
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 11, NOVEMBER 2006 1203

Instruction-Based Self-Testing of Delay Faults
in Pipelined Processors

Virendra Singh, Member, IEEE, Michiko Inoue, Member, IEEE, Kewal K. Saluja, Fellow, IEEE, and
Hideo Fujiwara, Fellow, IEEE

Abstract—Aggressive processor design methodology using high-
speed clock and deep submicrometer technology is necessitating
the use of at-speed delay fault testing. Although nearly all modern
processors use pipelined architecture, no method has been pro-
posed in literature to model these for the purpose of test gener-
ation. This paper proposes a graph theoretic model of pipelined
processors and develops a systematic approach to path delay fault
testing of such processor cores using the processor instruction set.
The proposed methodology generates test vectors under the ex-
tracted architectural constraints. These test vectors can be applied
in functional mode of operation, hence, self-test becomes possible.
Self-test in a functional mode can also be used for online periodic
testing. Our approach uses a graph model for architectural con-
straint extraction and path classification. Test vectors are gener-
ated using constrained automatic test pattern generation (ATPG)
under the extracted constraints. Finally, a test program consisting
of an instruction sequence is generated for the application of gen-
erated test vectors. We applied our method to two example pro-
cessors, namely a 16-bit 5-stage VPRO pipelined processor and a
32-bit pipelined DLX processor, to demonstrate the effectiveness of
our methodology.

Index Terms—At-speed test, delay fault test, instruction-based
self-test, microprocessor test.

I. INTRODUCTION

MODERN computer systems and systems-on-a-chip
(SOCs) are built around very high-speed processors,

in order to meet the increasing consumer demand of high
performance and rich functionality with quick turn around
time. Normally, these processor cores are preoptimized and
implemented with deep submicrometer technology. Design
reuse is being regarded as the only way that allows designers to
keep pace with the technological developments. It reduces time
to market and design effort. However, it introduces test diffi-
culties. It is no longer sufficient to target conventional stuck-at
faults; instead delay faults and crosstalk faults are becoming

Manuscript received September 20, 2005; revised April 5, 2006. This work
was supported in part by Semiconductor Technology Academic Research Center
(STARC) under the Research Project and by Japan Society for the Promotion of
Science (JSPS) under Grants-in-Aid for Scientific Research B (2) under Grant
15300018, and by the JSPS Research Fellowship under Grant L04509.

V. Singh is with the IC Design Group, Central Electronics Engineering
Research Institute, Pilani 333 031, India (e-mail: virendra@computer.org;
virendra@ieee.org; viren@ceeri.ernet.in).

M. Inoue and H. Fujiwara are with the Nara Institute of Science and Tech-
nology, Nara 630-0192, Japan.

K. K. Saluja is with the Department of Electrical and Computer Engineering,
University of Wisconsin-Madison, Madison, WI 53706 USA.

Digital Object Identifier 10.1109/TVLSI.2006.886412

increasingly important to keep pace with the rapid increase
in the speed of integrated circuits. At-speed testing using an
external tester is almost infeasible because of its inherent
inaccuracy and cost. The widely used self-testing technique,
built-in self-test (BIST), is a structural testing methodology
that provides a good quality test. However, due to the need
of design change, possibility of excessive power consump-
tion that may result into burn out of chips, and unacceptable
performance loss and area overhead, it is also not a feasible
solution for high-performance processor cores. Further, it may
be unacceptable to use hardware BIST for testing an optimized
high-performance, low-power core embedded deep inside an
SoC due to its poor and limited accessibility and its inability to
accommodate design changes.

A practical research direction is instruction-based self-test
(also known as software-based self-test) as an effective alter-
native to hardware-based self-test. It links instruction-level test
with the low-level fault model. Instruction-based self-test can be
applied in the functional mode of operation. In order to apply
test instructions in functional mode, it uses processor instruc-
tions to deliver test patterns and collect the test responses. Thus,
being inherently nonintrusive, it does not lead to area or perfor-
mance overheads, or excessive power consumption. Therefore,
it is the most suitable choice for testing optimized processor
cores embedded deep inside an SoC. Moreover, the same test
can also be used for the periodic online testing that contributes
to system reliability, as it can be applied to a system in normal
mode without affecting the system functionality.

