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PAPER

Delay Fault Testing of Processor Cores in Functional Mode

Virendra SINGH†a), Nonmember, Michiko INOUE†b), Member, Kewal K. SALUJA††c), Nonmember,
and Hideo FUJIWARA†d), Fellow

SUMMARY This paper proposes an efficient methodology of delay
fault testing of processor cores using their instruction sets. These test vec-
tors can be applied in the functional mode of operation, hence, self-testing
of processor core becomes possible for path delay fault testing. The pro-
posed approach uses a graph theoretic model (represented as an Instruction
Execution Graph) of the datapath and a finite state machine model of the
controller for the elimination of functionally untestable paths at the early
stage without looking into the circuit details and extraction of constraints
for the paths that can potentially be tested. Parwan and DLX processors are
used to demonstrate the effectiveness of our method.
key words: processor test, delay fault testing, software-based self-test,
at-speed test

1. Introduction

Aggressive processor design methods using giga-hertz clock
and deep sub-micron technology are necessitating the use
of at speed testing of these processors. It is no longer suf-
ficient to target stuck-at faults, since other faults, such as
delay faults, are becoming increasingly important to test.
At-speed testing using an external tester is not an econom-
ically viable option. Self-test is an alternative solution.
Widely used self-test technique, Built-In Self-Test (BIST),
is a structural testing methodology that provides good qual-
ity tests but requires additional hardware and hence it has
area and performance overhead. Further, this method may
be unacceptable for testing an optimized processor core that
is embedded deep inside a System-on-a-Chip (SoC). Once a
core is embedded then it is also difficult to access the core
for test application. Also, to use BIST, the circuit must be
BIST ready, which often requires design changes.

Structural BIST operates in orthogonal test mode with
pseudorandom test data, which may lead to excessive power
dissipation. For at speed testing complex issues related to
timing, like multiple clock domain and clock skew, must
be resolved. In order to solve these problems, software-
based self-test technique is an alternative. Software based
self-test (functional self-test) methodology uses processor
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instructions and its functionality in order to test the proces-
sor core. Therefore, it has the following advantages over
structural BIST: 1) it operates in normal mode of operation,
2) there is no area and performance overhead, 3) at speed
testing is possible, and 4) there is no excessive power con-
sumption during test.

Functional self-test can be easily applied on a proces-
sor core, embedded deep inside an SoC. This paper focuses
on functional self-test of processor cores. We propose a de-
lay fault testing methodology using functional self-test. We
treat controller and datapath differently as both have differ-
ent characteristics. Controller provides constraints on appli-
cation of test vectors on itself and on the datapath. We first
extract the constraints on datapath and controller and use
these constraints in the test vector generation process. As
the vectors are generated under constraints, instruction(s) to
apply the test vectors can always be found.

The paper is organized as follows. Section 2 describes
previous work in software based self-test and Sect. 3 de-
scribes the overview of our work and definitions used. Sec-
tions 4 and 5 describe test methodology for datapath and
controller respectively. Section 6 discusses test instruction
sequence generation. Section 7 describes the experimental
results and finally the paper concludes with Sect. 8.

2. Previous Work

A number of software based self-test approaches [3]–[8],
targeting stuck-at faults, have been proposed. The ap-
proaches proposed in [3] and [4] are based on instruction
randomization and give low fault coverage due to high level
of abstraction. In [5] the concept of self-test signature is in-
troduced which is used to generate pseudorandom test pat-
terns during test application. Due to pseudorandom nature
of this methodology self-test code size and test application
time are large. A deterministic self-test methodology is pre-
sented in [6], [7]. Deterministic nature of this approach
leads to reduced test code size but is unable to achieve
high fault coverage for complex architectures. A scalable
methodology based on test program templates is presented
in [8] which uses statistical regression method for function
mapping. Approaches in [5]–[8] do not explicitly consider
faults in the controller.

