alternative decisions for the end
of the propagation path, then some implications can
be found by rule 3.1 (first level recursive learning),
i.e., as an intersection of the implications produced
by the alternative decisions for the end of the prop-
agation path.

Step 2) This step is based on restricted dominators, i.e.,

the structural dominators in the last path segment
starting from a fanout branch and ending at the
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primary output. If the next path segment has a r¢ A D2

stricted dominator, then the propagation procedu B=0 H M

finds some implications using dynamic learning c_4 s.a.aLrG\ D \D
by rule 3.1 (first level recursive learning) on the Dot N 4 D
alternative decisions for sensitization of the last pat E‘ o)L 1| N

segment starting from the restricted dominator ar: o ) 1 K

ending at the primary output. More formally, the
propagation procedure sensitizes this path segment

by propagating both valu® andD to the primary 9 1% Network example 8.

output. Dynamic implications are derived as an

intersection of the implications produced by boti@nd indirectimplications, next, all-implications for the current
alternative decisions propagates valier D to the node and its structural successors, i.e., all fanout branches cor-
primary output. responding to this node, and finally, if the current node and/or

The implemented augmented unique sensitization procedﬂgesuccessors are unjustified lines, then they are included in
also includes the X-path check for earlier identification d© the J-frontier. Actually, this is a dynamic reordering of the
nonsolution area during propagation. More formally, X_pamariables based on a depth-first search strategy. We found that
checks, whether at least one propagation path to the primg?iﬁ strategy is much more efficient than the static order typ-
output exists such that the current value for all signals on trf&l for the premier SAT-based TPG algorithms [1], [10], [11].

path, are consistent with the target value for its sensitization.Heuristic H2 is used for an initial ordering of the J-frontier just
before justification. For example, first, the justification is ap-

plied using first-difficult strategy. Next, if the specified back-

track limit is exceeded, then the justification is performed with
Justification is performed after a propagation path to the pihe reverse ordered J-frontier. If both these orthogonal strate-

mary output is sensitized and has to justify all unjustified lineg;es cannot justify or prove that the sensitized propagation path

o is unjustifiable, then backward justification is performed using

A. Backward Justification dynamic learning using rule 3.1. (first level recursive learning)
Unjustified lines are the decision points for justification andn the unjustified lines in the J-frontier.

the implemented justification procedure uses justification coef-

ficients calculated during the circuit preprocessing (see Fig. B) Duality of Learning

to guide the search process. The justification coefficients takerhe gecision tree reduction is important to improve the effi-
into account the structure of the circuit and measure the relat[y,gncy of search process. For example, the unjustified lines in
difficulty for justification of each line. By sorting the inputs of ihe conflict-free area, called headlines [4], and inactive clauses
each logic gate using the justification coefficients, we SUPPOgEs not useful to resolve conflicts and they increase the size
that each unjustified line can be easily justified by assigning he decision tree. If the headlines are justified at the end of
a controlling value to the first unspecified input of the corresgarch process and the inactive clauses are deleted, then the size
sponding gate. During propagation all unjustified lines are iyt the decision tree can be reduced. Also, some unjustified lines
cluded in a list called-frontier. During justification the J-fron- ¢ jystified by implication if other unjustified lines are justi-
tier is dynamically updated by adding new unjustified linegeq when the reverse case is not valid. Clearly, if these relations
These are some useful heuristics for selection of next unjugfsyween the unjustified lines are identified, then the size of the
fied line for justification from the J-frontier. decision tree can be further reduced. The next example shows
H1: Depth-first searclstrategy gives a higher priority to thethat finding good heuristics for justification becomes even more
unjustified lines more recently included in the J-frondifficult after static learning when some indirect implications
tier. are also included into the implication graph.
H2: First-difficult/First-easyare two orthogonal heuristics Example 5: Let us consider three cases for justification of
giving a higher priority to the unjustified lines morethe stuck-at-0 fault on line C in Fig. 12.
difficult/easier for justification according to the justifi- (Case A): If static learning is applied during prepro-
cation coefficients. cessing, then four indirect implications are found: forward
Heuristic H1 is basic for the backward justification proceimplications 3 = 0 — J = 0)and ¢ = 0 — K = 0)
dure. It is implemented by adding the newest unjustified lirend backward implicationsM = 1 — J = 0) and
at the end of the J-frontier when unjustified lines are processgd = 0 — K = 0). After value assignment’ = D, the
starting from the end to the beginning of the J-frontier. Sindault effect is propagated to the primary output and the value
more that one unjustified line can be included into J-frontier &g signals is shown in Fig. 12. As a result, four primary inputs
a result of one decision, then the implication process indirectiye specified and two unjustified lines, J and K, are included in
impacts the selection of the next unjustified line for justificathe J-frontier. During justification, variablet and F are set to
tion. To be more precise here, we give some details for the ithin order to justify lines J and K, i.e., in this case all primary
plemented implication procedure. It is based on the depth-fifaputs are specified.
search strategy and applies implications for each node in the fol- (Case B): Let us consider the same example without static
lowing order: first forward implications, backward implications|earning. In this case, variabl€ will be unspecified after prop-