This paper focuses on instruction-based self-testing method-
ology. Nearly all modern processors use pipelined design,
which motivated us to target pipelined processors. To the best
of our knowledge, this paper is the first attempt towards the
delay fault testing of pipelined processors in functional mode of
operation using its instruction set. We use the path delay fault
model, as this model is best suited for detecting real failures
in high-speed circuits. A graph theoretic model is developed
to model the behavior of a pipelined processor, and it is used
for the test vector generation and test instruction sequence
generation under the architectural constraints.

This paper is organized as follows. Section II describes the
previous work done in the domain of instruction-based self-
test. Section III describes the overview of our methodology and
Section IV presents the graph model. Sections V and VI de-
scribe the test generation process for datapath and controller
parts of a processor. Section VII describes the instruction se-
quence generation process. Section VIII presents experimental
results to demonstrate the effectiveness of our methodology, and
this paper finally concludes with Section IX.

1063-8210/$20.00 © 2006 IEEE

1204 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 11, NOVEMBER 2006

II. PREVIOUS WORK

A number of software based self-test approaches [2]–[7], tar-
geting stuck-at faults, have been proposed for nonpipelined pro-
cessors. The approaches proposed by Shen and Abraham [2]
and Batcher and Papachristou [3] are based on instruction ran-
domization, and are more functional in nature. Both these ap-
proaches [2], [3] give low fault coverage due to high level of
abstraction and they generate large code sequences resulting in
large test application time. Chen and Dey [4] used the concept
of self-test signature in which they generate structural tests in
the form of self-test signatures for functional modules by taking
constraints into consideration. These self-test signatures are ex-
panded into test sets using software LFSR during self-test and
applied using a test application program. Due to the pseudo-
random nature of this methodology, the self-test code size and
test application time are large. Moreover, efficiency of pseudo-
random software-based methodology depends on internal archi-
tecture and bit width. Kranitis et al. [5], [6] proposed a method-
ology based on instruction set architecture and register transfer
level (RTL) description while using deterministic test sets (uni-
versal test set) to test every functional component of the pro-
cessor for all the operations performed by that component. The
deterministic nature of the approach reduced test code size but
these methods find it difficult to achieve high fault coverage
for complex architectures. Kambe et al. [7] presented a tem-
plate-based approach for nonpipelined processors. A method-
ology for a pipelined processor based on the test templates was
presented by Chen et al. [8], which uses statistical regression for
function mapping. Although it is a semi-automatic approach, it
leads to long program size to achieve reasonable fault coverage
for complex architectures due to its statistical nature. Kranitis
et al. [9] also proposed a methodology for pipelined processors
based on RTL description and instruction set architecture using
deterministic tests for functional blocks, whereas Paschalis et al.
[10] proposed an online periodic test methodology for pipeline
processors. But these approaches [9], [10] target only functional
blocks; hence, they are unable to achieve high fault coverage for
complex architectures. Although [8]–[10] considered pipelined
processor, the pipelined behavior was not considered explicitly
in these, as they are largely focused on the functional blocks.
Also none of the previously stated, approach target faults in a
controller explicitly. Shamshiri et al. [20] proposed an approach
for online self-testing that includes test instructions to run BIST
during the idle time. As it uses hardware BIST, its hardware
overhead is large for complex processors.