A software based self-test approach targeting delay
faults is proposed in [9]–[11]. This approach, first classi-
fies a path to be functionally testable or untestable by ex-
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tracting a set of constraints for the datapath logic and the
controller. The authors argue that delay defects on the func-
tionally untestable paths will not cause any chip failure. In
constraint extraction procedure for datapath, all instruction
pairs are enumerated and for each instruction pair all pos-
sible vector pairs that can be applied to the datapath are
derived symbolically. This requires a substantial effort to
analyze all the instructions and all possible pairs of instruc-
tions even though it is not necessary to analyze all the pairs
as shown in this paper. Path classification procedure in con-
troller uses sequential path classification methodology i.e.,
in order to classify a path it propagates the transition forward
to Primary Outputs (PO) of the controller and backward to
Primary Inputs (PI) of the controller in multiple time frames
under the constraints. The method proposed in this paper
extracts the constraints on state transitions, eliminating the
need for consideration of multiple time frames. Results on
controller are not reported in [9]–[11]. Based on the above
approach, a delay fault testing methodology of an SoC us-
ing its own embedded processor instructions is presented in
[12].

Our methodology uses graph theoretic model of datap-
ath (represented by Instruction Execution Graph) and finite
state machine model of the controller to eliminate the func-
tionally untestable paths at the early stage without consid-
ering circuit details. This eliminates a substantial number
of functionally untestable faults. Our approach is different
from the methods proposed in [9]–[11] which consider cir-
cuit details for path classification and multiple time frames
for the controller.

3. Overview of Proposed Work

Our methodology considers datapath and controller sepa-
rately as both of these have different design characteristics.
The activities in the datapath are controlled by the controller.
The controller is also constrained by state transitions and
signals from the datapath. Hence, only a subset of struc-
turally applicable test vectors may be applied in the func-
tional mode. Path delay fault model is used.

We model datapath by a new graph theoretic model
called Instruction Execution Graph (IE-Graph) that can be
constructed from the instruction set architecture and RT
level description of the processor. In our formulation of
the test problem IE-Graph is used to classify all paths as
functionally untestable paths (FUTP) or potentially func-
tionally testable paths (PFTP), and to extract the constraints
imposed on the datapath for PFTPs. First, constraints on
the control signals that can be applied on the paths be-
tween a pair of registers in consecutive cycles are extracted.
Next, constraints on justifiable data inputs (registers) are ex-
tracted. Following these, a combinational constrained Au-
tomatic Test Pattern Generator (ATPG) is used to generate
test vectors under the extracted constraints. Thus, in this ap-
proach only those vectors are generated that can be applied
functionally. Further, the search space is significantly small
as only those states are used during test generation which

can cause data transfer to take place on a path between a
pair of registers.

For testing the controller, the constraints are extracted
in the form of state transitions from its RT level description.
These constraints also include the values of status signals in
the status register and instruction code in the instruction reg-
ister of the processor. After extracting the constraints, paths
are classified as FUTP or PFTP. Combinational constrained
ATPG is used to generate the test vectors for the paths clas-
sified as PFTP. As the vectors must be generated with con-
straints on the states and inputs to the controller (contents
of the instruction register and status register), the number of
time frames that are required for sequential test generation
are eliminated. In the final phase, test instructions are gen-
erated using the knowledge of the control signals and con-
tents of the instruction register. Justification and observa-
tion instruction sequence generation processes are based on
heuristics which minimize the number of instructions and/or
the test application time. In order to test the processor core,
the test program (a sequence of generated instructions) is
loaded into the memory. The processor fetches the instruc-
tions from the memory and after execution, the results are
transferred to the memory.

Throughout this paper the following concepts and no-
tation will be used.

Definition 1: A path [15] is defined as an ordered set of
gates {g0, g1, . . . ., gn}, where g0 is a primary input or output
from a FF, and gn is a primary output or input to a FF. Output
of a gate gi is an input to gate gi+1 (0 < i < n − 1).

Definition 2: A path is (enhanced-scan or standard-scan)
structurally testable [9] if there exists a structural test for
the path, which can be applied through the (enhanced or
standard) full-scan chain.

