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SPIRIT: A Highly Robust Combinational Test
Generation Algorithm

Emil Gizdarski, Member, IEEEand Hideo Fujiwara, Fellow, IEEE

Abstract—In this paper, an efficient test pattern generation
(TPG) algorithm for combinational circuits based on the Boolean
satisfiability method (SAT) is presented. The authors propose
a new data structure for the complete implication graph that
increases the precision of implication process. Next, they examine
approaches like a single-cone processing, single path-oriented
propagation, and backward justification and show that they
are efficient to improve robustness of TPG algorithms. Finally,
the authors propose efficient techniques and heuristics for these
approaches. The resultant automatic test pattern generation
system, called SPIRIT (Satisfiability Problem Implementation for
Redundancy Identification and Test generation), combines the
flexibility of the SAT-based TPG algorithms with the efficiency of
the structural TPG algorithms. Experimental results demonstrate
the robustness of the proposed TPG algorithm. Without fault
simulation, SPIRIT is able to achieve 100% fault efficiency for a
large set of benchmark circuits in a reasonable amount of time.

Index Terms—Boolean satisfiability, static and dynamic
learning, stuck-at faults, test generation.

I. INTRODUCTION

I N recent years, substantial progress has been achieved in
the field of electronic design automation (EDA) using the

Boolean satisfiability method (SAT). Originally motivated by
the work of Larrabee [1] in test generation, the SAT method has
been implemented to many other EDA applications. In general,
the SAT-based algorithms have two basic parameters: 1)perfor-
manceassociated with the average CPU time per instance and
2) robustnessassociated with the probability that the algorithm
finds a solution or proves that solution does not exist within
given bounds, number of backtracks, and/or CPU time per in-
stance. In practical automatic test pattern generation (ATPG),
the performance and robustness are considered as two contra-
dicting parameters. For example, using costly TPG techniques
to reduce the worst case performance of a TPG algorithm may
also decrease the average-case performance, while the reverse
case may decrease the robustness of the TPG algorithm. As a
result, the practical TPG algorithms are incomplete in order to
keep the performance of ATPG systems as high as possible.
However, the increasing size and complexity of the integrated
circuits as well as on going changes in design-for-test tech-
nology will require more attention on the robustness of the TPG
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algorithms in the future. ATPG has become a basic process that
determines efficiency of many other processes. For example, the
robustness of the TPG algorithms is a critical parameter for input
reduction [2]. In this case, just one aborted fault may cause a
failure to identify compatibility between two inputs (compati-
bility classes) that could reduce by 50% the test application time
for the counter-based exhaustive built-in self-testing (BIST).
This motivates us to work on the robustness of the TPG algo-
rithms. To do so, we study the most successful TPG algorithms:
(structural) PODEM [3], FAN [4], TOP [5], SOCRATES [6],
[7], ATPG [8], and ATOM [9], (algebraic) Nemesis [1], TRAN
[10], TEGUS [11], and TIP [12], [13].

The most important techniques implemented in SPIRIT (Sat-
isfiability Problem Implementation for Redundancy Identifica-
tion and Test generation) are briefly described as follows:

• 9-V [14] and 16-V [15] algebra for more precise implica-
tion process and search space reduction;

• X-path check [3] for early detection of inconsistency
during propagation;

• unique sensitization [4] and structural dominators [5]–[7]
as efficient dynamic learning techniques during propaga-
tion;

• static learning [6] as an efficient technique for deriving
new dependencies between signals during preprocessing;

• recursive learning [16] as an efficient dynamic learning
technique during propagation and justification;

• single-cone processing [17] and single path-oriented prop-
agation [8], [12] as efficient approaches for search space
reduction;

• backward justification [8], [18] as an alternative of for-
ward justification making decisions only on the primary
inputs [3], headlines [4], and implication nodes [19];

• Boolean satisfiability method as an elegant model of the
TPG problem [1] allowing some powerful learning tech-
niques to be used during the branch and bound search.

The processes that determine the efficiency of TPG algo-
rithms are implication, propagation, justification, fault sched-
uling and merging [20]–[22], and fault simulation [23]. Fig. 1
represents the structure of the TPG algorithms , the basic part of
ATPG systems. Accordingly, the methods are on the top of the
pyramid and they have the highest impact on the efficiency of
the TPG algorithms. Next, we have a set of approaches that de-
fine the top-level strategies for the basic processes. Finally, we
have techniques and heuristics that improve the worst case and
average-case performances, respectively. Some of these tech-
niques and heuristics may be approach-oriented or have a spe-
cific application with different approaches.

0278-0070/02$17.00 © 2002 IEEE
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Fig. 1. The structure of TPG algorithms.

The premier SAT-based algorithms [1], [10], [11] translate
the TPG problem into a characteristic formula that represents
both thelogical andstructural constraints for the possible so-
lutions. The formula is usually written in a conjunctive normal
form (CNF) where one sum is called a clause. Clauses with one,
two, three, or more variables are called unary, binary, ternary,
and nary clauses, respectively.

Since a test pattern for a fault isan input vectorthat sensi-
tizes the fault under consideration and propagates the fault ef-
fect to a primary output or an observable point, a test pattern
is found iff both the fault and a propagation path to an ob-
servable point are sensitized and all unjustified lines are justi-
fied. If one of these conditions cannot be satisfied, the fault is
proved as undetectable. This definition considerably increases
the efficiency of the SAT-based TPG algorithms. For example,
the premier SAT-based TPG algorithms [1], [10], [11] consider
that a test pattern is found when the characteristic CNF for-
mula is satisfied, i.e., all clauses in the formula evaluate to 1.
This approach potentially increases the complexity of the TPG
problem. The recent SAT-based TPG algorithms [13], [24] also
check for an empty J-frontier instead of whether all clauses
in the CNF formula are satisfied. In [13], it was shown that
SAT-based model also allows an efficient implementation of a
forward justification approach typical for the premier structural
TPG algorithms [3], [4], [19]. In this way, the SAT-based TPG
algorithms demonstrate an ability to incorporate all structural
techniques and heuristics. As a result, the main difference be-
tween the structural and SAT-based TPG algorithms is in the
implication process. The advantages of the SAT-based TPG al-
gorithms are: 1) more elegant and unified model of the TPG
problem as well as 2) potentially faster and more precise impli-
cation process based on efficient learning techniques [13], [25],
[26]. The disadvantage of SAT-based TPG algorithms is higher
memory usage because the implication graph in fact duplicates
the circuit netlist.

