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Classification of Sequential Circuits Based on τk Notation and Its
Applications

Chia Yee OOI†a), Student Member, Thomas CLOUQUEUR†, Nonmember, and Hideo FUJIWARA†, Fellow

SUMMARY This paper introduces τk notation to be used to assess test
generation complexity of classes of sequential circuits. Using τk notation,
we reconsider and restate the time complexity of test generation for ex-
isting classes of acyclic sequential circuits. We also introduce a new DFT
method called feedback shift register (FSR) scan design technique, which is
extended from the scan design technique. Therefore, for a given sequential
circuit, the corresponding FSR scan designed circuit has always equal or
lower area overhead and test application time than the corresponding scan
designed circuit. Furthermore, we identify some new classes of sequential
circuits that contain some cyclic sequential circuits, which are τ-equivalent
and τ2-bounded. These classes are the l-length-bounded testable circuits,
l-length-bounded validity-identifiable circuits, t-time-bounded testable cir-
cuits and t-time-bounded validity-identifiable circuits. In addition, we pro-
vide two examples of circuits belonging to these classes, namely counter-
cycle finite state machine realizations and state-shiftable finite state ma-
chine realizations. Instead of using a DFT method, a given sequential cir-
cuit described at the finite state machine (FSM) level can be synthesized
using another test methodology called synthesis for testability (SFT) into a
circuit that belongs to one of the easily testable classes of cyclic sequential
circuits.
key words: test generation, easily testable sequential circuits, complexity,
design for testability, synthesis for testability

1. Introduction

It has been known for more than two decades that the
test generation problem for single stuck-at faults is NP-
complete. However, empirical observations show that the
combinational test generation complexity seems to be O(nr)
for some constant r, where n is the size of the circuit [1], [2].
For example, the ATPG tool named SPIRIT [16] can achieve
100% fault efficiency for benchmark circuits ITC’99, sur-
passing the existing commercial ATPGs. Consequently,
studies have been conducted to search for classes of sequen-
tial circuits with combinational test generation complexity.

Classes of sequential circuits with combinational test
generation complexity include balanced sequential cir-
cuits [3], strongly balanced sequential circuits [4], internally
balanced sequential circuits [6], switched balanced sequen-
tial circuits [7] and switched internally balanced sequential
circuits [8], all of which are acyclic. Also, a test generation
model (TGM) was proposed to transform any acyclic se-
quential circuit into its combinational equivalent with logic
duplicates for at most d time frames where d is the sequen-
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tial depth [5]. On the other hand, the test generation prob-
lem for general sequential circuits, which is modeled by an
iterative logic array, has greater time complexity than for
acyclic sequential circuits. To ease test generation, a given
sequential circuit can be augmented into a circuit with a ker-
nel belonging to one of the classes of acyclic sequential cir-
cuits using a design for testability (DFT) method. In our dis-
cussion, we assume combinational test generation achieves
complete fault efficiency in general based on the work in
[16]. So, the test generation of these augmented circuits
also result in complete fault efficiency. Therefore, combina-
tional test generation complexity is fundamental in the dis-
cussion on the time complexity of test generation of sequen-
tial circuits. As more and more classes are introduced, a
general notation would be useful in facilitating the discus-
sion on classification. Therefore, prior to introducing some
larger classes of easily testable sequential circuits, we define
a test generation notation that we call τk notation based on
combinational test generation complexity. In our discussion,
we assume the combinational test generation complexity is
Θ(nr) for some constant r > 2 and it is denoted by τ(n),
where n is the size of the circuit.

As mentioned, previously defined classes of sequen-
tial circuits with combinational test generation complex-
ity are acyclic [6]–[8]. In this paper, we show that some
cyclic sequential circuits also have combinational test gen-
eration complexity. These classes include l-length-bounded
testable circuits, l-length-bounded validity-identifiable cir-
cuits, t-time-bounded testable circuits and t-time-bounded
validity-identifiable circuits. Rather than DFT, we use syn-
thesis for testability (SFT) methods to augment and synthe-
size a given sequential circuit into a circuit belonging to one
of these classes.

In Sect. 2, using asymptotic notation, we define τk no-
tation. The section also discusses a test generation model
called time expansion model (TEM). In Sect. 3, we recon-
sider the time complexity of test generation problem for the
existing classes of acyclic sequential circuits using the τk no-
tation. Section 4 presents a new DFT method called the FSR
scan design. In Sect. 5, several τ-equivalent and τ2-bounded
classes of sequential circuits, which include some cyclic se-
quential circuits, are introduced. Section 6 discusses the
need for SFT method to augment and synthesize a given se-
quential circuit at FSM level into an easily testable realiza-
tion or circuit. Conclusion is presented in the final section.
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2. Preliminaries

Generally, asymptotic notation is used to describe the
asymptotic running time of an algorithm. This notation is
also convenient for describing the worst-case running time
of the test generation problem. Let g(n) be a given func-
tion. The following describes brieflyΘ(g(n)) and O(g(n)). A
function f (n) belongs to the set Θ(g(n)) if g(n) is an asymp-
totically tight bound for f (n). A function f (n) belongs to
the set O(g(n)) if g(n) is an asymptotically upper bound for
f (n) [9].