Definition 3: A path is functionally testable [9] if there ex-
ists a functional test for that path, otherwise the path is func-
tionally untestable.

A functional two-pattern test does not exist to test a
path implies that there does not exist an instruction or an
instruction sequence to apply the required test in functional
mode of operation. Clearly, functionally untestable paths
are never activated in normal (functional) operational mode
and we need not target these paths in our approach. We use
the following notation to represent signal values.

c: represents a bit which has the same value as in the pre-
vious timeframe.

x: represents a bit that can be assigned either a logic 0 or
a logic 1 value at will.

d: represents a bit which is not cared by state transition.
It is the same as x, except that legitimate bit pattern in
the register has to be justified.

R: represents rising transition.
F: represents falling transition.

Definition 4: A constraint P is represented by a vector pair
and each element of P can be 0, 1, x, c, or d.
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Table 1 Instruction set of Parwan processor.

1. LDA 5. JMP 9. BRA C 13. CLA 17. ASR
2. AND 6. STA 10. BRA Z 14. CMA
3. ADD 7. JSR 11. BRA N 15. CMC
4. SUB 8. BRA V 12. NOP 16. ASL

Fig. 1 State transition diagram of Parwan processor.

Definition 5: A constraint P is said to cover a constraint Q
if P = Q or Q can be obtained from P by assigning 0 and 1
values to x’s in P.

We will use Parwan processor [14] as a running exam-
ple in this paper to explain many of the concepts. Parwan
processor is an accumulator based 8-bit processor with a 12-
bit address bus. It has 17 instructions, listed in Table 1, and
it supports both direct and indirect addressing modes. The
state diagram of the controller in the Parwan processor is
shown in Fig. 1.

4. Datapath

In this section we deal with only those paths that are relevant
to data transfer between registers in the datapath. The paths
which include the logic in the controller are considered in
the next section, even if they start from and end at some
registers in the datapath.

Datapath is modeled by an IE-Graph. This is based on
the concept of S-Graph proposed in [1], [2]. However, un-
like S-Graph, the IE-Graph contains information about data
transfer activities associated with an instruction as well as
the state during which a given action takes place. IE-Graph
is constructed from the instruction set architecture and reg-
ister transfer level description and includes architecture reg-
isters of the datapath.

Nodes of the IE-Graph are: i) registers, ii) two special
nodes, IN and OUT, which model external world such as
memory and I/O devices, iii) part of registers which can be
independently readable and writable, and iv) equivalent reg-
isters (set of registers which behave in the same way with in-
struction set, as defined by [2]), such as registers in a register
file. A directed edge between two nodes is drawn iff there
exists at least one instruction which is responsible for trans-
fering data (with or without manipulation) over the paths
between two nodes (registers). Each edge is marked with a
set of [state, instruction(s)] pairs, which are responsible for
the data transfer between the pair of nodes. Partial IE-Graph
of Parwan processor is shown in Fig. 2. Complete graph is

Fig. 2 Partial IE-graph of Parwan processor.

given in [20].
Test vector generation process uses instruction set ar-

chitecture, RT level description, and gate level netlist. It is a
two-step process. The first step is constraint extraction pro-
cess and the second step is test vector generation process.

4.1 Constraint Extraction and Path Classification

There are two types of constraints imposed on the datapath
by the controller: i) control constraints, and ii) data con-
straints. Control constraints are imposed on control signals,
which are responsible for transferring data between two reg-
isters. These constraints are obtained from IE-Graph and
RT level description. Data constraints, on the other hand,
are the constraints on the justifiable data in the registers un-
der control constraints, which are obtained from RT level
description.

Definition 6: Let there be an edge from node Ri to Ro,
marked with [sl, Ip]. The marked state sl is defined as a
latching state for the paths represented by that edge.

Data transfer activity from register Ri to Ro takes place in
state sl during the execution of instruction Ip and register
Ro will be latched. Hence, state sl is defined as a latching
state.