Currently, the practical ATPG systems are structural and the
implication process is performed directly on the netlist in order
to keep the memory usage as low as possible. In the era of the
32-computers, this was the main restriction because the existing
ATPG technology requires processing the whole integrated cir-
cuit, having a couple of million gates, at a time. Also, the prac-
tical ATPG requires an efficient method for processing tristate
logic, incompletely specified blocks (X-sources), and thousands
of busses repeatedly, controlling and observing through em-
bedded memories, getting adequate fault coverage, and com-
pressing many faults in a single test pattern while satisfying bus
contention and many other restrictions [27], [28]. Clearly, all
these requirements increase the complexity of the TPG problem
known as NP-complete [29] and the complexity of the TPG

model. In this sense, we may consider that a single stuck-at
combinational TPG is a simplified model of the practical TPG
problem having much lower complexity than the practical TPG
problem itself and some related problems like redundancy iden-
tification and equivalence checking. Therefore, a failure of a
combinational TPG algorithm to achieve complete fault cov-
erage in a reasonable amount of time for relatively small bench-
mark circuits having a restricted set of primitives indicates that
the robustness of this TPG algorithm is not enough. ATPG is in-
volved in many processes where the requirements for the com-
pleteness as well as quality of test patterns defined by the max-
imum number of specified bits and/or detected faults per pat-
tern could be critical. Therefore, ATPG systems have to be able
to achieve the required level on completeness in the most effi-
cient way. In this sense, the robustness of ATPG systems will
become an important parameter in the future. Then the ques-
tions are: 1) whether the SAT method is able to gives an ade-
quate model and efficient solution for the practical ATPG and
2) whether the gap between the existing test technology and
test quality requirements will motivate an implementation of a
supplementary SAT-based engine in the existing ATPG systems
able to achieve higher robustness when this is required. We be-
lieve that this work is a step in the right direction.

The rest of the paper is organized as follows. In Section II,
a system overview of SPIRIT is provided. In Sections III–V,
we discuss implication, propagation, and justification and
present techniques and heuristics to improve the efficiency of
these processes. Section VI provides experimental results and
Section VII concludes the paper.

II. SYSTEM OVERVIEW

Clearly, the performance and robustness for the TPG algo-
rithms are two contradicting parameters; therefore, it is impor-
tant to find a set of approaches, techniques, and heuristics able
to guarantee both high performance and robustness of the TPG
algorithms. For example, switching between two approaches for
propagation: (1) single path-oriented propagation and (2) prop-
agation and justification for each path segment was very suc-
cessful in [8]. In [12], it was shown that these two approaches are
orthogonal. Also, switching between the basic TPG approaches,
whole-circuit and single-cone processing, can be effective to
achieve both the high robustness and performance of the TPG
algorithms. Obviously, the whole-circuit processing approach
has a higher degree of freedom for application of efficient tech-
niques and heuristics for reducing the number of test patterns
and improving the performance of TPG algorithm and fault sim-
ulation. This approach is also more efficient for easy-to-prove
redundant faults because the single-cone processing approach
usually needs more than one test session to prove that a fault is
undetectable with respect to each primary output where the fault
effect can be observed. However, the single-cone processing ap-
proach is able to reduce the size of the TPG problem and al-
lows more efficient application of many TPG techniques. As a
result, this approach is able to achieve higher robustness than
the whole circuit processing approach. Taking this into account,
we consider that a two-phase TPG algorithm switching different
approaches, techniques, and heuristics will be able to improve
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Fig. 2. SPIRIT flowchart.

the basic parameters: performance, robustness, and the number
of test patterns. In this case, the first phase can be based on the
whole circuit processing approach as well as adaptive switching
between different approaches for propagation and justification.
This phase is oriented to generate test patterns for the most of
detectable faults as well as to prove the easy-to-prove redundant
faults while keeping performance high and reducing the number
of test patterns. The second phase is based on the single-cone
processing and single path-oriented propagation. This phase is
oriented to increase the robustness of TPG algorithm, i.e., gen-
erate complete test set and prove all redundant faults in a reason-
able amount of time. In this way, the application of orthogonal
strategies (approaches and heuristics) as well as efficient tech-
niques is important to improve the basic parameters of ATPG
systems.

In this work, we will focus on the robustness of the TPG algo-
rithms and present some efficient techniques and heuristics for
the second phase of the TPG algorithms based on the following
approaches: single-cone processing, single path-oriented prop-
agation, and backward justification. We will examine the effec-
tiveness of the proposed techniques and heuristics as well as try
to identify which of them are essential to achieve complete test
coverage for the processed benchmark circuits. For simplicity,
we reduce the number of the implemented techniques but in-
clude some techniques that look promising for further research
on the robustness of TPG algorithms.

The flow chart of SPIRIT is shown in Fig. 2. In contrast to
the premier SAT-based TPG algorithms [1], [10], [11], SPIRIT
builds an implication graph and performs static learning once
for the whole circuit since these are prominent and time-con-
suming steps. Using single path-oriented propagation, we avoid
extracting the specific structural constraints for propagation
of each fault [1], [10], [11]. Using single-cone processing, we
apply a “divide-and-conquer” strategy and keep the size of the
TPG problem as small as possible.

