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PAPER

A Memory Grouping Method for Reducing Memory BIST Logic of
System-on-Chips

Masahide MIYAZAKI†a), Tomokazu YONEDA†, Members, and Hideo FUJIWARA†, Fellow

SUMMARY With the increasing demand for SoCs to include rich func-
tionality, SoCs are being designed with hundreds of small memories with
different sizes and frequencies. If memory BIST logics were individually
added to these various memories, the area overhead would be very high.
To reduce the overhead, memory BIST logic must therefore be shared.
This paper proposes a memory-grouping method for memory BIST logic
sharing. A memory-grouping problem is formulated and an algorithm to
solve the problem is proposed. Experimental results show that the proposed
method reduced the area of the memory BIST wrapper by up to 40.55%.
The results also show that the ability to select from two types of connection
methods produced a greater reduction in area than using a single connection
method.
key words: SoC, test scheduling, wrapper, design for test, memory BIST

1. Introduction

With the increasing number of functions being included in
SoCs, many memories with different sizes and frequencies
are being used. Recently, SoCs contain hundreds of mem-
ories. Testing all the memories in these SoCs sequentially
would take a long time. Therefore, a memory BIST design
that allows two or more memories to be tested simultane-
ously is needed. However, due to power-consumption con-
straints, not all memories can be activated at the same time.
To solve this problem, a scheduling technique for minimiz-
ing the test application time under power-consumption con-
straints is needed. Adding individual circuits for memory
BISTs to lots of small memories would result in huge area
overheads. To reduce these overheads, memory BIST logic
must be able to be shared.

A BIST architecture, based on a single micro-
programmable BIST processor and a set of memory wrap-
pers, was proposed to simplify the testing of systems con-
taining many distributed SRAMs of different sizes [1]. To
reduce the BIST area overhead, it was proposed to share
a single wrapper between a cluster of SRAMs (same type,
width, and addressing space). There is another architec-
ture that can connect memories that have different widths
or addressing spaces and share BIST logic [2]. In the ar-
chitecture, single memory BIST logic can test any number
of memories. Memories can be tested serially or in paral-
lel. Each memory to test is assigned to a particular step.
All memories in step 1 are tested before memories in step
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2, and so on. The designer can select a satisfactory assign
of memories in consideration of the test time, the diagnostic
resolution and the overhead. But there is no deterministic
algorithm to find an optimal assign of memories.

In this paper, we propose two types of memory-
connection methods for BIST wrapper sharing. A memory-
grouping problem for test circuit minimization under con-
straints of power consumption and test application time is
also formulated together with an algorithm that solves the
problem. In addition, the effectiveness of this technique is
demonstrated experimentally. This paper is organized as fol-
lows. In Sect. 2, our method for memory BIST logic shar-
ing is described. In Sect. 3, the memory-grouping problem
and an algorithm to solve the problem are presented. The
experimental results are shown in Sect. 4. Finally, Sect. 5
concludes this paper.

2. Memory BIST Logic Sharing

In this section, we describe our method of BIST logic shar-
ing for single port and word access memory. Figure 1 shows
an example of a memory BIST wrapper. The data generator
generates input test sequences. The address generator gen-
erates read and write addresses and the response analyzer
captures test output responses and detects faults. The by-
pass FFs are not used to test memory, but are used to handle
the memory interface signal during a scan test. The area
of the address generator, data generator, and response ana-
lyzer are almost proportional to the bit width of the address,

Fig. 1 Memory BIST wrapper.
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input data, and output data, respectively. However, some
of these logics can be shared by different memories wher-
ever the number of words or the data bit width are the same;
hence, the area of test circuits can be reduced. In this paper,
we treat the following two memory connection methods for
memory BIST logic sharing: parallel connection and serial
connection.

Parallel connection can be used to connect memories
that have the same number of words. Figure 2 shows an
example of parallel connection.