To facilitate our discussion, we define the time com-
plexity of test generation problem as follows.
PC: Combinational Test Generation Problem

Instance: A combinational circuit C and a fault f .
Question: Is there a test pattern to detect f in C?

PS : Sequential Test Generation Problem

Instance: A sequential circuit S and a fault f .
Question: Is there a test sequence to detect f in S ?

Pα: Class α Test Generation Problem

Instance: A sequential circuit S in α and a fault f .
Question: Is there a test sequence to detect f in
S ?

Definition 1: The time complexity of a problem P is the
time complexity of the fastest algorithm for the problem P.
Let TC(n), TS (n) and Tα(n) be the time complexity of PC ,
PS and Pα, respectively, where n is the size of the problem
instance. TC(n), TS (n) and Tα(n) are also called test genera-
tion complexity for class C, class S and class α, respectively.

In our discussion, we have the following assumption about
the combinational test generation complexity.
Assumption: The combinational test generation complexity
is Θ(nr) for some constant r > 2, where n is the size of the
combinational circuit considered.
To further clarify the test generation complexity, we define
the τk notation. We consider TC(n) as a basic unit of the
time complexity of the test generation problem, therefore
τ(n) is used to denote TC(n) in the following text, where
τ(n) = TC(n) = Θ(nr) for some constant r > 2.

Definition 2: T (n) is τk-equivalent if and only if T (n) =
Θ(τk(n)) and τk-bounded if and only if T (n) = O(τk(n)),
where k > 0.

Definition 3: Class α is τk-equivalent if and only if
Tα(n) = Θ(τk(n)) and τk-bounded if and only if Tα(n) =
O(τk(n)), where k > 0.

In the following section, we discuss the test generation
complexity of acyclic sequential circuits using a test gener-
ation model called time expansion model or TEM [11]. To
make the discussion clear, we quote the definition of TEM
from [11].

Definition 4: A topology graph is a directed graph G =
(V, A, r) where a vertex v ∈ V denotes a combinational
logic block which contains primary inputs/outputs and logic
gates, and an arc (u, v) ∈ A denotes a connection or a bus
from u to v. Each arc has a label r : A �→ Z+ (Z+ denotes a
set of non-negative integers), and r(u, v) represents the num-
ber of registers on a connection (u, v).

Definition 5: Let S be an acyclic sequential circuit and
let G = (V, A, r) be the topology graph of S . Let E =
(VE , AE , t, l) be a directed graph, where VE is a set of ver-
tices, AE is a set of arcs, t is a mapping from VE to a set of
integers, and l is a mapping from VE to a set of vertices V in
G. If graph E satisfies the following four conditions, graph
E is said to be a time expansion graph (TEG) of G.

• C1(Logic block preservation): The mapping l is surjec-
tive, i.e., ∀v ∈ V, ∃u ∈ VE s.t. v = l(u).
• C2(Input preservation): Let u be a vertex in E. For any

direct predecessor v(∈ pre(l(u)) of l(u) in G, there ex-
ists a vertex u′ in E such that l(u′) = v and u′ ∈ pre(u).
Here, pre(v) denotes the set of direct predecessors of v.
• C3(Time consistency): For any arc (u, v)(∈ AE),

there exists an arc (l(u), l(v)) such that t(v) − t(u) =
r(l(u), l(v)).
• C4(Time uniqueness): For any vertices u, v(∈ VE), if

t(u) = t(v) and if l(u) = l(v), then the vertices u and v
are identical, i.e., u = v.

Definition 6: Let S be an acyclic sequential circuit, let G =
(V, A, r) be the topology graph of S , and let E = (VE , AE , t, l)
be a TEG of G. The combinational circuit CE(S ) obtained
by the following procedure is said to be the time expansion
model (TEM) of S based on E.

1. For each vertex u ∈ VE , let logic block l(u) (∈ V) be the
logic block corresponding to u.

2. For each arc (u, v) ∈ AE , connect the output of u to the
input of v with a bus in the same way as (l(u), l(v))(∈
A). Note that the connection corresponding to (u, v)
has no register even if the connection corresponding to
(l(u), l(v)) has a register (i.e. r(l(u), l(v)) > 0).

3. For a line or a logic gate in each logic block obtained
by Step (1) and (2), if it is not reachable to any input of
other logic blocks, then it is removed.

The following section reconsiders and restates the test gen-
eration complexity of the existing classes of acyclic sequen-
tial circuits based on τk notation.