A few instruction-based self-test approaches targeting delay
faults for a nonpipelined processor have also been proposed.
The approach proposed by Lai et al. [11]–[13] first classifies a
path to be functionally testable or untestable. The authors argue
that delay defects on the functionally untestable paths will not
cause any chip failure. This approach extracts constraints by
exhaustively searching all possible instructions and instruction
pairs which are applicable in the functional mode. The results
for the controller are not presented. This approach assumes that
a processor can be clearly divided into a datapath and a con-
troller which does not hold good for pipelined processors. The

scope of this approach is limited to simple processors. An effi-
cient graph theoretical model-based approach was proposed by
us in [14] and [15]. This approach efficiently extracts the con-
straints by using the graph theoretic model (called IE-graph) for
the datapath and the state transition graph model for the con-
troller and generates test vectors for the datapath and the con-
troller. Constrained combinational automatic test pattern gener-
ation (ATPG) is used for the test vector generation. These test
vectors can easily be applied by using instruction sequences as
these are generated under constraints. This approach is also lim-
ited to nonpipelined processors, though it can handle architec-
tural registers and finite state machine (FSM)-based controller.

To the best of our knowledge, no approach has been pro-
posed in literature for the testing of pipelined processors tar-
geting delay faults so far. The consideration of pipeline behavior
helps test generation process to a large extent for delay faults as
it needs to consider the applicability of two-pattern tests in two
consecutive cycles in the functional mode. Moreover, a system-
atic and scalable approach can be developed by modeling the
behavior of a processor. This is the motivating factor behind the
present work. We believe this is the first work towards the mod-
eling of pipeline behavior for testing of a microprocessor in the
functional mode.

III. OVERVIEW OF THE APPROACH

The objective of this work is to develop a procedure for delay
fault testing of a pipeline processor/processor core that can be
used to generate tests for the functional mode of operation of
a processor using its instruction set. The main contributions of
this work are as follows:

• develop a graph theoretic model for pipeline behavior
using the RT level description of the processor;

• provide a systematic approach to test the processor based
on the developed model;

• evaluate the method using experimental studies.
This paper presents a unified approach to test all normal and

bypassing/forwarding paths in the datapath and all paths in the
controller by using a graph model of the behavior of the pro-
cessor. A hierarchical approach is presented for the test genera-
tion which classifies paths and extracts the constraints for poten-
tially functionally testable paths at RTL to generate test vectors
at gate level using constrained ATPG. The path delay [16] fault
model is used in this work.

Throughout this paper, the following concepts are used.
Definition 1: A path [16] is defined as an ordered set of gates

, where is primary input or output from a
flip-flop (FF), and is a primary output or input to a FF. Output
of a gate is an input to gate .

Definition 2: The number of pipeline stages bypassed by a
path is defined as distance associated with the path.

Definition 3: A path is defined as functionally testable path if
it is guaranteed to get a test vector to test in the functional mode.

Definition 4: A path is defined as a functionally untestable
path if there exists no test vector (which can excite, propagate,
and latch the result) to test in functional mode.

SINGH et al.: INSTRUCTION-BASED SELF-TESTING OF DELAY FAULTS 1205

Definition 5: A path is defined as a parity check functionally
untestable path if it can be classified as functionally untestable
on the existence of odd parity in the path.

Finally, we need one more definition to account for the
aborted faults as well as for use during the test generation.

Definition 6: A path is defined as a potentially functionally
testable path if it is not classified as a functionally testable, func-
tionally untestable, or parity check functionally untestable path.

This definition is used to initially classify faults as potentially
functionally testable and as we determine a fault to be either
testable or untestable, it is moved from its class to the appro-
priate class. This definition is most useful when parity check
condition, described in Section V, is used to classify the paths.

Unlike a nonpipelined processor which completes execution
of one instruction before the execution of the next instruction,
in a pipelined processor multiple instructions can be in various
stages of execution. These stages can be viewed as independent
hardware units and all the stages execute instructions concur-
rently. In order to support concurrent execution of instructions,
necessary data and control signals are carried along as an in-
struction progresses in the pipeline stages. Simultaneous exe-
cution of multiple instructions can lead to data, control, and
structural hazards. Data bypassing is a commonly used hard-
ware technique to resolve data hazards; stalling is used for the
unresolved hazards. Data flows from the first pipeline stage to
the last pipeline stage during the normal execution (without
any hazard). The simultaneous execution of multiple instruc-
tions in various stages and the use of the data forwarding/by-
passing mechanism make the behavior of the pipelined pro-
cessor complex.