V. JUSTIFICATION PROCESS
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agation since in case A variahl€ was set to 0 by forward in- more CPU time to be satisfied or to be proved as unsatisfi-
direct implication ¢ = 0 — K = 0). As result, the J-frontier able. We call this arearitical. In [34], a relation between the
includes lines Jand L. To justify these lines, itis enough for vartut-width property of a circuit and the worst case complexity
ablesA andD to be set to 1. Therefore, without static learningor test generation is discussed. Let us associate the unjusti-
primary input E is unspecified. fied lines and the primary inputs involved in the justification
(Case C): This case is equivalent to case A during propprocess with the clauses and the variables of the reduced for-
agation but the primary inputs A and E are left unspecified betula, respectively. Clearly, each value assignment during search
cause both lines J and K are already justified. process changes the clause-to-variable ratio and the cut-width
In summary, three solutions for justification are possiblgroperties of the reduced formula. Until this point, we used these
(case A) all variable are specified, (case B) variablés un- properties by choosing the SPOP approach for propagation. Let
specified, and (case C) variabldsand E are unspecified. If the us compare the two alternative approaches for justification: 1)
circuit shown in Fig. 12 is a part of large circuit, each solutiojustification of the whole propagation path, i.e., the SPOP ap-
will produce a different number of unjustified lines that haveroach and 2) propagation and justification for each path seg-
to be justified. This phenomenon is callddality of learning ment with respect to the critical instances, hard to prove redun-
here. Obviously, static learning is important to decrease tHant faults. We may consider the SPOP approach is more ef-
number of backtracks. However, static learning may produtective because: 1) the application of the orthogonal strategies
some spare unjustified lines that have to be justified. On tlo& heuristic H2 is more restricted for the second approach and
other hand, static learning can also be used for identificati@y the reduced formula can fall into a critical area somewhere
of the relations between the unjustified lines, for example, lmetween the fault location and the primary output. In this case,
case C. the second approach for justification needs more time to prove
Example 6: Let us consider the circuit shown in Fig. 7(b)the formulas as unjustifiable within the critical area. In [32], we
Without static learning after assignmeBt = 0, the ternary experimentally showed that many redundant faults can be iden-
clause Av BV () is still unsatisfied. To satisfy this clause eithetified during propagation, i.e., without justification. However,
variableA or variableC should be set to 1 but both these valu§POP may sensitize one or more propagation paths for redun-
assignments set variable to 0, thereforeD = 0 is a necessary dant faults that are difficult to be proved as unjustifiable because
assignment. If this new dynamic forward implication derived bthe formula falls into a critical area when the primary output is
rule 3.1 is performed, then a new spare unjustified line D wittached. To avoid the critical area in these cases, the justification
be included in the J-frontier. In fact, line D is justified if line Bprocedure selects up to six variables and proves that the sensi-
is justified. tized propagation path is unjustifiable for all possible value as-
Taking into account these examples, to avoid including spasignments of the selected variables. To improve the cut-width
unjustified lines in the J-frontigoverspecificationall forward  properties, the justification procedure selects variables corre-
static indirect implications and-implications as well as all sponding to the fanout stems having a maximum number of
forward dynamic implications should be ignored. In our jusanout branches. As a result, many or all possible value assign-
tification procedure, we avoid overspecification by removinments for the selected variables are inconsistent. The remaining
all forward indirect implications and-implications after static cases need fewer backtracks because of the improved cut-width
learning and restricting dynamic learning to the unjustified lingzoperties of the formula.
in the J-frontier. The efficiency of this heuristic was experimen-