3. Existing Classes of Acyclic Sequential Circuits

The test generation problem for the existing classes of
acyclic circuits in terms of τk notation gives a clearer pic-
ture of the test generation complexity.

A sequential circuit is said to be a balanced sequential
circuit if, for any pair of primary input and primary output,
all paths between them have the same number of flip-flops.
A subclass of balanced sequential circuits, which is called
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strongly balanced sequential circuits, is defined as follows.
A sequential circuit is a strongly balanced sequential cir-
cuit if it is balanced and in addition, all paths between a
node and all reachable PIs in its fan-in cone have the same
number of flip-flops. A larger class of sequential circuits
with combinational test generation complexity is internally
balanced sequential circuits. A sequential circuit is an inter-
nally balanced sequential circuit if a circuit resulting from
operation 1 of the extended combinational transformation
in [6] on an acyclic sequential circuit is a balanced sequen-
tial circuit. It has been shown in previous studies that a se-
quential circuit belonging to any of these three classes can
be transformed into its combinational equivalent [3], [5], [6],
the test patterns of which can be transformed back to the test
sequences of the original sequential circuit. Thus, we have
the following theorem based on τk notation.

Theorem 1: The classes of internally balanced sequential
circuits, balanced sequential circuits and strongly balanced
sequential circuits are τ-equivalent.

An acyclic sequential circuit is a sequential circuit
without feedback. We show that the test generation com-
plexity for this class is not τ-equivalent if the test generation
model is TEM [11].

Lemma 1: Let u and v be arbitrary logic blocks of an
acyclic sequential circuit where u ∈ pre(v). The logic block
u will be mapped to q different logic blocks in TEM if there
are p connections between logic block u and v with q differ-
ent labels where p ≥ q.

Proof: Let v′ be the corresponding logic block of v in TEM
(l(v′) = v) and let ri(u, v) be labels for each connection (u, v)
where 0 ≤ i ≤ q. Let also u′j denote each corresponding
logic block of u in TEM. From the condition of input preser-
vation and time consistency [12],

t(u′j) = t(v′) − ri(u, v) (1)

Since 0 ≤ i ≤ q, the range of j is also 0 ≤ j ≤ q. Since
u = l(u′j), the lemma is proved. q.e.d.

Theorem 2: There exists an acyclic sequential circuit
whose test generation complexity represented by TEM is not
τ-equivalent.

Proof: Let an acyclic sequential circuit, S a have a structure
represented by a topology graph G = (V,A, r) as follows.

• V = {u, v} where u ∈ pre(v) and A = {ai | 0 ≤ i ≤ d};
• ri(u, v) = i for 0 ≤ i ≤ d where ri(u, v) represents a

label on arc a j and d is the sequential depth of S a.

Let n0 and n1 be the size of the logic block represented
by vertices u and v, respectively where n0 = n1 =

n
2 as

shown in Fig. 1.
From Lemma 1, vertex u in the topology graph is

mapped to (d + 1) different vertices in TEM as shown in
Fig. 2. Note that no logic portion can be removed. Thus, the
size of the combinational equivalent of the acyclic sequen-
tial circuit represented in TEM is

Fig. 1 Structure of S a.

Fig. 2 TEM of S a.

N =
n
2
× (d + 1) +

n
2

(2)

=
d × n

2
+ n

Therefore, the test generation complexity of the acyclic
sequential circuit is

TA = τ(N) = τ(
n × d

2
+ n)

= τ(d × n) (3)

= Θ(dr × nr) � Θ(nr)

for some constant r.

The equation 3 proves the theorem. q.e.d.
However, there might be other test generation mod-

els for acyclic sequential circuits besides TEM. “Is TA τ-
equivalent?” remains an open question. No one has proved
the answer is “Yes” but it might probably be “No” since ex-
isting studies show that the logic duplication might happen
for at most d time frames in the test generation problem,
where d is the sequential depth. Therefore, we have the fol-
lowing conjecture and theorem.

Conjecture 1: The class of acyclic sequential circuits is
not τ-equivalent.

Theorem 3: The class of acyclic sequential circuits is τ2-
bounded.

Sketch of proof: [5] shows that the number of time frames
in which logic duplication might take place is at most d,
where d is the sequential depth. Therefore, the size of the
transformed circuit to be used for the test generation is at
most n× (d+1). Since d ≤ n, the test generation complexity
of acyclic sequential circuits is O(τ2(n)).

The practical observation shows that the test generation
of acyclic sequential circuits is close to Θ(τ(n)) instead of
Θ(τ2(n)) bound. In other words, its test generation is still
not very hard.