It is very difficult to separate datapath and controller parts
clearly in a pipelined processor as every pipeline stage carries all
the data and control signals required by the pipeline stages ahead
of it. Nonetheless, our model defines them clearly and considers
the paths in the datapath part and the control part separately. The
data transfer activities between the architectural registers and
data and address (memory address and register address) part of
the pipeline registers is assumed to be in the datapath. The paths,
which go through the control logic, are considered in the control
part. The activities in datapath are controlled by the control sig-
nals which are carried forward with the data; thus, the function
of datapath is constrained by the controller. Hence, only a subset
of structurally applicable test vectors may be applied in the func-
tional mode of operation due to the presence of constraints.

A graph theoretic model called pipeline instruction execution
graph (PIE-graph), has been developed that is constructed by
using the instruction set architecture and RTL description. It is
based on the instruction execution graph (IE-graph) introduced
by us in [14] and [15], and the ground breaking work of Thatte
and Abraham [1], for nonpipelined processors. This graph
models the complex pipeline behavior. Our present model
classifies paths as functionally testable (FT), functionally
untestable (FUT), potentially functionally testable (PFT), and
parity check functionally untestable (PCFUT) paths. After the
classification, it extracts constraints for the PFT and PCFUT
paths. First, constraints on the control signals in one or more
relevant pipeline stages are extracted and then the constraints
on justifiable data in the data registers or pipeline registers

Fig. 1. Test program flow.

under the control constraints are extracted. PCFUT paths are
further classified as FUT paths or PFT paths. A combinational
constrained ATPG is used for the test vector generation for the
PFT paths. We can get test sequences without using ATPG for
FT paths, and no test sequence is needed for FUT paths. For
testing the controller, the constraints on the legitimate values
for a group of control signals are extracted by using the RTL
description. PIE-graph is used along with these constraints
for further extraction of control and data constraints for target
paths through controller, and their classification. Constrained
ATPG is used to generate the test vectors. Finally, instruction
sequences to apply the test vectors, are generated by using the
knowledge of the control signals of various pipeline stages and
the PIE-graph. Test program generation flow is shown in Fig. 1.

IV. PIPELINE INSTRUCTION EXECUTION GRAPH

Data transfer activities between the data registers of a
pipelined processor can be modeled by the PIE-graph, which as
stated earlier, is based on the IE-graph, introduced by us in [14]
and [15], for nonpipelined processors. The IE-graph models
the behavior of a simple nonpipelined, FSM-based processor.
The PIE-graph can be constructed from the instruction set
architecture and RTL description of a processor. It captures the
pipeline behavior. This includes architecture registers and data
and addresses part of the pipeline registers. Note that this does
not include the control part of the pipeline registers.

We noticed that many paths directly transfer data to the
next stage using simple interconnects or through a set of
multiplexers. Keeping this in mind we classified logic into
three types: 1) interconnect ; 2) multiplexers ; and 3)
processing logic . This classification simplifies the test
generation process. This information can be obtained from
RTL description even when the full structural description is not
available.

Nodes of the PIE-graph are as follows:
1) architectural registers;
2) part of architectural registers which can be independently

readable and writable;
3) equivalent registers (set of registers which behave identi-

cally as a group with instruction set, such as register file);

1206 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 11, NOVEMBER 2006

Fig. 2. PIE-graph of VPRO processor.

4) two special nodes, IN and OUT, which model the external
world such as memory and input/output (I/O) devices;

5) data and address (memory address and register address)
part of pipeline registers.

If an architectural register is independently readable and
writable in parts, then the architectural register is represented
by the number of nodes equal to the number of independent
parts (category 2) rather than a single node (category 1).