Lemma 1: Let <V1, V2> be a test vector pair for a path
from register Ri to a register Ro, where test vector V1 is fol-
lowed by V2 and the edge between these registers is marked
with a set of state-instruction pairs {[sl, Ip]}. This vector pair
can be a test vector pair in functional mode only if there ex-
ists at least one state-instruction pair [sl, Ip]∈ {[sl, Ip]}, such
that

1. vector V2 can be applied in the latching state sl of the
instruction Ip, and

2. vector V1 can be applied in the state just before the
latching state sl of the instruction Ip.

Note that every instruction is a sequence of state transitions
and the latching state(s) in this sequence for a register pair
is well defined. However, if the latching state happens to
be the very first state of an instruction then the last state
of every instruction needs to be considered as the state that
immediately precedes the latching state.

During the latching state sl, data transfer (with or with-
out manipulation) from register Ri to Ro takes place and the
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result is latched in register Ro. Therefore, we can apply the
second vector only in the latching state (say sl) and the first
vector must be applied in a state just before the latching state
(say s j). Two consecutive states s j and sl provide the control
constraints, and control signals in these states during the ex-
ecution of instruction(s) marked with the latching state are
obtained from RT level description. Constraints on the states
during which we can apply the test vectors <V1, V2> take
care of justification of the control signals in the functional
mode of testing. Data constraints in the form of justifiable
data in the input register of the register pair and other reg-
isters required for the execution of marked instruction are
obtained from RT level description.

Lemma 2: Paths from register Ri to Ro are functionally
untestable if the following conditions exist,

1. Ri is not an IN node, and
2. Ri has no incoming edge marked with the state just be-

fore the latching state (sl) of the instruction Ip for any
[sl, Ip] marked on the edge (Ri,Ro).

If conditions stated in Lemma 2 exist then transition cannot
be launched from register Ri. Hence, the paths between a
register pair Ri and Ro are FUTP. Otherwise, these paths
are classified as PFTPs and we need to extract the data con-
straints for the these paths. Covering relation, defined in
Sect. 2, helps reduce the number of constraints.

Following examples should help clear the above con-
cepts.

Example 1: Constraints on paths between AC and AC:
The edge between nodes AC and AC is marked with
{[s3, (I13−14, I16−17)], [s6, I2−4]}, as shown in Fig. 2. The pre-
vious states of s3 and s6 are s2 and s4(or s5), respectively
(as shown in Fig. 1). AC is neither an IN node nor it has
any incoming edge which is marked with just previous state
of its latching state s3 or s6. Therefore, using Lemma 2
we can conclude that paths from AC to AC are functionally
untestable.

Example 2: Paths from IN to AC:
The edge between nodes IN and AC is marked with
[s6, I1−4], as shown in Fig. 2. These paths are PFTP in ac-
cordance with Lemma 2, as input node is an IN node, and
the latching state for these paths is s6. Therefore, control
constraints are the control signals generated in state s4 or
s5 followed by s6 for the instructions I1, I2, I3 or I4. This
is obtained from IE-Graph and RT level description. The
states s4 and s5 are the previous state of the latching state
s6 (as shown in Fig. 1). Data constraints can be obtained in
the state s4 followed by state s6 or state s5 followed by s6,
for the instructions I1, I2, I3 and I4. Data constraints for the
instruction I3 are shown in Table 2. This table shows the
constraints for ALU control signals (ALU ctrl) and SHU
control signals (SHU ctrl) as control constraints and con-
straints for IN and AC as data constraints in consecutive
two time frames corresponding to s4 and s6 states of the
instruction I3. We consider these constraints as ALU and

Table 2 Data constraints for the paths between IN and AC.

State I3(ADD)
ALU SHU IN AC
ctrl ctrl (other i/p)

s4 000 00 xxxx xxxx xxxx xxxx
s6 101 00 xxxx xxxx cccc cccc

Fig. 3 Constraint extraction and test generation procedures.

SHU lie in the paths and AC is the other input needed by
the instruction I3. The extracted data constrained for IN and
AC shows that any value can be justified in IN, where as
AC must have the same value across two time frames. Here
we assume that when input to a combinational logic is in
high impedance state then it can hold the logic value that is
applied before the high impedance state. Parwan processor
uses tristate buses which are responsible for the constraints
on IN node.