4. Design for Testability

Design for testability (DFT), e.g. scan design technique, is
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a solution to reduce the test generation complexity. DFT
modifies a given circuit to ease its testing. A given sequen-
tial circuit can be augmented into a circuit with kernel (the
part of the circuit that is not modified) belonging to one of
the classes of acyclic sequential circuits by using DFT. In
this section, we propose a new method of design for testabil-
ity called the FSR scan design technique, which is extended
from the scan design technique. We then discuss the test
generation complexity for scan designed circuits and FSR
scan designed circuits. We also do comparisons of hard-
ware area overhead and test application time between these
two DFT methods.

4.1 Scan Designed Circuits

A sequential circuit is a scan designed circuit if some or all
of the flip-flops are replaced with scan flip-flops so that they
are chained into at least one shift register during test mode
and hence they can be directly controlled and observed.

Theorem 4: The test generation complexity for the scan
designed circuits is τk-equivalent (τk-bounded) if the test
generation complexity for the kernels is τk-equivalent (τk-
bounded).

Proof: See proof of theorem in [10].

4.2 FSR Scan Designed Circuits

We now propose a new scan design called feedback shift
register (FSR) scan design. A sequential circuit is an FSR
scan designed circuit (Fig. 3) if some or all of the feedback
shift registers are converted into scan shift registers (Fig. 4)
so that the scan shift registers are chained together during
test mode and hence they can be directly controlled and ob-
served. Each shift register has its own length l. The kernel is
a combinational circuit when all the shift registers are con-
verted into scan shift registers. Otherwise, the kernel is a
sequential circuit. We call this DFT method FSR scan de-
sign technique.

Theorem 5: The test generation complexity for the FSR
scan design circuit is τk-equivalent (τk-bounded) if the test
generation complexity for the kernel is τk-equivalent (τk-
bounded).

Proof: See proof of theorem in [10].

4.3 Case Study: Comparison between Scan Design and
FSR Scan Design

Not all sequential circuits can be augmented into an FSR
scan designed circuit except the trivial augmentation of us-
ing only scan shift registers of length 1. Note that the scan
design is a special case of the FSR scan design. Therefore,
FSR scan design is never worse than scan design. For a
given sequential circuit where there exists at least one feed-
back shift register, the augmentation with FSR scan tech-
nique, where the length of scan shift registers is more than

Fig. 3 FSR scan designed circuit.

Fig. 4 Scan shift register.

1, may or may not be superior to scan technique in terms of
hardware overhead and test application time. The following
analysis shows that there exists a case where FSR scan tech-
nique results in the same hardware area overhead but lower
test application than that with the scan technique.

Let S CL denote a scan chain length while FS CL and
hi denote the number of scan shift registers and length of an
FS Ri for 0 ≤ i ≤ FS CL − 1, respectively. Let d1 denote the
sequential depth of the scan designed circuit kernel while d2

denote the sequential depth of the FSR scan designed cir-
cuit kernel. For a test vector, the test application time for a
scan designed circuit, T ATS and a FSR scan designed cir-
cuit, T ATF are given by the following equations.

T ATS = (S CL + 1) ∗ (d1 + 1) (4)

T ATF = ((
FS CL−1∑

i=0

hi) + 1) ∗ (d2 + 1) (5)

FSR scan designed circuit is better than scan designed
circuit in test application time if T ATS − T ATF > 0. For
example, in Figs. 6 and 7, the scan designed circuit and the
FSR scan designed circuit after DFT augmentation is done
on the circuit S C in Fig. 5. The scan designed circuit of S C

has a kernel of internally balanced sequential circuit while
the FSR scan designed circuit has a kernel of combinational
circuit. From equation 4 and 5, test application time for scan
designed circuit is 15 clock cycles (for d1 = 2, S CL = 4)
while test application time for FSR scan designed circuit is
10 clock cycles (for d2 = 0, FS CL = 4,

∑FS CL−1
i=0 hi = 9).

The test application time of the FSR scan designed cir-
cuit is less compared to that of the scan designed circuit
while the hardware area overhead is same. Therefore, FSR
scan design is attractive and worth further studies.
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Fig. 5 Cyclic sequential circuit, S C .

Fig. 6 Scan designed circuit of S C .

Fig. 7 FSR scan designed circuit of S C .

5. Classes of Easily Testable Sequential Circuits

In this paper, we consider that a class is easily testable
if its test generation complexity is τ2-bounded. In other
words, τ2-bounded classes and τ-equivalent classes are eas-
ily testable. In this section, we introduce several classes of
easily testable sequential circuits. We show that some cyclic
sequential circuits are τ-equivalent. Also, we show that syn-
thesis for testability (SFT) can be used to augment a given
sequential circuit into an easily testable circuit belonging to
one of these classes. We have done case studies to com-
pare the test application time and area overhead of these
augmented circuits with their corresponding scan designed
circuits.