In this example, three data and address generators are
reduced to one by distributing the same test data and address
signals from a couple of data and address generators to (1) –
(4), enabling four memories to be tested simultaneously.

Serial connection allows memories with the same bit
width to be connected. Figure 3 shows an example of four
serially connected 8 × 32 word memories. In this example,
the four memories are tested as an 8 × 128 word memory.

Fig. 2 Parallel connection of memories.

Fig. 3 Serial connection of memories.

The address generator generates an additional 2 bit signal,
and the signal is used to select the memories from (1) – (4),
enabling the four memories to be tested serially. If all the
memories have individual BIST logic, a 32-bit data genera-
tor and response analyzer are required, but in this example,
all the memories can be tested using a shared 8 bit generator
and 8 bit response analyzer.

Serial connection reduces the area more than parallel
connection and also uses less power than parallel connec-
tion. However, the time required for serial connection test-
ing is longer than that for parallel connection testing. To
achieve the minimum area and a reasonable test applica-
tion time under power consumption constraints, the type of
memory connection should be considered during decisions
on memory grouping. The layout design must also take into
account distance constraints in relation to these connections.

3. Memory-Grouping Problem and Algorithm

3.1 Formulation of Memory-Grouping Problem

In this subsection, we present a memory-grouping problem.
We assume that the following information for each memory
mi is given:

• bi: data bit width of mi

• wi: word depth of mi

• pi: maximum power consumption of testing mi

• fi: operating frequency of mi

• xi: X coordinate of mi, yi: Y coordinate of mi

We define two types of compatibility, namely p-
compatibility and s-compatibility, as follows:

Given a set of memories V = {m1,m2, . . .mn}, a pair
of memories mi,m j ∈ V is p-compatible if they satisfy the
following conditions:

wi = wj (1)

fi = f j (2)√
(xi − x j)2 + (yi − y j)2 < D (3)

D is a constraint value that the designer decides ac-
cording to the design condition.

P-compatibility is represented by a graph Gp = (V, Ep),
where V is a set of a memory and the edge between a pair of
vertices (mi, m j) ∈ Ep exists if mi and m j are p-compatible.
If a set of memories can be connected in parallel, the graph
induced on Gp by the memories has to be a clique.

In the same way, a pair of memories mi,m j ∈ V is s-
compatible if they satisfy the following conditions:

bi = b j (4)

fi = f j (5)√
(xi − x j)2 + (yi − y j)2 < D (6)

S-compatibility is represented by a graph Gs = (V,Es),
where V is a set of memories and the edge between a pair of
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Fig. 4 Compatibility graphs and our target partition.

vertices (mi, m j) ∈ Es exists if mi and m j are s-compatible.
If a set of memories can be connected serially, the graph
induced on Gs by the memories has to be a clique.

To design memory BIST wrappers using these tech-
niques for memory BIST logic sharing, we have to find a
partition of V such that the memories that share the wrap-
per are included in the same block. Moreover, the partition
π = {B1, B2, . . . BK} has to satisfy the following conditions:

• Gip is the graph induced on Gp by block Bi.
• Gis is the graph induced on Gs by block Bi.
• Gip or Gis is a clique.

When only the graph Gip(Gis) is a clique, the mem-
ories included in Bi are connected in parallel (serially).
Figure 4 shows an example of a compatibility graph and
our target partition. For a given set of memories M1-5, p-
compatibility, and s-compatibility graphs under the distance
constraint D = 30 can be generated as shown in Fig. 4 (a)
and (b), respectively. Figure 4 (c) shows an example of our
target partition. The partition has two blocks, B1 and B2. B1

and B2 are the node set of the clique of the s-compatibility
and p-compatibility graphs, respectively.

For a partition π, we can calculate the area of the BIST
wrapper, test application time, and power consumption of
each block. The area and test application time depend on the
test-pattern algorithm. In this work, these were calculated
according to a published design [5] using an 8N algorithm
as follows.