For instruction I3, both control constraints, s4 followed
by s6 and s5 followed by s6, are identical. Hence, using the
covering relation one of these two constraints can be elimi-
nated. All other constraints are extracted similarly.

4.2 Test Vector Generation Procedure

Constrained ATPG is used to generate the test vectors for the
PFTPs under the extracted constraints. Path lists between
a register pair and their corresponding constraints are pro-
vided as inputs to an ATPG along with gate level netlist and
it returns the test vectors for the testable path. Procedure to
extract the constraints and test generation is given in Fig. 3.
This procedure systematically extracts the constraints using
IE-Graph and uses constrained ATPG to generate the test
vectors.

5. Controller

Controller is a sequential circuit that is normally imple-
mented as a Mealy type or a Moore type finite state machine.
Structural organization of the controller is shown in Fig. 4.
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In this section, we treat all paths which include logic ele-
ments in the controller. Test vectors applicable in functional
mode of operation to the controller are restricted by the state
transitions. If for a path there exists no sequence of valid
state transitions which can launch a transition and propagate
it along the path then that path is a functionally untestable
path, even though that may be structurally testable. There-
fore, we extract constraints on state transitions prior to test
generation.

5.1 Constraint Extraction

Change of state of controller is determined by the contents
of registers (IR and SR), inputs (PI), and the present state.
Input from registers IR and SR (i.e., registers other than the
present state register (PSR)) are treated as Constrained Pri-
mary Input (CPI). Therefore, we need to extract two types
of constraints: i) constraints on state transition, and ii) con-
straint on legitimate values in IR and SR registers, because
these are treated as constrained primary input.

1. Constraints on state transitions:
Constraints on state transitions can be extracted by ex-
tracting possible valid state transition under legitimate
values in IR, SR and input, by using instruction set ar-
chitecture and RT level description. We demonstrate
this using Parwan processor as an example. Table 3
shows a part of the state transition table of Parwan pro-
cessor.
This table shows that when present state is s1 then next
state will be either s1 or s2 depending on the value of
input, and independent of values in IR and SR registers.

Fig. 4 Structural organization of the controller.

Table 3 State transition table of Parwan processor. (Partial)

PS NS IR IR SR SR In
(PS) (NS) (PS) (NS) (PS)

s1 s1 dddd dddd cccc cccc dddd cccc 1
s2 dddd dddd cccc cccc dddd cccc 0

s2 s3 dddd dddd 0xxx xxxx dddd cccc d
100x xxxx dddd cccc d
101x xxxx dddd cccc d
110x xxxx dddd cccc d
1110 0000 dddd cccc d
1110 0001 dddd cccc d
1110 0010 dddd cccc d
1110 0100 dddd cccc d
1110 1000 dddd cccc d
1110 1001 dddd cccc d

During these state transitions (s1 to s1 or s2) register IR
and SR can have any legitimate value in the present
state (s1) and must have the same values in next state
(s1 or s2). Hence, we cannot launch transition from
IR and SR during these state transitions. When present
state is s2 then next state is always s3. IR can have any
legitimate value in present state (s2) as well as in next
state (s3). Therefore, transition can be launched from
IR during the state transition s2 to s3.

2. Constraints on legitimate values in IR and SR registers
(registers other than the present state register):
A set of legitimate values in the registers other than
the present state register can be obtained from its in-
struction set architecture and RT level description. For
example, the legitimate bit patterns that the register
IR of the Parwan processor can have are specified as
{IR, < 0xxx xxxx, 10xx xxxx, 110x xxxx, 1111 0100,
1111 0010, 1111 0001, 1110 0000, 1110 0001,
1110 0010, 1110 0100, 1110 1000, 1110 1001>}.