Generally, the test generation problem of a cyclic se-
quential circuit is modeled by an iterative logic array that

consists of several time frames so that it can be solved by
combinational test generation techniques. The test genera-
tion problem involves the following three steps.

1. Derivation of the excitation state;
2. State justification for i time frames; and
3. State differentiation for j time frames.

Generally, backtracks may occur between the three
steps. For a given fault, step 1 is performed to obtain an
excitation state for state justification and state differentia-
tion. If state justification or state differentiation fails, step 1
is performed again to get a different excitation state for jus-
tification and state differentiation. Logic duplication of the
circuit combinational part takes place at every time frame
except time frame of derivation of excitation state. In the
worst case, i and j equal 2p, where p is the number of mem-
ory elements. These factors result in high complexity for
test generation of cyclic sequential circuits.

However, there exist classes of sequential circuits
with τ-equivalent or τ2-bounded test generation complex-
ity, which include some cyclic sequential circuits. In such
classes, it is guaranteed that any excitation state can be jus-
tified and any activated fault can be propagated to a primary
output. Since the derivation of the excitation state is done by
the test generation on the combinational part at time frame
0, the time complexity TE(n) is always τ-equivalent. There-
fore, if the state justification and state differentiation can be
reduced to the problem with τ2-bounded or τ-equivalent or
less time complexity, the circuits become easily testable. Let
TJ, TE and TD denote the time complexity of state justifica-
tion, derivation of excitation state and state differentiation,
respectively. The test generation complexity for a class of
easily testable sequential circuits, TS (n) is

TS (n) ≤ TE(n) + TJ + TD (6)

= τ(n) + TJ + TD

The following sub-sections introduce several new
classes of easily testable sequential circuits, which cover
some cyclic sequential circuits.

5.1 l-Length-Bounded Testable Circuits

The number of time frames expanded by the state justifica-
tion and state differentiation accounts for the length of a test
sequence. In this section, we introduce a new class of easily
testable sequential circuits called l-length-bounded testable
circuits, the test sequence length of which is bounded so that
the class becomes easily testable.

Definition 7: A sequential circuit S is l-length-bounded
testable with respect to a fault set F if the following con-
ditions are satisfied.

1. For any state si, there exists a state justification se-
quence of length at most l;

2. For any pair of states (si, sif), there exists a state dif-
ferentiation sequence of length at most l, where si is a
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fault-free state and sif is a faulty state corresponding to
a fault f∈F.

Theorem 6: l-length-bounded testable circuits is τ2-
bounded if l is O(n), where n is the size of the sequential
circuits.

Proof: See the detailed proof of theorem in [10]. To gen-
erate a test sequence, firstly an excitation state is derived.
Secondly, the excitation state is justified and thirdly, the fault
effect is propagated to a primary output. Based on condition
1 and condition 2 of definition 7, the test generation com-
plexity for l-length-bounded testable circuits is

TLBT (n) ≤ TE(n) + TJ(l × n) + TD(l × n) (7)

= τ(n) + O(τ2(n)) + O(τ2(n))

= O(τ2(n)),which is τ2-bounded.

q.e.d.
Note that the fault-free state justification is done on the ex-
panded combinational part that consists of l time frames.
After fault simulation, we can always obtain the state justifi-
cation sequence as a prefix of the fault-free state justification
sequence. Since the fault-free state justification is a sub-
problem of test generation of the expanded combinational
part, the time complexity of the fault-free state justification
is O(τ(l × n)).

5.2 l-Length-Bounded Validity-Identifiable Circuits

Valid states are the reset state and all states in the ma-
chine that are reachable from the reset state using an in-
put sequence of any length [14]. There are some sequen-
tial circuits where not all the states are valid states. Based
on this characteristic, we define l-length-bounded validity-
identifiable circuits.

Definition 8: A sequential circuit S is l-length-bounded
validity-identifiable with respect to a fault set F if the fol-
lowing conditions are satisfied.

1. There exists a combinational circuit of size O(n) called
validity checker (Fig. 8) that can identify the validity of

Fig. 8 Transformed combinational part C′ that consists of C embedded
with a validity checker.

states, where n is the size of the sequential circuits;
2. For any valid state si, there exists a state justification

sequence of length at most l from initial state S 0;
3. For any pair of states (si, sif), there exists a state dif-

ferentiation sequence of length at most l, where si is a
fault-free valid state and sif is a faulty state correspond-
ing to a fault f ∈ F.

Theorem 7: The class of l-length-bounded validity-
identifiable circuits is τ2bounded if l is O(n), where n is the
size of the sequential circuits.