If the connection type of block Bi = {m1,m2, . . .mk} is
a parallel connection,

Area SBi

= 0.75(log2(wBi))
2 + 2k log2(wBi)

+ 18
k∑

l=1

bl + 25 log2(wBi) + 3 max
l

(bl) + 66 (7)

Power consumption PBi =

k∑
l=1

pl (8)

Test application time TBi = 8 × wBi/ fBi (9)

fBi = f1 = f2 = . . . = fk

If the connection type of block B j = {m1,m2, . . .mk} is
a serial connection,

Area SBj

= 0.75
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(
log2 k

)

+ 9bBik + 14bBi + 8k + 61

bBi = b1 = b2 = . . . = bk (10)

Power consumption PBj = max
l

(pl) (11)

Test application time TBj = 8 ×


k∑
l=1

wl

 / fBj

× (number of background patterns) (12)

The expressions for area calculation (7) and (10) do not
consider the influence of timing conditions, but feedback is
available from previous designs.

Parallel-connected memories are tested concurrently,
and the power consumption is the sum of the power con-
sumption of each memory. In contrast, serial-connected
memories are activated one by one. Therefore, the power
consumption is the maximum power consumption of the
connected memories.

When a partition π as described in Sect. 3.1 is found,
the area, power consumption, and test application time of
each block are calculated using the above expression.

The total area of the memory BIST wrappers S total is
calculated as the sum of SBi.

S total =

K∑
i=1

SBi (13)

To control each memory BIST wrapper, at least one
BIST controller must be used. In this study, the number of
memory BIST wrappers was reduced by using the proposed
connections. There was therefore no increase in the number
of controllers. In addition, our target design includes a lot of
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memories so that the area of the memory BIST wrappers is
predominant. Therefore the area of the BIST controllers is
disregarded. But if there is a large difference in BIST con-
trollers between parallel and serial connection, S total should
include the area of BIST controllers. The difference in the
BIST controller area will depend on the BIST architecture
and algorithm used.

If there are many memories close to each other, the
wiring congestion may also need to be taken into consid-
eration. To add the parameter that reflects the amount of
wiring to the area calculation is our future work.

To calculate the total test application time of a mem-
ory BIST under a power-consumption constraint, we used
a rectangle packing algorithm that has been described else-
where [6]. The algorithm optimizes the test schedule of each
core so that the total test application time of an SoC is min-
imized under maximum power constraints. The inputs of
the scheduling algorithm are the maximum allowed power
consumption, the test application time, and the power con-
sumption of each core. In this study, we considered a block
to be a core. Therefore, we input {PBj} {TBj} as the infor-
mation for each core. In addition, we assumed the bit width
of the inter-connect between each wrapper and control logic
remained unchanged. We therefore disregarded the max-
imum TAM width. In this work, rectangles represent the
test application time and power consumption of each mem-
ory group were packed within limits representing the power
consumption as shown in Fig. 5.

The packing within the limits is determined so that the
total test application time is as short as possible. The left
end of each rectangle shows the test start time of the corre-
sponding memory group.

To reduce the total area of memory BIST wrappers by
memory BIST logic sharing, we formulated the following
memory-grouping problem.
Inputs:

a) A set of memories S and Information for each mem-
ory: M = Mi (bi,wi, pi, fi, xiyi)
where, bi,wi, pi, fi, xi, and yi are as follows:
bi: data bit width of mi

wi: word depth of mi

pi: maximum power consumption of testing mi

fi: frequency of mi

xi: X coordinate of mi

Fig. 5 Test scheduling using rectangle packing.

yi: Y coordinate of mi

Outputs:
a) A partition π of a given set of memories S for which
all the blocks satisfy the following conditions:
Gip is the graph induced on Gp by block Bi.
Gis is the graph induced on Gs by block Bi.
Gip or Gis is a clique.
b) Type of connection of each block
c) Test schedule of each memory

Constraints:
Maximum distance of memory connection: D
Maximum available peak power of the SoC: P
Maximum test application time of memory: T

Objective:
To minimize S total.
To solve this problem, an algorithm is proposed below.