5.2 Path Classification

After extraction of constraints, each path is classified as
PFTP or FUTP. This process uses state transition diagram
and gate level implementation. There are three types of
paths in a controller

1. PSR to PSR
2. PI or CPI (registers IR and SR) to PSR
3. PI, CPI, or PSR to a register in datapath.

Paths from PSR to PSR are only responsible for sequential
behavior of the controller circuit. For path classification, we
construct a table that shows transition on bits in PSR and
other registers with state transitions. Table 4 shows transi-
tion on bits in PSR with state transitions for Parwan proces-
sor when states are binary encoded.

This table shows that there can be rising transition on
bit b3 only when there is a state transition from state s4 to
s9. Similarly, there can be falling transition on b3 only when
there is a state transition from state s9 to s1.

Lemma 3: Paths between bit i in register R1 and bit j in
register R2 (registers R1 and R2 need not be different) in con-
troller circuit are functionally untestable paths for a transi-
tion (rising or falling) if

Table 4 Transition on bits in PSR with state transition. (Parwan
processor)

bit s1 s2 s3 s4 s5 s6 s7 s8 s9

b3 R s9

F s1

b2 R s5,s6,s7

F s1,s2 s1

b1 R s3

F s5,s6,s9

b0 R s2 s4 s6 s8
F s3 s5,s7,s9 s1 s1
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1. there does not exist a valid state transition sm to sn to
launch the transition at bit i, or

2. there does not exist a state transition sp to sq which can
receive the launched transition (launched during the
state transition sm to sn) or its inverse (receive falling
transition when rising is launched) at bit j, such that
sn = sp.

A path is functionally testable if we can create a transition
and propagate its effect along the path. If the conditions
stated in Lemma 3 exist then we either cannot launch a tran-
sition or cannot propagate the created transition. Hence, the
paths between bit i in register R1 and bit j in register R2 are
FUTPs. Otherwise, these paths are classified as PFTPs be-
cause transitions can be created and may be propagated if
values in other registers are justifiable. We also get precise
constraints under which these paths can be tested using state
transition table.

1. Paths from PSR to PSR (Paths from controller to con-
troller):
A path between bit i and bit j in PSR can be classi-
fied as follows for rising transition, using Lemma 3.
We consider 3 consecutive time frames as shown in the
following table. Activities at bit i and j in PSR and
required state transitions are listed in Table 5. These
paths are PFTP iff either sm to sn to sr, or sm to sp to sq

state transition sequence exists.

Example 3: PSR to PSR paths classification in Par-
wan processor when states are binary encoded. Table 4
shows transition on bits in PSR with state transitions.
Paths from b2 to b1 (for rising transition) are classified
as FUTP because no one state transition sequence ex-
ists to test these paths, where as paths from b2 to b1

(for falling transition) are classified as a PFTP because
a state transition sequence s6 to s2 to s3 exists. State
transition sequence s6 to s2 to s3 is an exact constraint
for these paths (b2 to b1, falling transition) under which
these can be tested if other values are justifiable. Simi-
larly, we can find out all PFTPs, which are the potential
candidates for the next phase.

2. Paths from PI or CPI to bit i in PSR (Paths from input
or datapath to controller):

a. Paths from PI to bit i in PSR are classified as
PFTP, iff there exists a state sequence (sm to sn),
which can receive a transition at bit i.

b. Paths from CPI to bit i in PSR are classified as
PFTP, iff there exist a valid state transition (sm to
sn) to create a transition at CPI (register IR or SR)
and there exists a valid state transition (sn to sp) at

Table 5 Activities at bit i and j in PSR.

Time frame k k + 1 k + 2
bit i 0 1 x
bit j x 0 (1) 1 (0)
state sm sn(sp) sr(sq)

bit i of PSR (according to Lemma 3).

3. Paths from CPI or PSR to a register in datapath (Paths
from controller to datapath):

a. there exists a state sequence (sm to sn) which can
launch a transition at bit i in PSR or CPI, and

b. the register in the datapath, where these paths ter-
minate, has an incoming edge, marked with state
sn in IE-Graph and state sm and sn are two con-
secutive states of the marked instruction Ip.