Proof: To generate a test sequence for a given fault in a
l-length-bounded validity-identifiable circuit, firstly a valid
excitation state is derived at time frame 0. From condition
1, the excitation state is always guaranteed to be valid by
embedding a validity checker in the combinational part of
the sequential circuit as shown in Fig. 8. This transformed
combinational part is denoted by C′ in the following text.
Note that the validity checker is not a DFT method. A fault
is testable in C with a valid state if and only if the fault is
testable in C′. Secondly, the state justification is performed
and lastly the state differentiation is performed. The test
generation complexity for l-length-bounded testable circuits
is

TLBVI(n) ≤ TE(2n) + TJ(l × n) + TD(l × n) (8)

= τ(n) + O(τ2(n)) + O(τ2(n))

= O(τ2(n)),which is τ2-bounded.

q.e.d.

5.3 t-Time-Bounded Testable Circuits

We also consider the classification of sequential circuits
from the aspect of time dimension instead of length dimen-
sion. In this section, another new class of sequential circuits
called t-time-bounded testable circuits is introduced. The
t-time-bounded testable circuit is defined as follows.

Definition 9: A sequential circuit S is t-time-bounded
testable with respect to a fault set F if the following con-
ditions are satisfied.

1. For any state si, there exists a state justification se-
quence which can be obtained in time O(t);

2. For any pair of states (si, sif), there exists a state differ-
entiation sequence which can be obtained in time O(t),
where si is a fault-free state and sif is a faulty state cor-
responding to a fault f ∈ F.

Theorem 8: The class of t-time-bounded testable circuits
is τ-equivalent (τ2-bounded) if t is τ(n) (τ2(n)), where n is
the size of the sequential circuits.

Proof: See the detailed proof of theorem in [10]. To gen-
erate a test sequence, firstly an excitation state is derived.
Secondly, the excitation state is justified and thirdly, the fault
effect is propagated to a primary output. From definition 9,
the test generation complexity for t-time-bounded testable
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circuits, TT BT (n) is

TT BT (n) ≤ TE(n) + TJ + TD (9)

= τ(n) + O(t) + O(t)

= Θ(τ(n)) if t = τ(n) or

O(τ2(n)) if t = τ2(n).

Therefore, the class of t-time-bounded testable circuits is τ-
equivalent if t = τ(n) and τ2-bounded if t = τ2(n).

q.e.d.

5.4 t-Time-Bounded Validity-Identifiable Circuits

The test generation of t-time-bounded validity-identifiable
circuits is also bounded by the time complexity. However,
different from the time-bounded testable circuits, not all the
states of a t-time-bounded validity-identifiable circuit are
valid states.

Definition 10: A sequential circuit S is t-time-bounded
validity-identifiable with respect to a fault set F if the fol-
lowing conditions are satisfied.

1. There exists a combinational circuit of size O(n) called
validity checker (Fig. 8) that can identify the validity of
states, where n is the size of the sequential circuits;

2. For any valid state si, there exists a state justification
sequence from initial state S 0 which can be obtained in
time O(t);

3. For any pair of states (si, sif), there exists a state differ-
entiation sequence which can be obtained in time O(t),
where si is a fault-free valid state and sif is a faulty state
corresponding to a fault f ∈ F.

Theorem 9: The class of t-time-bounded validity-
identifiable circuits is τ-equivalent (τ2-bounded) if t is τ(n)
(τ2(n)), where n is the size of the sequential circuits.

Proof: See the detailed proof of theorem in [10]. To gen-
erate a test sequence for a given fault in a t-time-bounded
validity-identifiable circuit, firstly a valid excitation state is
derived at time frame 0. From condition 1, the excitation
state is always guaranteed to be valid by embedding a va-
lidity checker in the combinational part of the sequential
circuit as shown in Fig. 8 such that a fault is testable in C
with a valid state if and only if the fault is testable in the
transformed combinational part C′. Secondly, the state jus-
tification is performed and lastly the state differentiation is
performed. From definition 10, the test generation com-
plexity for the t-time-bounded validity-identifiable circuits,
TT BVI(n) is

TT BVI(n) ≤ TE(2n) + TJ + TD (10)

= τ(n) + O(t) + O(t)

= Θ(τ(n)) if t = τ(n) or

O(τ2(n)) if t = τ2(n)

Therefore, the class of t-time-bounded validity-identifiable
circuits is τ-equivalent if t = τ(n) and τ2-bounded if t =
τ2(n).

q.e.d.

5.5 Examples of Easily Testable Sequential Circuits

Although several classes of easily testable sequential cir-
cuits have been introduced in the previous section, the def-
initions are too general to easily categorize a given circuit
into those classes. Therefore, we introduce in this section
two special subclasses, namely counter-cycle finite state ma-
chine realizations and state-shiftable finite state machine re-
alizations.

5.5.1 Counter-Cycle Finite State Machine Realizations

A counter-cycle finite state machine realization satisfies the
following conditions.

1. The number of valid states is in O(n) and there exists a
validity checker of size O(n).

2. There exists an input symbol ε that strongly connects
all valid states accordingly in a LFSR counter with a
feedback polynomial.