III. I MPLICATION PROCESS

The first step in satisfying a CNF formula is to construct
an implication graph. More formally, each variable is rep-

Fig. 3. Implications for binary and ternary clauses.

Fig. 4. Representation of direct̂-implications.

resented by two nodes and . Each binary clause ( ) is
represented by two implications ( ) and ( ). This
is shown in Fig. 3(a). In this case, the implication graph repre-
sents only the binary clauses and the formula can be easily ma-
nipulated since a binding procedure requires only a partial tra-
versal of the implication graph and checking the-nary clauses
[1].

In [12] and [13], an efficient data structure representing all
clauses of the CNF formula has been presented. The resultant
implication graph is calledcompleteand contains two types of
nodes. While the first type of nodes represents the variables, the
second type of nodes, called-nodeshere, symbolize an con-
junction operation or simplya direct -implication. In the com-
plete implication graph, each ternary clause is uniquely repre-
sented by three direct-implications; see Fig. 3(b). The advan-
tage of this approach is that it allows more than one value as-
signment to be performed simultaneously using bit-parallelism.
The disadvantage of this approach is that it requires dedicated
transformation of the -nary clauses into ternary in order to be
included into the complete implication graph.

A. New Data Structure for the Complete Implication Graph

Fig. 4 depicts the proposed data structure of the complete im-
plication graph for two-inputAND gate. To represent a-nary
clause, this data structure has 2-nodes organized as a one-di-
mensional array and a-bit key dynamically calculated by the
binding procedure. Each bit of the-bit key corresponds to one
variable in the -nary clause. A bit is set to 1, if the corre-
sponding variable is specified and the-nary clause is still un-
satisfied. A conflict occurs when all the variables in a-nary
clause are specified and the clause still evaluates to 0. In the pro-
posed data structure, the following conventions are used: 1) we
represent a gate instead of a-nary clause. In this case, a modifi-
cation of this structure is necessary to be able to represent gates
having more than one-nary clause, for example,XOR gates
and tristate buffers. 2) The less significant bit(s) of the-bit key
corresponds to the gate output. In this way, we easily identify
the unjustified lines and the type of-implications – forward or
backward. 3) We need one extra bit in the-bit key to represent
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Fig. 5. Representation of direct̂-implications for two-inputXOR gate.

that a gate is justified. This is the most significant bit of the-bit
key. In this way, the -bit key becomes a negative integer when
the gate is justified. Fig. 5 shows an example for two-inputXOR

gate. SinceXOR gate has four ternary clauses and each variable
is represented as itself and its complement in the CNF formula
therefore the -bit key has six bits to be able to represent all
possible assignments for the variables involved. Accordingly, if
variables and are set to 1 and 0, then-bit key is
and variable must be set to 1. Also, if variables and are
set to 0 and 1, then-bit key is and variable must
be set to 1.

Moreover, the proposed data structure can be viewed as a vir-
tual truth table that does not distinguished between input and
output signals such that each signal can be in logic value {0,1,
and }. In this way, this data structure can effectively represent
complex tristate logic primitives defined by incompletely spec-
ified logic functions so that all direct implications and-impli-
cations can be easily derived. Fig. 6 depicts an example of this.
Fig. 6(a) and (b) shows a truth table and corresponding-nary
clauses for a primitive having four signals. Next, Fig. 6(c) shows
for each -nary clause the number implications and-impli-
cations found using simulation and the proposed data structure
where the extra implications derived by the proposed data struc-
ture are shown in brackets. In this case, we consider that an

-implication can be found by simulation only when sig-
nals of the primitive are specified, i.e., a forward (or backward)

-implication can be found if only the output signal (or only one
input signal) is unspecified. This example shows that the preci-
sion of implication process can be considerably improved using
the proposed data structure for the complete implication graph.

In few words, the advantages of this data structure are that
it increases the precision of implication process and allows a
unified representation of all primitives and implications. First,
all direct implications and -implications are included into the
complete implication graph so that they can be easily found
without extra calculations during the branch and bound search.
Next, all indirect -implications derived during static learning
can be also included into the complete implication graph in
order to increase the precision of the implication process [25]. In
this case, each primitive has its own virtual truth table because

the virtual truth tables of the primitives of one type maybe dif-
ferent, i.e, the memory usage for this data structure may increase
significantly.

The disadvantage of the proposed data structure is that it can
be used for relatively small primitives, i.e., the number of sig-
nals of each primitive is restricted. For example, when a virtual
truth table is built for each type of primitives, i.e., the indirect

-implications are not included into the complete implication
graph, then the memory required is 2bytes per type (for the
virtual truth table) and bytes per primitive when .
A reduction of the size of the virtual truth tables can be achieved
using appropriate hash functions. In this case, the virtual truth
table includes a restricted set of-nodes, for example, all com-
binations of specified signals plus all combinations of one un-
specified signal. In this way, the virtual truth table of a complex
primitive having signals will be 2 bytes.

B. Static and Dynamic Learning

Deriving new relations between the signals is known as
“learning,” and it is a basic technique for many SAT-based
algorithms. The learning itself can be performed either as a
preprocessing step, called “static learning,” or during the search
process, called “dynamic learning.” In fact, if all implications
are derived at each level of branch and bound search then
each instance can be solved without backtracking. Since the
deriving of all implications at each level of branch and bound
search could be costly, the deriving of as many implications
as possible and keeping the complexity of learning as low
as possible is an important problem. The premier learning
procedures [4], [6] derive only indirect implications, while the
recent learning procedures derive new clauses [26] and indirect

-implications [25]. The new relations (indirect implications,
-implications, and clauses) added into a CNF formula that

are always valid are called static, while the relations validated
at a certain level of the branch and bound search are called
dynamic. Although it is a good idea to perform both learning
and search processes simultaneously [26], for simplicity, we
suppose here that all static relations between the signals are
derived by static learning during preprocessing. This approach
helps us to clarify both the complexity and precision of the
existing learning techniques as well as find more an effective
approach to avoid some negative effects of learning during test
generation.