3.2 Memory-Grouping Algorithm

Figure 6 shows the memory-grouping algorithm. In step 1,
the algorithm creates an s-compatibility graph. In step 2,
the minimum cut edge is calculated and deleted from the s-
compatibility graph. As a result of this operation, the graph
is divided, leaving a high possibility of a reduction in area.
In step 3, if the graph is not divided as a clique partition,
the algorithm returns to step 2. In step 4, the algorithm cal-
culates the test schedule. In step 5, if the test scheduling
fails, the algorithm returns to step 2 and divides the graph.
If all the memories are divided individually and the schedul-
ing fails, it means that there is no solution under the given
constraints. In step 6, the algorithm gathers blocks that have
only one memory into one block, and searches for the par-
tition at which S total is minimized using p-compatibility. In
this second search, it does not consider blocks that are deter-
mined to include two or more memories by the first search.
These are considered to be suitable for serial connection,
while the rest are considered to be suitable for parallel con-

Fig. 6 Memory grouping algorithm.
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Fig. 7 Heuristic of graph division.

nection.
Our proposed algorithm repeats the division process

from a 0-partition, that is, only one block that includes all
the memories, to obtain the target partition. As the algo-
rithm divides the block, S total increases. To reduce S total, we
use the following heuristics. As shown in Fig. 7, we intro-
duce the weight of an edge that represents the sum of the
reduced bit with the data generator and response analyzers
resulting from the connection. M1–M5 are the same set of
memories that were denoted in Fig. 4. For example, M1 and
M2 have 32-bit data inputs and outputs. If these memories
are connected using serial connection, we can reduce the
32-bit data generator and 32-bit response analyzer. So the
weight of the edge {M1, M2} in the s-compatibility graph
is calculated as 32 + 32 = 64. To ensure that the area is
reduced as much as possible, the min-cut method [3], [4] is
used. The following strategies are also used to decide the
compatibility of each block of the partition. Serial connec-
tion reduces the area more than parallel connection, and it
also consumes less power. Therefore, it is possible that giv-
ing priority to serial connection reduces S total. Based on this
prospect, the proposed algorithm searches for the partition
that minimizes S total using only s-compatibility in the first
search.

Figure 8 shows the pseudo code of the Memory Group-
ing Algorithm.

First, the algorithm initializes variables. The minimum
value of S total is stored into S min, and, in the first step, S min

is set to the total area of memory BIST wrapper without
sharing. The partition of a set of memory S is stored into π,
and the initial partition is set to 0-partition of S (line 1–2).

Next, the algorithm creates two compatibility graphs
(line 3), and select s-compatibility graph as the graph G that
is used to find partition (line 4).

In order to check the compatibility of each block, the
algorithm construct a set of graph Call (line 6). Each graph
Gi that is the member of Call is induced on G by block Bi

that is the member of π.
Then, for all Bi that include two or more memories,

execute the following operations (line 7–21).
The minimum cut edge is calculated and delete them

from Gi. By this operation, the vertex set Bi is divided into
two blocks, leaving much possibility of the area reduction.
If all the graph of new graph set Call are clique, calculate
S total and test schedule of the new partition πtmp. If S min >
S total and the test scheduling succeeded, πtmp is stored into
πbest as the best partition, and S total is stored into S min (line
8–17). If there is a graph Gi that is not a clique, or the test
scheduling failed, πtmp is stored into πnext (line 18–20).

If there is no partition that should be tried, the first
search is end (line 22–24). Then the algorithm stores p-
compatibility graph into G, and collects the blocks that have
only one memory into one block (line 25–29). Then, the
algorithm searches for the partition that S total is minimized
using p-compatibility (line 5–24).