5.3 Test Vector Generation

A constrained combinational ATPG is used to generate the
test vectors for the paths, which are, classified as PFTPs un-
der the extracted constraints. ATPG is given with a set of
PFTP along with their respective constraints. ATPG will re-
turn the test vectors if a path is testable under constraints.

This approach extracts the constraints in the form of
state transitions and classifies the paths as functionally
untestable or potentially functionally testable. Functionally
untestable paths are removed from the path list. It uses com-
binational constraint ATPG to generate test vectors. There-
fore, we need not consider multiple time frames for all the
paths like a sequential ATPG, as sequential behavior is taken
care of by the state transition in our approach. This also re-
duces the complexity of test generation. Note that the vec-
tors generated by us are valid instructions and/or data.

6. Test Instruction Sequence Generation

The generated test vector pairs as explained in the preceding
section are assigned to control signals and registers. Control
signals and value(s) in IR in two consecutive time frames
give the test instruction(s). Data in registers and in memory,
which will be used by the test instruction, must be justified,
using justification instruction. The result from the output
register must be transferred to memory using observation
instructions.

For example, consider a test vector pair (V1, V2), where
V1 = {ALU ctrl=000, SHU ctrl=00, AC=48H, IN=24H}, V2

= {ALU ctrl=111, SHU ctrl=00, AC=48H, IN=04H}.
Figure 5 shows the generated test instructions for this

example. In this figure, each line shows the memory loca-
tion followed by an instruction mnemonic (with comments)
or a content of the location. The generated test implies that
a SUB instruction (which provides ALU ctrl = 000, SHU

Fig. 5 Instruction sequence.
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ctrl = 00 at s4, and ALU ctrl = 111, SHU ctrl = 00 at s6) is
applied as a test instruction.

The lower order 8 bit of the memory address used by
the SUB instruction (i.e., 424H) must be 24H (value of IN in
V1) and the value stored at this location must be 04H (value
of IN in V2). The value of AC is 48H in V1. This implies that
we should justify the value at AC prior to SUB instruction.
This is achieved by LDA instruction that loads 48H to AC.
The test instruction SUB stores the result in AC. We can ob-
serve the result by STA instruction (store AC) that transfers
the result to memory.

We can generate a test instruction sequence for every
test vector pair in the above stated manner.

7. Experimental Results

A constraint extraction procedure for the datapath and the
controller has been implemented in C language. Con-
strained ATPG for delay fault testing has also been imple-
mented in C language, as commercially available ATPGs
are not capable of handling our constraints.

We have applied our methodology to Parwan proces-
sor [14] and DLX processor [16]. The synthesized version
of the Parwan processor contains 888 gates and 53 flip-flops
and DLX processor contains 16152 gates and 1446 flip-
flops. IE-Graphs for these processors are constructed and
functionally untestable paths are identified. For example,
the paths from AC to AC, AC to SR, AC to OUT, SR to
SR, SR to OUT and PC to PC in the datapath of the Parwan
processor are found to be untestable. We extract constraints
for rest of the paths using IE-Graph and RT level descrip-

Table 6 Results for Parwan processor.

Datapath Controller
Rob NR FS Rob NR FS

Total Path 5,217 5,217 5,217 174,362 174,362 174,362
No. of faults 10,434 10,434 10,434 348,724 348,724 348,724
Faults declared untestable in first phase 3,902 3,902 3,902 162,812 162,812 162,812
Percentage of eliminated faults 37.40 37.40 37.40 46.69 46.69 46.69
No. of functionally testable faults 156 1,653 2,618 407 2,417 3,520
Fault coverage (%) 1.50 15.84 25.09 0.12 0.69 1.01
No. of unctionally untestable faults 10,278 8,781 7,816 348,3173 346,307 345,204
Fault efficiency (%) 100 100 100 100 100 100
CPU time (ATPG) 3 minutes 41 sec 3 hours 27 minutes

Table 7 Results for DLX processor.