The precision of static learning in [1] and [6] strongly de-
pends on the order of value assignments since some new rela-
tions between the signals can be found if certain other relations
have already been included into the formula. To avoid this de-
pendency, we assume an iterative computation of the indirect
implications [11], i.e., the iterative static learning procedure per-
forms both 0 and 1 value assignments through the variables until
one full iteration produces no new implications.

C. Contradiction (Learning Rule 1)

In [6], static learning is based on the contrapositive law,
, calledlearning rule 1here. Clearly,

the 2CNF portion of a formula (only the binary clauses)
fulfills the contrapositive law. This is not true when the-nary
clauses are also included. For example, it is possible that a
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Fig. 6. Representation of complex primitive.

(a) (b) (c)

Fig. 7. Network examples 1–3.

value assignment sets variables in a -nary clause and
the clause is still unsatisfied. Then a direct-implication is
performed and the last variable of the clause is set to a value
so that the clause is satisfied. For example, value assignment

for the circuit in Fig. 7(a) sets variables and to 0
and clause ( ) is still unsatisfied. Next, the binding
procedure performs forward -implication and sets the last
variable of this clause to 0. Thus, backward indirect impli-
cation ( ) is found by rule 1 (contradiction).
Also, value assignment for the circuit in Fig. 7(b)
sets variables and to 0, and clause ( ) is still
unsatisfied. Next, the binding procedure performs a backward

-implication and sets the last variableto 1. Thus, forward
indirect implication ( ) is found by rule 1.

D. Deriving Indirect -Implications (Learning Rule 2+)

In [30], some indirect implications are derived as an intersec-
tion of the implications for satisfying an unjustified line, called
learning rule 2here. Let us consider how the static learning pro-
cedure based on rule 2 finds an indirect implication (

) for the circuit shown in Fig. 7(c). First, the iterative
learning procedure calculates a transitive set for each value as-
signment consisting of all direct and indirect implications de-
rived by the transitive and contrapositive laws. For example,
since value assignment sets variables and to 0, then
to satisfy -nary clause ( ) either variable or
must be set to 1. However, each one of these value assignments
implies that variable must be set to 1. Since is an
intersection of the transitive sets of value assignments
and , is a necessary assignment for satisfying

-nary clause ( ). Thus, an indirect implication
( ) is found. Clearly, this indirect implication
cannot be found by learning rule 1.

Example 1: Let us consider how an indirect implication
( ) for the circuit in Fig. 7(c) can be found by
deriving indirect -implications during static learning, called

Fig. 8. Representation of indirect̂-implications.

Fig. 9. Network example 4 [30].

learning rule 2+.First, assignment sets variables and
to 0 and clause ( ) corresponding to gate G

is still unsatisfied. To take into account this new relation, the
learning procedure based on rule 2+ adds an indirect-impli-
cation to -node ; see Fig. 8. Next, assignment

sets variables and to 0 and clause ( )
corresponding to gate G is still unsatisfied. Since the-bit key
of gate G is equal to , then all implications of -node

are valid, i.e., is a necessary assignment.
Clearly, learning rules 2 and 2+ are equivalent with respect

to of the number of indirect implications derived during static
learning, while learning rule 2+ has lower complexity than rule
2 because there is no need to calculate transitive sets and an
intersection of these sets. In addition, the indirect-implica-
tions derived during static learning can be used to find some
dynamic implications during branch and bound search and dy-
namic learning [25].

E. Recursive Learning (Learning Rule 3.N)

The first complete learning algorithm,recursive learning
calledlearning rule 3.Nhere, is introduced in [16]. If the level
of recursion is not restricted, then all implications can be
found. For example, indirect implication ( )
for the circuit shown in Fig. 9 cannot be found by rules 1 and
2, while this is possible by rule 3, first level recursive learning.
During iterative value assignments through the variables,
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(a) (b)

(c) (d)

Fig. 10. Network examples 5 and 6.

the static learning procedure first finds indirect implication
( ) by rule 1, since value assignment
sets variable to 1. Next, value assignment sets
variables , , and to 0, and clause ( ) is still
unsatisfied. To satisfy this clause, either variableor must
be set to 1, but both these assignments set variableto 0.
Therefore, is a necessary assignment and indirect
implications ( ) is found. These indirect
implications cannot be found by rule 2 because neither value
assignment nor a priori implies .

F. Super Gate Extraction (Auxiliary Learning Rule A1)

Next we show how the super gate extraction, calledauxil-
iary learning rule A1here, and rule 2+ improve the implication
process. A super gate of gate X can be found by performing
all direct backward implications of value assignment
where is a noncontrolling value of the gate output[21].

Example 2: Let us show how super gate extraction improves
static learning. For the circuit shown in Fig. 10(a), indirect im-
plication ( ) can be found by rule 3.1 (first
level recursive learning). In the transformed circuit shown in
Fig. 10(b), gates D, E, and G are replaced by their super gate
(three-inputAND gate). In this case, ( ) is a
direct implication.

Example 3: Let us show how super gate extraction and de-
riving -implications improve branch and bound search and dy-
namic learning. After static learning based on rule 2+, two indi-
rect -implications for gate I are found for the circuit shown in
Fig. 10(c). After value assignment , these indirect -im-
plications validate dynamic implications ( ) and
( ). Using implication ( ), dy-
namic implication ( ) can be found by dynamic
learning based on rule 3.1 (first level recursive learning); other-
wise, dynamic learning based on rule 3.2 (second level recursive
learning) is necessary. If super gate extraction is applied before
static learning, then dynamic implication ( )
can be found without dynamic learning. More precisely, in the
transformed circuit shown in Fig. 10(d), gates I and J form super
gate J and the indirect-implications of this super gate derived
during static learning validate dynamic implication (

) after assignment without dynamic learning.