This algorithm performs n(n − 1) times division and
scheduling in the worst case. The complexity of the schedul-
ing algorithm and min-cut algorithm are O(V log V) and
O(V2 log V), respectively. Therefore the complexity of this
algorithm is O(V3 log V).

4. Experimental Results

We carried out experiments to evaluate the proposed
method. The proposed algorithm was implemented in C and
the experiments were conducted on a 600-MHz Windows
PC.

Table 1 shows the information in each memory used
in the experiment. The 2–4th columns denote the data bit
width, word depth, and operating frequencies, respectively.
The 5th column shows the power consumption. In this ex-
periment, the power consumption of each memory was a
relative value in which memory No. 1 was assumed to be
100 under the following assumption:

The area is proportional to (number of words × number
of bits).

The power consumption is proportional to the area.
The power consumption is proportional to the fre-

quency.
The 6th and 7th columns show location. In this experi-

ment, the number of memories was varied between 3 and 50,
and the program was executed respectively. When the num-
ber of memories was N < 11, we used No. 1 to N, and for the
rest, we extended the same set of No. 1–10, with the Y coor-
dinate changing between 20 to 50. In an actual test, several
background patterns (e.g. marching, checker, checker-bar)
are used, but in this experiment, the test application time
was calculated by assuming the number of background pat-
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Fig. 8 Memory grouping algorithm. (pseudo code)

Table 1 Algorithm input information on memories. terns = 1. In addition, the following constraint values were
used:

Maximum distance of memory connection: D = 40
Maximum available peak power of the SoC: P = 5000
Maximum test application time of memory: T = 300
Experiments were carried out for the following five

cases: (1) Not shared (all the memories had individual BIST
wrappers); (2) parallel connection (memory BIST logic was
shared using only parallel connection as described in the
proposed technique); (3) serial connection (memory BIST
logic was shared using only serial connection as described in
the proposed technique); (4) parallel and serial connection
(memory BIST logic was shared using both parallel and se-
rial connection as described in the proposed technique); and
(5) exhaustive search (memory BIST logic was shared using
only parallel connection after an exhaustive search). Table 2
shows the experimental results. The first column shows the
number of memories and the second column shows the total
area of memory BIST wrappers without sharing. Columns
3–5 shows the total area of memory BIST wrappers using



1496
IEICE TRANS. INF. & SYST., VOL.E89–D, NO.4 APRIL 2006

Table 2 Area of memory-BIST logic.

Fig. 9 CPU time for memory grouping program.

the proposed techniques. The third column shows the re-
sults of using only parallel connection, while the fourth col-
umn shows the results of using only serial connection. The
fifth column shows the results of using both parallel and se-
rial connection and the sixth column shows the minimum
solution obtained using an exhaustive search.

We were only able to complete an exhaustive search
when the number of memories was less than 7. In these
cases, the results of the exhaustive search show that the
memory BIST logic sharing technique reduced the area of
the BIST wrappers by between 21.59 and 47.83% as min-
imum solutions. However, the technique achieved only
64.45% of the minimum solution in these cases, so there
is room for improving the quality of the solution.

The average reduction ratio for parallel connection,
serial connection, and parallel and serial connection were
21.08%, 37.25%, and 40.55%, respectively. In all cases,
parallel and serial connection achieved the best solution.
This result demonstrates that selection from two types of
connection methods reduces the area more than using a sin-
gle connection method.

Finally, Fig. 9 shows the execution time of the imple-

mented memory-grouping program. In all cases, the pro-
gram was executed within 10 seconds using the proposed
algorithm. The technique thus obtained good results within
a very short CPU time so it is suitable for practical applica-
tion.

5. Conclusion

A memory grouping problem was formulated and an algo-
rithm to solve the problem was proposed. Experimental re-
sults showed that the proposed method reduced the area of
memory BIST wrappers by up to 40.55%. It was also shown
that the ability to select from two types of connection meth-
ods reduced the area more than using a single connection
method.

As future work we will investigate improving the qual-
ity of the solution and minimizing the test application time.
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