Datapath Controller
Rob NR FS Rob NR FS

Total Path 264,906 264,906 264,906 743,411 743,411 743,411
No. of faults 529,812 529,812 529,812 1468,822 1468,822 1468,822
Faults declared untestable in first phase 89,848 89,848 89,848 0 0 0
Percentage of eliminated faults 16.95 16.95 16.95 0 0 0
No. of functionally testable faults 19,354 34,924 44,324 15,146 42,295 112,735
Fault coverage (%) 3.65 6.59 8.37 1.03 2.88 7.68
No. of unctionally untestable faults 510,458 494,888 485,488 1453,676 1426,527 1356,087
Fault efficiency (%) 100 100 100 100 100 100
CPU time (ATPG) 1 hour 32 minutes 15 hours 18 minutes

tion. Similarly, state transition tables for both of the pro-
cessors are constructed which show the constraints on the
controllers.

We generated test patterns for Robust (Rob), Non Ro-
bust (NR) [15] and Functional Sensitizable (FS) [15] paths
under the extracted constraints using our constrained ATPG.
The test vectors are generated in the following order: Rob,
NR, and FS. For each path, first it generates a test vector
pair for the robust test, if exist under the constraints; other-
wise go for NR test followed by FS test. Here we consider,
the paths which are starting from some register in datapath
(e.g., IR or SR) going through the controller and terminat-
ing at some register in datapath, as a part of the controller.
These paths are large in number (about 98–99% of the total
paths in the controller). Results are shown in the Tables 6
and 7.

The results show that 37% of paths in Parwan datap-
ath, 46% paths in Parwan controller, and about 17% paths in
DLX datapath are identified as functionally untestable paths
and these are eliminated during the first phase without us-
ing circuit details. However, all the paths in the controller
of the DLX processor are determined to be potentially func-
tionally testable paths because of the completely specified
state space in the state encoding (64 states are encoded in
6 bits). We have extracted the constraints for these paths effi-
ciently and achieved 100% fault efficiency. The paths shown
as functionally untestable in 9th row of the Tables 6 and 7
include the paths which are declared functionally untestable
in first phase. NR testable paths include the robust testable
paths, and FS testable paths include Robust and NR testable
paths. The CPU time shown in Tables 6 and 7 is the total
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Table 8 Comparison with earleir work. (Fault Coverage)

Parwan DLX
Lai [10] Our Lai [10] Our

work work work work
Datapath Rob – 1.5 – 3.6

NR 3.7 15.8 7.2 6.5
FS – 25.0 – 8.3

Controller Rob – 0.1 – 1.0
NR – 0.7 – 2.8
FS – 1.0 – 7.6

time taken by ATPG to generate Rob, NR and FS test vec-
tors.

Table 8 shows that our methodology achieves higher
fault coverage for the datapath of Parwan processor as com-
pared to [10] because we are considering at microinstruction
level during the extraction of constraints for the potentially
testable paths. Note that [10] uses a different synthesized
version of Parwan processor with 168 sequential elements in
order to separate out controller and datapath to make it bet-
ter testable and reduction of number of paths, where as we
are using original Parwan processor. Similarly, their DLX
processor is also differently synthesized. The results for the
controller are not shown in [10]. Our approach can eliminate
substantial number of paths without looking into the circuit
details, where as [10] uses the circuit details for path clas-
sification. Moreover, [10] has not shown the results other
the results for NR test for the datapath of Parwan and DLX
processors.

Results show that very small number of the paths are
functionally testable. Our approach can be extended for
pipelined architecture by considering pipeline registers in
IE-Graph.

8. Conclusion

A systematic approach for the delay fault testing of proces-
sor core using its instruction set has been presented in this
paper. A graph theoretic model for data path has been de-
veloped. This model is used with the RT level description to
eliminate the functionally untestable paths at the early stage
and it is also used for extraction of constraints. Controller
is modeled as a finite state machine and constraints on state
transitions are extracted. This eliminates the need for multi-
ple time frame consideration for test generation, and hence
reduces the test generation complexity. Our experimental
results show that our test generation process can efficiently
generate test vectors for functionally testable paths which
can be applied by test instructions.
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