G. Deriving -nary Clauses (Learning Rule 4)

This learning technique is introduced in [26] and has be-
come a basic attribute of the most successful SAT-solvers [31].
More formally, this technique utilizes an analysis to identify a
minimum set of value assignments involved in each conflict.
If the number of value assignments involved in the conflict is
less than a certain number, then a new clause is added into
the formula. Clearly, indirect implications and-implications
for the existing -nary clauses (gates) cannot represent all rela-
tions between the signals in the circuit. For example, if clause
( ) is derived and included into the formula during
static learning for the circuit shown in Fig. 10(c), then after as-
signment implication ( ) can be found
without dynamic learning during branch and bound search. This
result cannot be achieved by static learning based on rules 1, 2+,
3.N without transformation of the circuit by auxiliary learning
rule 1A. In fact, the complexity of static learning based on rule
4 does not seem to be so high, especially when static learning
is restricted to a set of variables, for example, the fanout stems
having many fanout branches. In this case, the proposed data
structure for the complete implication graph may facilitate such
approach. A disadvantage of this learning technique is that it
is difficult to identify the type of indirect -implications, for-
ward or backward, derived as a result of adding new clauses. As
we discuss later in Section V-B, it is important to distinguish
the type of implications in order to improve the efficiency of
branch and bound search during justification as well as decrease
the number of specified inputs.

IV. PROPAGATION PROCESS

Propagation is a specific ATPG process that is not valid for
other SAT-based applications. In general, the propagation is
based on the assumption that for each detectable fault at least
one path exists that propagates the fault effect from the fault
location to a primary output of the circuit. If such path does
not exist, then the fault under consideration is undetectable or
redundant. Although there are different approaches for propa-
gation, we address here only the single path-oriented propaga-
tion (SPOP) [8], [12]. Starting from the fault location forward to
the primary output for the current test session, SPOP sensitizes
path-segment by path-segment where apath-segmentis defined
as a subpath starting at the fault location or a fanout branch and
ending at a fanout stem or primary output. For the SPOP ap-
proach, the fanout stems are decision points and next path-seg-
ment is selected by initial sorting of the fanout branches using
propagation coefficients (see Fig. 2). In this way, the SPOP ap-
proach is an alternative to the D-frontier for the structural TPG
algorithms and extracting structural constraints for the SAT-
based TPG algorithms. The main advantage of the SPOP ap-
proach is that the easiest path for fault effect propagation ac-
cording to the selected criteria is sensitized first. In contrast, the
alternative approaches can block the easiest propagation path by
justification of the current objectives (path-segment). The dis-
advantage of the SPOP approach is that during propagation the
number of the unjustified lines may increase considerably and
it is possible that a sensitized propagation path cannon be justi-
fied. Such a path is calledunjustifiable. To reduce the number
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Fig. 11. Network example 7.

of the sensitized unjustifiable propagation paths we use static
learning [6], static 16-V search space reduction, and dynamic
learning by rule 3.1 (first level recursive learning) on the unjus-
tified lines. On the other hand, the propagation process can be
sped up by avoiding nonsolution areas and deriving as many im-
plications as possible at each level of the decision tree. To do so,
we apply the X-path check [3], unique sensitization [4] based on
structural dominators [5], [6] and dynamic learning by rule 3.1
[7].

A. Static 16-V Search Space Reduction (SSR)

SSR is a preprocessing step for each test session. SSR starts
from the fault location forward to the primary output and cal-
culates the possible value assignments in the set of {0,1,,

} for each variable in the formula. SSR also takes into ac-
count the number of the possible propagation paths and reduces
values {0,1} when one propagation path is available. Using di-
rectly observable points, some propagation paths can be reduced
and even the fault under consideration can be proved as unde-
tectable with respect to the current primary output during SSR.
For example, if a propagation path includes a line that is directly
observable for another primary output, then the values {, }
for the corresponding variable and, respectively, all propagation
paths that include this line can be reduced. If the set of the pos-
sible value assignments of a variable is empty, then the fault
under consideration is proved as undetectable with respect to
the current primary output without search. In this way, SSR sets
more precise constraints for the search process and also vali-
dates some indirect implications for the faulty circuit. The next
example illustrates this.

Example 4: Let us consider the stuck-at-1 fault on line D
in Fig. 11(a). Fig. 11(b) shows the possible value assignments
for each variable after SSR. LetD’-L-O-R be the first sensi-
tized propagation path. However, this propagation path is un-
justifiable because line N cannot be justified. Ifis not a pri-
mary output, this may produce a sensitization of many propa-
gation paths until the alternative pathD’-I-M-P-R is sensitized.

In this particular case, backtracking during propagation can be
avoided by static learning. For example, if static leaning is per-
formed during preprocessing, then four indirect implications
will be found: ( ), ( ),
( ), and ( ). Using these in-
direct implications, the inconsistency is found by value assign-
ment during propagation. After static learning without
SSR, variables and are set to value and the incon-
sistency will be found during justification because the indirect
implications derived by static learning are valid only for the
fault-free circuit.