3. Column ε (counter-cycle operation) is realized by
AND-OR logic (resp. NOT-OR-AND logic shown in
Fig. 10 (b)) feeding each flip-flop such that

• the combinational logic assigns 0 (resp. 1) to the
input of the OR gate (resp. AND gate) when the
input combination corresponds to column ε;
• a primary input is fed to an input of the AND gate

(resp. NOT gate that connected to an input of OR
gate) and the LFSR counter logic is connected to
the other input of the AND gate (resp. OR gate).

4. All flip-flops are resettable and the flip-flop that repre-
sents the most significant bit of the state is observable.

Fig. 9 (a) State diagrams of counter-cycle FSM and (b) state-shiftable
FSM.

(a) (b)

Fig. 10 (a) AND-OR logic and (b) NOT-OR-AND logic.
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Fig. 11 (a) Realizations of counter-cycle FSM and (b) state-shiftable
FSM with feedback polynomial 0 . . . 11.

Figure 9 (a) shows an example of a counter cycle with 6
states while Fig. 11 (a) illustrates the realization of counter-
cycle FSM.

Theorem 10: The class of counter-cycle FSM realizations
is τ-equivalent.

Sketch of proof: To generate a test for a counter-cycle
FSM realization, first an excitation state is derived in time
Θ(τ(n)). Then, the excitation state is justified by an input
sequence of constant value ε and length at most p from the
reset state, where p is the number of valid states. Lastly, the
faulty next state generated after the derivation of excitation
state is distinguished from the fault-free next state by an in-
put sequence of constant value ε and length at most p. Both
justification and differentiation are done by forward implica-
tion. Since p = O(n), the time complexities of justification
and differentiation are O(n2), where n is the size of the cir-
cuit. The detailed proof can be found in [13]. The class
of counter-cycle FSM realizations is a subclass of t-time-

bounded validity-identifiable circuits, where t = O(n2).

5.5.2 State-Shiftable Finite State Machine Realizations

We also introduce another class of easily testable sequential
circuits which is state-shiftable FSM. A state-shiftable finite
state machine [12] with m states is a machine that possesses

1. transfer sequences of length at most �log2 m� to carry
the machine from state s0 to state si for all i, and

2. distinguishing sequences of length �log2 m�, which are
arbitrary input sequences consisting of two input sym-
bols.

A sequential circuit that is realized from the state-
shiftable finite state machine is called state-shiftable finite
state machine realization.

Theorem 11: The class of state-shiftable FSM realizations
is τ-equivalent if the following conditions are satisfied.

1. The FSM contains a two-column submachine equiva-
lent to a binary shift register, where the input symbols
of the two columns are denoted by ε0 and ε1, respec-
tively;

2. When input combination corresponds to column ε0
(resp. ε1), flips-flops are in shifting operation with bit
0 (resp. bit 1) being shifted into the flip-flop that repre-
sents the least significant bit of the state.

3. Columns ε0 and ε1 (shifting operation) are realized by
an AND-OR logic (Fig. 10 (a)) connected to each flip-
flop such that

• the combinational logic assigns 0 to the OR gate
when the input combination corresponds to either
column ε0 or ε1.
• a primary input is fed to an input of the AND gate

and the output of a flip-flop is connected to the
other input of the AND gate.

4. The flip-flop that represents the most significant bit of
the state is observable.

The realization is shown in Fig. 11 (b). As an example, the
transitions happening in columns ε0 and ε1 of the SSFSM of
degree 2 are shown in Fig. 9 (b).

Proof: The proof is similar to the proof of Theorem 10 by
considering the length of justification and differentiation is
at most log2 m(= O(n)) instead of p(= O(n)) and values ε0
and ε1 instead of constant value ε.

6. Synthesis for Testability and Easily Testable Sequen-
tial Circuits

In synthesis for testability, testability is considered during
the synthesis process itself. Since state-shiftable FSM re-
alizations and counter-cycle FSM realizations are cyclic se-
quential circuits defined at the FSM level and gate structural
level that depends on the synthesis method, a given sequen-
tial design at FSM can be augmented into one of the easily
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testable classes using synthesis-for-testability method dur-
ing synthesis instead of design for testability method after
synthesis. Note that DFT considers the structure of the cir-
cuit kernel while SFT considers the whole circuit at FSM
level in augmenting a given circuit into an easily testable
circuit.

6.1 SFT for Counter-Cycle FSM Realizations and State-
Shiftable FSM Realizations

To synthesize a given design into a counter-cycle FSM real-
ization, the following steps are implemented.

1. Add at most one column of ε into the state table of
the design so that the design becomes a counter-cycle
FSM.

2. Perform state encoding and logic minimization in the
synthesis.

3. Realize column ε as in condition 3 of the definition of
counter-cycle FSM realizations and add a primary out-
put to the flip-flop which is the most significant.