tally checked in [32].
y [32] VI. EXPERIMENTAL RESULTS

C. Avoiding Critical Area _ The proposed techniques and heu_ristics were implemented
in SPIRIT [32], [35] and we ran experiments on a 1-GHz Pen-
This heuristic was inspired by the work in [29], [33], andium-IIl PC.
[34]. Clearly, the justification is the critical phase of test gen- First, we assessed the efficiency of the proposed data struc-
eration. For example, in [29], the proof of NP-completenessre for the complete implication graph by performance of static
of the TPG problem is based on a polynomial transformatidearning as well as the number of indirect implications and
of the justification into the 3CNF-SAT problem. Hereafter, we\-implications derived during static learning. The experimental
suppose a similar transformation and represent the justificasults for the ISCAS’85 [36] and a full scan version of the
tion by a dynamically updated formula calleztluced formula ISCAS’89 [37] and ITC'99 [38] benchmark circuits are given
where inactive clauses in the formula are deleted. In this caseTable |I. Column 2 gives the number of variables (#primary
the reduced formula includes a part of the CNF formula coinputs + #gates having two or more inputs). Columns 3-8 give
responding to a circuit involved in the justification process béhe number of constant-value assignments, direct and indirect
cause, as we discussed earlier, justifying and satisfying the Ch#plications and\-implications before and after static learning
formula are not equivalent. In [33], Larrabee showed that ftwy rules 1, 2 and 2+. The contribution of rule 1 and 2+ was
each clause-to-variable ratio less than 4.2, the percentage of 6at378 401 indirect implications as well as 255458 indirect
isfiable randomly generated 3CNF formulas increases, and foplications and 16070 145A-implications respectively.
each clause-to-variable ratio greater than 4.2, the percentag€ofumns 12 and 13 present the CPU time in seconds for static
satisfiable formulas decreases as a function of number of vdearning by rule 1 and 2+, respectively. To estimate the impact
ables. Also, around this ratio the 3CNF formulas need mudii static learning on the propagation process, we calculated the
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TABLE |
STATIC LEARNING RESULTS
_ L Sensitized unjustifiable paths .
Circuit Var Const. Ass. Implications A impl. for redundant faults CPU time, sec.
w/o | rulel w/o rulel rule2 rule2+ w/o rulel | rule2+ rulel | rule2+
1 2 3 4 5 6 7 8 9 10 11 12 13
C432 156 0 0 1226 +162 +4 126 3 2 0 0.01 0.01
C499 203 0 0 3246 +168 +0 8 0 0 0 0.01 0.01
C880 354 0 0 3696 +220 +0 371 - - - 0.01 0.01
C1355 515 0 0 19582 +2392 +0 24 0 0 0 0.01 0.01
C1908 474 0 0 14153 +4173 +0 862 2 0 0 0.01 0.01
C2670 909 3 8 17213 +3531 +0 1745 47 10 10 0.01 0.02
C3540 1006 1 1 78041 +14101 +0 13293 42 0 0 0.06 0.09
C5315 1591 1 1 34413 +13783 +550 8355 0 0 0 0.03 0.05
C6288 2416 17 17 20193 +8309 +0 0 0 0 0 0.02 0.02
C7552 2309 2 4 81590 +59228 +32 7709 28 0 0 0.10 0.12
S5378 1218 7 7 43566 +14510 +0 4860 0 0 0 0.05 0.05
59234 2274 2 2 122970 +57982 +32 8437 233 0 0 0.19 0.20
S$13207 3273 8 8 336780 +147340 +18 23024 16 16 16 0.84 0.90
S15850 4059 6 6 188613 +99363 +304 16914 0 0 0 0.42 0.45
S$35932 13967 0 0 2669601 +267303 +0 0 0 0 0 10.59 10.77
538417 10373 6 6 265599 +52189 +0 7679 8 0 0 0.51 0.53
538584 12912 | 143 151 4233098 +49798 +576 75586 128 0 0 14.28 14.59
Bl4s 4401 2 2 684954 +496038 +776 222446 1055 80 80 1.19 1.65
B15s 8329 | 27 27 4067520 +2089280 +28368 1391199 2594 3 3 13.02 17.45
B17s 23008 | 84 84 12092795 | +8306969 +37446 3885330 9414 1458 1458 45.81 58.98
B18s 64993 | 334 334 | 35275090 | +47126536 | +167690 8656215 39162 7004 3186 141.89 | 174.95
B20s 8711 8 8 1591188 +889700 +5630 506254 12836 112 85 2.41 3.50
B21s 9066 6 6 1434569 +1013097 +1678 436844 14884 239 239 2.96 4.18
B22s 13929 9 9 2373873 +1662229 +12354 802864 6028 1057 1027 4.14 5.85
Total: 190446 | 666 681 | 65653569 | +62378401 | +255458 | 16070145 | 86480 9981 6104 238.57 | 2944