B. Augmented Unique Sensitization

According to unique sensitization [4], if a gate belongs to all
potential propagation paths starting from the fault location, then
this gate is calleduniqueand must be sensitized. Unique sensi-
tization is based on a representation of the circuit as a directed
acyclic graph where the set of nodes V contains all
primary inputs and gates having more than one input. If a direct
path exists from A to B, then line B is said to bereachablefrom
line A. If no such path exists, then line B is said to beunreach-
ablefrom line A. Also, if a unique gate exists, then all inputs of
this gate that are unreachable from the fault location should be
set to a noncontrolling value, i.e., the value that propagates the
fault effect via the unique gate. In [5]–[7], the unique sensitiza-
tion technique was improved using structural dominators. For
example, if all paths starting from node A include node B, then
line B is called astructural dominatorof A. Let us now con-
sider that a propagation path to line A is sensitized, then gate B
becomes adynamic unique gate. Therefore, all inputs of gate B
that are unreachable from the fault location must be set to a non-
controlling value. In this way, the fault effect will be propagated
via this gate. Clearly, unique sensitization is more efficient for
the single-cone processing approach than for the whole circuit
processing approach while calculating the structural dominators
for each cone instead of the whole circuit makes this technique
more costly. Also, we found that many potential conflicts during
propagation can be avoided if dynamic learning is restricted to
an area near to the primary output. The propagation procedure
based on this assumption has two extra steps.

Step 1) This step is performed after the fault under consid-
eration and all unique gates are sensitized. First, the
propagation procedure identifies all alternative de-
cisions for the end of the propagation path. Next,
some propagation paths near to the primary output
are invalidated by assigning value and to cer-
tain lines. Finally, a convergent gate for all valid
propagation paths is determined. Let us assume that

are the alternative decisions for the end
of the propagation path, then some implications can
be found by rule 3.1 (first level recursive learning),
i.e., as an intersection of the implications produced
by the alternative decisions for the end of the prop-
agation path.

Step 2) This step is based on restricted dominators, i.e.,
the structural dominators in the last path segment
starting from a fanout branch and ending at the
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primary output. If the next path segment has a re-
stricted dominator, then the propagation procedure
finds some implications using dynamic learning
by rule 3.1 (first level recursive learning) on the
alternative decisions for sensitization of the last path
segment starting from the restricted dominator and
ending at the primary output. More formally, the
propagation procedure sensitizes this path segment
by propagating both value and to the primary
output. Dynamic implications are derived as an
intersection of the implications produced by both
alternative decisions propagates valueor to the
primary output.

The implemented augmented unique sensitization procedure
also includes the X-path check for earlier identification of
nonsolution area during propagation. More formally, X-path
checks, whether at least one propagation path to the primary
output exists such that the current value for all signals on this
path, are consistent with the target value for its sensitization.

V. JUSTIFICATION PROCESS

Justification is performed after a propagation path to the pri-
mary output is sensitized and has to justify all unjustified lines.

A. Backward Justification

Unjustified lines are the decision points for justification and
the implemented justification procedure uses justification coef-
ficients calculated during the circuit preprocessing (see Fig. 2)
to guide the search process. The justification coefficients take
into account the structure of the circuit and measure the relative
difficulty for justification of each line. By sorting the inputs of
each logic gate using the justification coefficients, we suppose
that each unjustified line can be easily justified by assigning
a controlling value to the first unspecified input of the corre-
sponding gate. During propagation all unjustified lines are in-
cluded in a list calledJ-frontier. During justification the J-fron-
tier is dynamically updated by adding new unjustified lines.
These are some useful heuristics for selection of next unjusti-
fied line for justification from the J-frontier.

H1: Depth-first searchstrategy gives a higher priority to the
unjustified lines more recently included in the J-fron-
tier.

H2: First-difficult/First-easyare two orthogonal heuristics
giving a higher priority to the unjustified lines more
difficult/easier for justification according to the justifi-
cation coefficients.

Heuristic H1 is basic for the backward justification proce-
dure. It is implemented by adding the newest unjustified line
at the end of the J-frontier when unjustified lines are processed
starting from the end to the beginning of the J-frontier. Since
more that one unjustified line can be included into J-frontier as
a result of one decision, then the implication process indirectly
impacts the selection of the next unjustified line for justifica-
tion. To be more precise here, we give some details for the im-
plemented implication procedure. It is based on the depth-first
search strategy and applies implications for each node in the fol-
lowing order: first forward implications, backward implications,

Fig. 12. Network example 8.

and indirect implications, next, all-implications for the current
node and its structural successors, i.e., all fanout branches cor-
responding to this node, and finally, if the current node and/or
its successors are unjustified lines, then they are included in
to the J-frontier. Actually, this is a dynamic reordering of the
variables based on a depth-first search strategy. We found that
this strategy is much more efficient than the static order typ-
ical for the premier SAT-based TPG algorithms [1], [10], [11].
Heuristic H2 is used for an initial ordering of the J-frontier just
before justification. For example, first, the justification is ap-
plied using first-difficult strategy. Next, if the specified back-
track limit is exceeded, then the justification is performed with
the reverse ordered J-frontier. If both these orthogonal strate-
gies cannot justify or prove that the sensitized propagation path
is unjustifiable, then backward justification is performed using
dynamic learning using rule 3.1. (first level recursive learning)
on the unjustified lines in the J-frontier.

B. Duality of Learning

The decision tree reduction is important to improve the effi-
ciency of search process. For example, the unjustified lines in
the conflict-free area, called headlines [4], and inactive clauses
are not useful to resolve conflicts and they increase the size
of the decision tree. If the headlines are justified at the end of
search process and the inactive clauses are deleted, then the size
of the decision tree can be reduced. Also, some unjustified lines
are justified by implication if other unjustified lines are justi-
fied when the reverse case is not valid. Clearly, if these relations
between the unjustified lines are identified, then the size of the
decision tree can be further reduced. The next example shows
that finding good heuristics for justification becomes even more
difficult after static learning when some indirect implications
are also included into the implication graph.

Example 5: Let us consider three cases for justification of
the stuck-at-0 fault on line C in Fig. 12.

(Case A): If static learning is applied during prepro-
cessing, then four indirect implications are found: forward
implications ( ) and ( )
and backward implications ( ) and
( ). After value assignment , the
fault effect is propagated to the primary output and the value
of signals is shown in Fig. 12. As a result, four primary inputs
are specified and two unjustified lines, J and K, are included in
the J-frontier. During justification, variables and are set to
1 in order to justify lines J and K, i.e., in this case all primary
inputs are specified.