The following shows the SFT method to synthesize a
given design into a state-shiftable FSM realization.

1. Add at most two columns of ε0 and ε1 into the state
table of the design so that the design becomes state
shiftable FSM.

2. Perform state encoding and logic minimization in the
synthesis.

3. Realize columns ε0 and ε1 as in condition 3 of Theorem
11 and add a primary output to the flip-flop which is the
most significant.

6.2 Case Study: Comparison between SFTs and DFTs

We performed case studies on five MCNC [15] benchmark
finite state machines, namely bbsse (16 states), cse (16
states), dk16 (27 states), opus (10 states) and tma (20 states).
State encoding and logic minimization for these designs
were performed using Synopsys Design Analyzer. Synop-
sys TetraMax tool is used to run the test generation on the
circuits. Original circuits of each benchmark do not have
complete fault efficiency except opus. bbsse, cse, dk16
and tma have 96.56%, 99.42%, 99.72% and 99.52%, re-
spectively. Since full scan designed circuits are also eas-
ily testable circuits, we compared state-shiftable FSM real-
izations and counter-cycle FSM realizations with full scan
designed circuits. Table 1 indicates the result on the com-
parison of the area overhead (number of gates) between
the scan design, counter-cycle FSM realizations and state-
shiftable FSM realizations. The values in the parenthesis
are the overhead in percentage. We identified that one of
the columns of tma corresponded to column ε1 of a state-
shiftable FSM. Therefore, we only added one column to
the state table during SFT, thus reducing the area overhead.
State-shiftable FSM realizations have less area overhead
compared to counter-cycle FSM realization. Comparing the

Table 1 Experimental result: area overhead (gate count).

B/mark Ori.(%) FS(%) CCFSM(%) SSFSM(%)
bbsse 130 146(12.3) 191(46.9) 150(15.4)
cse 205 221(7.8) 241(17.6) 215(4.9)

dk16 215 235(9.3) 287(33.5) 215(0)
opus 92 108(17.4) 140(52.2) 131(42.4)
tma 205 225(9.8) 269(31.2) 206(0.5)

Table 2 Experimental result: test application time (clock cycles).

B/mark Original FS CCFSM SSFSM
bbsse 161 294 459 233
cse 359 434 766 458

dk16 421 455 1100 335
opus 167 184 204 179
tma 342 461 968 436

state-shiftable FSM realizations and full scan design, the
state-shiftable FSM realizations of cse, dk16 and tma have
less overhead. The flip-flops used to realize counter-cycle
FSMs are asynchronous flip-flops. The logic complexity of
these flip-flops explains in part that counter-cycle FSM real-
izations have larger area overhead. Moreover, the counter-
cycle FSM realizations of bbsse and cse need five flip-flops,
which is one extra flip-flop compared to the state-shiftable
FSM realizations. Extra XOR gates are necessary to realize
the LFSR counter-cycle operation while no extra gates are
needed for shifting operation in state-shiftable FSM. Table 2
presents the result on the comparison of the test applica-
tion time (in clock cycles) among the scan designs, counter-
cycle FSM realizations and state-shiftable FSM realizations.
From the result, we can see that state shiftable FSM realiza-
tions have shorter test application time compared to full scan
designs and counter-cycle FSM realizations. The justifica-
tion and differentiation sequence of counter-cycle FSM is at
most the number of valid states while that of state-shiftable
FSM is at most the logarithm of the number of states. In
the experiment, the number of valid states of counter-cycle
FSM are higher than the logarithm of the number of states
in state-shiftable FSM.

7. Conclusion

τk notation has been introduced in order to clarify the test
generation complexity. Based on this notation, balanced se-
quential circuits, strongly balanced sequential circuits, in-
ternally balanced sequential circuits have been shown to
be τ-equivalent while the class of acyclic sequential cir-
cuits has been shown to be τ2-bounded. FSR scan tech-
nique was introduced. The test generation complexity for
FSR scan designed circuits and scan designed circuits were
shown to be equivalent to the circuit kernels of each de-
sign. We presented a case study for which FSR scan de-
sign has lower test application time. We introduced several
classes of easily testable cyclic sequential circuits includ-
ing l-length-bounded testable circuits and l-length-bounded
validity-identifiable circuits with l = O(n), t-time-bounded
testable circuits and t-time-bounded validity-identifiable cir-
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cuits with t = τ(n) or τ2(n), state-shiftable FSM realization
and counter-cycle FSM realizations. The case studies indi-
cate that state-shiftable FSM realization can be better than
its corresponding counter-cycle FSM realization and its cor-
responding full scan designed circuit in certain cases while
full scan designed circuit has better result than its corre-
sponding counter-cycle FSM realization in certain cases.
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