number of the sensitized unjustifiable propagation paths flearning rule 1 (only for the ISCAS’85 benchmark circuits) and
redundant faults. Clearly, for redundant faults, each sensitizil 16-V search space reduction were enough to achieve com-
propagation path to the primary output cannot be justifieglete fault coverage without fault simulation for these bench-
i.e., it is unjustifiable. The reason that such a path may Ineark circuits. This experiment showed that the benchmark sets
sensitized is the lack of implications, i.e., if all implications athat inspired the research on test generation for the last 15 years
each level of propagation are found, then propagation pathae very easy when proper approaches and techniques are ap-
the primary output cannot be sensitized. Columns 9-11 presplieéd. A comparison with the published TPG algorithms able
the number of the sensitized unjustifiable propagation patttsachieve complete fault coverage without fault simulation for
for redundant faults. This experiment showed that many fautteese benchmarks is given in Table Il. The columns 2-5 present
could be proved as redundant during propagation, i.e., withdhe basic characteristics of each circuit, the number of detectable
justification when static learning is performed during preprand redundant faults as well as the average and maximum cone
cessing. The number of sensitized unjustifiable propagatisize estimated by the number of variables (#primary inputs +
paths can be further reduced using dynamic learning by rdtgates). Columns 6-9 present the CPU time in seconds for test
3.1 during propagation. However, this approach is more costjgneration of TEGUS [11] (IBM RS/6000 320), TIP [13] (Dig-
because we should apply dynamic learning during propagatiita Alpha 4100 5/533), ATOM [9] (200-MHz Pentuim-Pro PC),
for each fault and test session. In contrast, dynamic learniagd SPIRIT. These results made SPIRIT competitive to the best-
during justification is applied only when the current sensitizggublished combinational TPG algorithms. The last two columns
propagation path cannot be justified or proven as unjustifiabpeesent the average and maximum numbers of the specified in-
without dynamic learning. puts of the test sets generated by SPIRIT. These results showed
Next, we ran two experiments for test generation. For the firstat the proposed TPG algorithm also gives an efficient solution
experiment, we used the ISCAS’85 benchmark circuits andi@ overspecification. Without special effort, SPIRIT was able
full scan version of the ISCAS’89 benchmark circuits as welb achieve competitive results for the maximum number of the
as a single-phase version of SPIRIT based on the followisgecified primary inputs as the problem-oriented TPG algorithm
three approaches: the single-cone processing, single path-m@ported in [39].
ented propagation, and backward justification. The maximumFor the second experiment, we used a full scan version of the
number of the sensitized unjustifiable propagation paths durifgiC’99 benchmark circuits.Table 11l provides the basic char-
propagation and backtracks during justification was set at lacteristics of these benchmark circuits. Columns 2—8 give the
Likewise, the maximum number of value assignments per testmber of gates, primary inputs and outputs, detectable and re-
session was set at 1000. In this case, static learning basedlondant faults, as well as the average and maximum cone size
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TABLE I

EXPERIMENTAL RESULTS FORTPG WITHOUT FAULT SIMULATION FOR THE ISCAS’85AND '89 BENCHMARKS

Circuit #Faults Cone size CPU time. s #specified inputs
Detected | Redundant| Ave Max | TEGUS[11] | TIP[13] ATOM[9] | SPIRIT Ave Max
1 2 3 4 5 6 7 3 9 10 11
C432 520 4 125 204 3 0.07 0.3 0.05 12.1 26
C499 750 8 151 190 11 0.17 1.1 0.07 33.8 41
C880 942 0 102 187 3 0.07 0.3 0.06 9.7 23
C1355 1566 8 382 462 19 0.82 12.7 0.36 35.9 41
C1908 1870 9 533 784 14 1.67 2.8 0.39 20.1 31
C2670 2630 117 307 1077 22 1.57 39 0.33 15.4 57
C3540 3291 137 582 1832 68 6.55 9.9 0.99 134 30
C5315 5291 59 272 1106 42 5.32 6.7 0.72 13.3 47
C6288 7710 34 1327 3526 360 39.44 86.3 13.78 24.7 32
C7552 7419 131 547 1317 86 13.94 23.6 2.20 31.2 100
S5378 4563 40 135 571 9 2.80 2.6 0.38 7.9 36
$9234 6475 452 355 1238 48 19.21 13.8 1.26 11.7 43
S$13207 9664 151 189 2004 56 33.31 20.8 247 7.7 92
S15850 11336 389 625 1750 125 28.33 23.9 3.65 8.2 40
S35932 35110 3984 78 134 61 238.55 74.5 14.61 4.8 9
S38417 31015 165 197 641 193 175.10 46.6 10.51 13.1 85
S38584 34797 1506 93 1081 98 341.08 40.9 10.10 6.1 54
Total: 164949 7194 285 3526 1218 908 370.7 61.93 10.7 100
TABLE 1lI
EXPERIMENTAL RESULTS OFSPIRITFOR THEITC’99 BENCHMARKS
Circuit #Gates | #Inputs | #Outputs #Faults Cone size With fault §im. Without t‘aul? sim.
Detect Red Ave Max | Aborted | Time.s | Aborted | Time.s
1 2 3 4 5 6 7 3 9 10 11 12
Blds 4124 277 299 12537 274 486 2519 0 14 0 24
B15s 7844 485 519 23020 508 1166 4046 0 157 0 336
B17s 21556 1452 1512 64108 1356 1207 4022 0 525 0 987
B18s 61636 3356 3343 184751 3787 1483 8120 0 2779 0 13838
B20s 8189 522 512 24852 486 688 3071 0 35 0 50
B21s 8544 522 512 26084 496 753 3070 0 38 0 53
B22s 13162 767 757 39488 776 739 3083 0 91 0 111
Total: 125055 7381 7454 374840 7683 1185 8120 0 3639 0 15399