(Case B): Let us consider the same example without static
learning. In this case, variable will be unspecified after prop-
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agation since in case A variable was set to 0 by forward in-
direct implication ( ). As result, the J-frontier
includes lines J and L. To justify these lines, it is enough for vari-
ables and to be set to 1. Therefore, without static learning,
primary input E is unspecified.

(Case C): This case is equivalent to case A during prop-
agation but the primary inputs A and E are left unspecified be-
cause both lines J and K are already justified.

In summary, three solutions for justification are possible:
(case A) all variable are specified, (case B) variableis un-
specified, and (case C) variablesand are unspecified. If the
circuit shown in Fig. 12 is a part of large circuit, each solution
will produce a different number of unjustified lines that have
to be justified. This phenomenon is calledduality of learning
here. Obviously, static learning is important to decrease the
number of backtracks. However, static learning may produce
some spare unjustified lines that have to be justified. On the
other hand, static learning can also be used for identification
of the relations between the unjustified lines, for example, in
case C.

Example 6: Let us consider the circuit shown in Fig. 7(b).
Without static learning after assignment , the ternary
clause ( ) is still unsatisfied. To satisfy this clause either
variable or variable should be set to 1 but both these value
assignments set variableto 0, therefore is a necessary
assignment. If this new dynamic forward implication derived by
rule 3.1 is performed, then a new spare unjustified line D will
be included in the J-frontier. In fact, line D is justified if line B
is justified.

Taking into account these examples, to avoid including spare
unjustified lines in the J-frontier(overspecification)all forward
static indirect implications and -implications as well as all
forward dynamic implications should be ignored. In our jus-
tification procedure, we avoid overspecification by removing
all forward indirect implications and-implications after static
learning and restricting dynamic learning to the unjustified lines
in the J-frontier. The efficiency of this heuristic was experimen-
tally checked in [32].

C. Avoiding Critical Area

This heuristic was inspired by the work in [29], [33], and
[34]. Clearly, the justification is the critical phase of test gen-
eration. For example, in [29], the proof of NP-completeness
of the TPG problem is based on a polynomial transformation
of the justification into the 3CNF-SAT problem. Hereafter, we
suppose a similar transformation and represent the justifica-
tion by a dynamically updated formula calledreduced formula
where inactive clauses in the formula are deleted. In this case,
the reduced formula includes a part of the CNF formula cor-
responding to a circuit involved in the justification process be-
cause, as we discussed earlier, justifying and satisfying the CNF
formula are not equivalent. In [33], Larrabee showed that for
each clause-to-variable ratio less than 4.2, the percentage of sat-
isfiable randomly generated 3CNF formulas increases, and for
each clause-to-variable ratio greater than 4.2, the percentage of
satisfiable formulas decreases as a function of number of vari-
ables. Also, around this ratio the 3CNF formulas need much

more CPU time to be satisfied or to be proved as unsatisfi-
able. We call this areacritical. In [34], a relation between the
cut-width property of a circuit and the worst case complexity
for test generation is discussed. Let us associate the unjusti-
fied lines and the primary inputs involved in the justification
process with the clauses and the variables of the reduced for-
mula, respectively. Clearly, each value assignment during search
process changes the clause-to-variable ratio and the cut-width
properties of the reduced formula. Until this point, we used these
properties by choosing the SPOP approach for propagation. Let
us compare the two alternative approaches for justification: 1)
justification of the whole propagation path, i.e., the SPOP ap-
proach and 2) propagation and justification for each path seg-
ment with respect to the critical instances, hard to prove redun-
dant faults. We may consider the SPOP approach is more ef-
fective because: 1) the application of the orthogonal strategies
of heuristic H2 is more restricted for the second approach and
2) the reduced formula can fall into a critical area somewhere
between the fault location and the primary output. In this case,
the second approach for justification needs more time to prove
the formulas as unjustifiable within the critical area. In [32], we
experimentally showed that many redundant faults can be iden-
tified during propagation, i.e., without justification. However,
SPOP may sensitize one or more propagation paths for redun-
dant faults that are difficult to be proved as unjustifiable because
the formula falls into a critical area when the primary output is
reached. To avoid the critical area in these cases, the justification
procedure selects up to six variables and proves that the sensi-
tized propagation path is unjustifiable for all possible value as-
signments of the selected variables. To improve the cut-width
properties, the justification procedure selects variables corre-
sponding to the fanout stems having a maximum number of
fanout branches. As a result, many or all possible value assign-
ments for the selected variables are inconsistent. The remaining
cases need fewer backtracks because of the improved cut-width
properties of the formula.

VI. EXPERIMENTAL RESULTS

The proposed techniques and heuristics were implemented
in SPIRIT [32], [35] and we ran experiments on a 1-GHz Pen-
tium-III PC.

First, we assessed the efficiency of the proposed data struc-
ture for the complete implication graph by performance of static
learning as well as the number of indirect implications and

-implications derived during static learning. The experimental
results for the ISCAS’85 [36] and a full scan version of the
ISCAS’89 [37] and ITC’99 [38] benchmark circuits are given
in Table I. Column 2 gives the number of variables (#primary
inputs + #gates having two or more inputs). Columns 3-8 give
the number of constant-value assignments, direct and indirect
implications and -implications before and after static learning
by rules 1, 2 and 2+. The contribution of rule 1 and 2+ was
62 378 401 indirect implications as well as 255 458 indirect
implications and 16 070 145 -implications respectively.
Columns 12 and 13 present the CPU time in seconds for static
learning by rule 1 and 2+, respectively. To estimate the impact
of static learning on the propagation process, we calculated the
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TABLE I
STATIC LEARNING RESULTS

number of the sensitized unjustifiable propagation paths for
redundant faults. Clearly, for redundant faults, each sensitized
propagation path to the primary output cannot be justified,
i.e., it is unjustifiable. The reason that such a path may be
sensitized is the lack of implications, i.e., if all implications at
each level of propagation are found, then propagation path to
the primary output cannot be sensitized. Columns 9–11 present
the number of the sensitized unjustifiable propagation paths
for redundant faults. This experiment showed that many faults
could be proved as redundant during propagation, i.e., without
justification when static learning is performed during prepro-
cessing. The number of sensitized unjustifiable propagation
paths can be further reduced using dynamic learning by rule
3.1 during propagation. However, this approach is more costly
because we should apply dynamic learning during propagation
for each fault and test session. In contrast, dynamic learning
during justification is applied only when the current sensitized
propagation path cannot be justified or proven as unjustifiable
without dynamic learning.