A directed edge between two nodes is drawn iff there exists
at least one instruction responsible to transfer data (with or
without manipulation) over the edge (paths) between the two
registers corresponding to nodes. Each edge is marked with a
4-tuple

. This 4-tuple signifies that a set of instructions
is responsible for the data transfer from

stage to stage through the logic type
, and the pair of instructions for delay testing must

be separated by the cycles specified by the .
If a pipeline register is a source node, then the pipeline stage

succeeding it will be stage; otherwise, the stage
controlling the data transfer activities in the register will be in

. If a pipeline register is a destination node, then the
stage just before it (whose data it is latching) will be
stage, otherwise the stage that controls the data write activity
in the register is . Data transfer activities inside a
pipeline stage are modeled by keeping the same
and and zero distance, and the data transfer activities

across the pipeline stages (mainly bypassing paths) are mod-
eled by using , and appropriate distance
to create hazard in order to transfer data over that.

We will use a 16-bit, 5-stage pipelined processor VPRO de-
sign with commonly used 24 instructions to demonstrate the
concept. This processor uses load/store RISC architecture. It has
register type, immediate type, and jump type instruction for-
mats. This contains nearly all features of the pipelined RISC
processors. A complete PIE-graph of VPRO is shown in Fig. 2,
and the processor description is given in the appendix and in
[19].

The PIE-graph of the VPRO processor consists of 13 nodes
and 26 edges, whereas the PIE-graph of the pipelined DLX pro-
cessor consists of 24 nodes and 48 edges. The complexity of the
PIE-graph does not grow linearly with the processor complexity,
e.g., with increase in bit width, number of general purpose reg-
isters, or instructions, etc. In fact, increase in the bit-width and
the number of registers in a register file do not affect the com-
plexity of the graph. Hence, we believe that it is manageable for
a modern pipelined processor and it should be addressable by
tools once it is developed. The PIE-graph generation process is
still manual. It is not automated because of different styles of
writing the RTL code.

V. DATAPATH

This section deals with the paths that transfer data between
architectural registers or data and address part of the pipeline

SINGH et al.: INSTRUCTION-BASED SELF-TESTING OF DELAY FAULTS 1207

registers, which are significant in number. Other paths will be
considered in the control part. The key idea behind this work
is to develop a hierarchical and systematic approach which can
achieve very high fault efficiency. In order to achieve this, the
datapath of a pipeline processor is modeled by a PIE-graph. The
developed graph model, along with the high level information
(ISA and RTL description), is used to classify the paths at high
level. This classification leads to eliminating those paths which
cannot be excited in the functional mode. This section, based
on the graph model, analyzes the conditions under which a fault
can be excited in the functional mode and extracts the exact
constraints. Moreover, it also facilitates the instruction sequence
generation process.

We assume that any instruction can be followed by any other
instruction in a pipeline stage except those instructions, which
always need stall after the execution such as unconditional
jumps. In order to test a path from register to register , we
must create a transition at and capture the transferred data
at . Although there may be paths with (bypass
paths) to , there is guaranteed to be a path with zero distance
(normal path) which brings the same values as the bypass paths,
and hence, we only need to consider the normal path
for data transfer to . We also allow the propagation of data
to through normal paths except from . This observation
prunes the search space substantially.

Definition 7: Instructions, which behave identically within a
pipeline stage, are defined as equivalent instructions, for that
stage.

For example, ADD and INC behave identically in the EX
stage of the VPRO processor; hence, these are the equivalent
instructions in the EX stage. Similarly, instructions (ADD,
ADDU, ADDI, ADDUI, LW, LH, LB, SW, SH, SB) are the
equivalent instructions for the EX stage of the pipelined DLX
processor. We can use these equivalent instructions to reduce
the marked instructions which, in turn, reduce the constraint
extraction and test generation effort. We make a table of the
equivalent instructions for every stage, which is also used
during instruction sequence generation.