estimated by the number of variables (#primary inputs + #gategiected backtracking [26], [40]. In many cases, SPIRIT was
In this experiment, we used a two-phase version of SPIR#&ble to achieve the best performance without static learning be-
where the implemented techniques were carefully selectedciause a high dependency between signals increases the CPU
order to minimize the impact of the added techniques on the péme for static learning and degrades the performance of the
formance of the first phase. The selected techniques for the firsplication process. The experimental results showed that, in

phase were the augmented unique sensitization, X-path chegdneral, static learning increases the robustness of the TPG al-
and dynamic learning by rule 3.1 on the J-frontier during justgorithms especially with respect to the redundant faults but also
fication. For the first phase, the maximum number of sensitizeday decrease the average-case performance for test generation.
unjustifiable paths during propagation and backtracks duriffigble IV presents an impact of the presented techniques on the
justification was set at 3. Likewise, the maximum number dfficiency of SPIRIT. Also, to assess the negative impact of the
value assignments per test session was set at 10 000. Fortéiehniques added in the first phase of test generation, we re-
second phase, these limits were set 100 times higher and pleated the first experiment for the ISCAS’85 and ISCAS'89
heuristics for avoiding the critical area and dynamic learnirfgenchmark circuits with the new version of SPIRIT. The total
by rule 3.1 on the J-frontier during propagation were appligdPU time was 69.39 s, i.e., the performance of SPIRIT was de-
to increase the robustness of SPIRIT. The experimental resgtaded by 12%.
of SPIRIT with and without fault simulation are provided in
columns 9-12.

In this work, we examined many other TPG techniques, but
they were ineffective for these benchmark circuits. Some ofIn this work, we proposed an efficient data structure for
these techniques were dynamic headlines [4] and dependeribg- complete implication graph, made a classification of the

VIl. CONCLUSION
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TABLE IV
IMPACT OF EACH TECHNIQUE ON THEEFFICIENCY OF SPIRIT
SPIRIT Pass 1 Pass 2 (total)

Detected | Aborted | Time.s | Detected | Aborted | Time. s
1 All techniques 374836 61 3525 374840 0 3639
2 All techniques only detectable faults 374836 4 2593 374840 0 2607
3 All techniques only redundant faults 0 57 1324 0 0 1427
4 Without fault simulation 374294 603 13957 374840 0 15399
5 Without static learning 374838 424 3703 374840 2 3874
6 Without duality of learning 374837 60 3600 374840 0 3738
7 Static learning based on rule 2+ 374836 35 3606 374840 0 3716
8 Unique sensitization without steps 1 and 2 374835 98 4716 374840 24 41986
9 Unique sensitization without X -path check 374836 133 3926 374840 24 10238
10 Backward justification without heuristics H1 and H 2 374835 62 3536 374840 2 3673
11 | Backward justification without avoiding critical area 374836 61 3525 374840 14 4074

learning techniques, and assessed an impact of low complexityo]
static learning on the robustness of TPG algoritthms. Also,
we examined some not so popular approaches such as thq]
single-cone processing, single path-oriented propagation, and
backward justification and showed that they are efficient to

increase the robustness of TPG algorithms. Next, we propos

efficient techniques and heuristics for these approaches. In fact,
some of the proposed techniques elaborated on the well-known
techniques, while other techniques gave new ideas for im3
proving the robustness of the TPG algorithms. As a result,
SPIRIT was able to generate complete test sets for a large set
of benchmark circuits in a reasonable amount of time. In thig!*
way, SPIRIT became the first reported TPG algorithm ablg;s)
to achieve 100% fault efficiency for the ITC'99 benchmark
circuits both with and without fault simulation.
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