Next, we ran two experiments for test generation. For the first
experiment, we used the ISCAS’85 benchmark circuits and a
full scan version of the ISCAS’89 benchmark circuits as well
as a single-phase version of SPIRIT based on the following
three approaches: the single-cone processing, single path-ori-
ented propagation, and backward justification. The maximum
number of the sensitized unjustifiable propagation paths during
propagation and backtracks during justification was set at 15.
Likewise, the maximum number of value assignments per test
session was set at 1000. In this case, static learning based on

learning rule 1 (only for the ISCAS’85 benchmark circuits) and
the 16-V search space reduction were enough to achieve com-
plete fault coverage without fault simulation for these bench-
mark circuits. This experiment showed that the benchmark sets
that inspired the research on test generation for the last 15 years
are very easy when proper approaches and techniques are ap-
plied. A comparison with the published TPG algorithms able
to achieve complete fault coverage without fault simulation for
these benchmarks is given in Table II. The columns 2–5 present
the basic characteristics of each circuit, the number of detectable
and redundant faults as well as the average and maximum cone
size estimated by the number of variables (#primary inputs +
#gates). Columns 6-9 present the CPU time in seconds for test
generation of TEGUS [11] (IBM RS/6000 320), TIP [13] (Dig-
ital Alpha 4100 5/533), ATOM [9] (200-MHz Pentuim-Pro PC),
and SPIRIT. These results made SPIRIT competitive to the best-
published combinational TPG algorithms. The last two columns
present the average and maximum numbers of the specified in-
puts of the test sets generated by SPIRIT. These results showed
that the proposed TPG algorithm also gives an efficient solution
for overspecification. Without special effort, SPIRIT was able
to achieve competitive results for the maximum number of the
specified primary inputs as the problem-oriented TPG algorithm
reported in [39].

For the second experiment, we used a full scan version of the
ITC’99 benchmark circuits.Table III provides the basic char-
acteristics of these benchmark circuits. Columns 2–8 give the
number of gates, primary inputs and outputs, detectable and re-
dundant faults, as well as the average and maximum cone size
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TABLE II
EXPERIMENTAL RESULTS FORTPG WITHOUT FAULT SIMULATION FOR THE ISCAS’85AND ’89 BENCHMARKS

TABLE III
EXPERIMENTAL RESULTS OFSPIRITFOR THEITC’99 BENCHMARKS

estimated by the number of variables (#primary inputs + #gates).
In this experiment, we used a two-phase version of SPIRIT
where the implemented techniques were carefully selected in
order to minimize the impact of the added techniques on the per-
formance of the first phase. The selected techniques for the first
phase were the augmented unique sensitization, X-path check,
and dynamic learning by rule 3.1 on the J-frontier during justi-
fication. For the first phase, the maximum number of sensitized
unjustifiable paths during propagation and backtracks during
justification was set at 3. Likewise, the maximum number of
value assignments per test session was set at 10 000. For the
second phase, these limits were set 100 times higher and the
heuristics for avoiding the critical area and dynamic learning
by rule 3.1 on the J-frontier during propagation were applied
to increase the robustness of SPIRIT. The experimental results
of SPIRIT with and without fault simulation are provided in
columns 9-12.

In this work, we examined many other TPG techniques, but
they were ineffective for these benchmark circuits. Some of
these techniques were dynamic headlines [4] and dependency-

directed backtracking [26], [40]. In many cases, SPIRIT was
able to achieve the best performance without static learning be-
cause a high dependency between signals increases the CPU
time for static learning and degrades the performance of the
implication process. The experimental results showed that, in
general, static learning increases the robustness of the TPG al-
gorithms especially with respect to the redundant faults but also
may decrease the average-case performance for test generation.
Table IV presents an impact of the presented techniques on the
efficiency of SPIRIT. Also, to assess the negative impact of the
techniques added in the first phase of test generation, we re-
peated the first experiment for the ISCAS’85 and ISCAS’89
benchmark circuits with the new version of SPIRIT. The total
CPU time was 69.39 s, i.e., the performance of SPIRIT was de-
graded by 12%.

VII. CONCLUSION

In this work, we proposed an efficient data structure for
the complete implication graph, made a classification of the
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TABLE IV
IMPACT OF EACH TECHNIQUE ON THEEFFICIENCY OFSPIRIT

learning techniques, and assessed an impact of low complexity
static learning on the robustness of TPG algoritthms. Also,
we examined some not so popular approaches such as the
single-cone processing, single path-oriented propagation, and
backward justification and showed that they are efficient to
increase the robustness of TPG algorithms. Next, we proposed
efficient techniques and heuristics for these approaches. In fact,
some of the proposed techniques elaborated on the well-known
techniques, while other techniques gave new ideas for im-
proving the robustness of the TPG algorithms. As a result,
SPIRIT was able to generate complete test sets for a large set
of benchmark circuits in a reasonable amount of time. In this
way, SPIRIT became the first reported TPG algorithm able
to achieve 100% fault efficiency for the ITC’99 benchmark
circuits both with and without fault simulation.
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