Example 1: The bypass paths from memory to register S1 of
the VPRO processor (represented by an edge between IN and
S1) can be tested by the following instruction sequence:

The edge between IN and S1 is marked with distance 2, which
means these paths bypass two pipeline stages. We need four in-
structions to test these paths. The instructions and launch a
transition from memory and propagate the launched transition in
the mem stage, and the instructions and propagate the tran-
sition in the decode stage. Finally, the instruction transfers the
result to register R4. During the first cycle, the instructions
and execute concurrently in the mem stage and decode stage,
respectively, and during the second cycle, the instructions and

Fig. 3. Target path and pipeline stages.

execute concurrently in the mem stage and the decode stage,
respectively. Therefore, this sequence can test the paths from IN
to S1.

A path from register to register , marked with
LT , where LT I,M,L , can be tested by

a test instruction sequence IP IP ID ID IS IS ,
where ID ID ID are the filler instructions.
To test a path, we need constraints for both stages and
in two consecutive cycles (as shown in Fig. 3). Instruction pair
(IP , IP) is responsible to create a transition at register and
allows it to propagate in the stage. The instruction pair (IS ,
IS) is responsible to propagate the created transition in the
stage and, finally, instruction IS latches the result in register

. The instructions IP and IS must be executed concurrently
in the stages and , respectively. Similarly, the instructions
IP and IS must be executed concurrently in the stages
and , respectively. Other instructions ID ID are
used to provide the proper distance between the instructions
IP and IS , so that a transition along the path can be excited,
propagated, and the result will be latched. We assume that data
from other stages (for example, data from in Fig. 3) come
through MUX and such data do not affect the data transfer
along the target path. Therefore, ATPG does not care for these
values and we do not need to extract their constraints. For
example, in example 1 the data transfer from the mem stage
to the ID stage selects the appropriate MUX control signal.
This selection automatically deselects the other data transfer
from the EX stage or the ID stage. Therefore, ATPG need not
consider dataflow from the other stages. A sequence of
instructions is needed to test these paths. Note that IP IS if

, and IP IS and IP IS if .
Instruction pair (IP and IP) must be marked on any zero

distance (with) in-edge of and instruction pair (IS
and IS) must be marked on the target path (edge between
and). If source node is IN node then any load instruction can
be used as IP or IP . If the target path is inside a pipeline stage

then we don’t need dummy instructions, and are left
with an instruction pair (IS and IS). The instructions IS and
IS must be marked on any zero distance in-edge of and at
target edge, respectively.

A. Path Classification and Constraint Extraction

Our approach classifies all paths into four categories, which
are: 1) FT paths; 2) FUT paths; 3) PFT paths; and 4) PCFUT
paths. We can get a test sequence without using ATPG for FT
paths, whereas we do not need to generate test for FUT paths.
For the rest of the categories we need to extract architectural
constraints.

1208 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 11, NOVEMBER 2006

There are two types of constraints: control constraints and
data constraints. Control constraints are the constraints on con-
trol signals, which are responsible for transfering data between
two nodes. These are obtained from the PIE-graph. Data con-
straints are the constraints on justifiable data under the control
constraints. Control constraints are extracted as instruction pairs
(IP , IP) and (IS , IS). Note that the nonrobust test [16] does
not take care of first vector for off inputs. Therefore, we need to
extract a set of instructions for IP and IS instead of instruc-
tion pairs (IP , IP) and (IS , IS). We can easily get the set of
instructions for IP and IS from the instructions marked on the
input edge to and on the target edge, respectively.

Let there be an edge between nodes and , marked with
LT . Constraints for paths of various types of

logic are extracted as follows:
1) when the logic type is interconnect “ :”

These paths are generally used to carry forward data to the
next stage and are always with . has only one
in-edge, which is from . An instruction sequence (IS ,
IS) is needed to test. Any instruction marked on the zero
distance in-edge of register , can be used as
IS , and any instruction marked in the target edge can be
used as IS . These two instructions give the constraint on
the control signals in the stage. has no other in-edge;
hence, it will not observe any data constraint. These paths
can be tested as interconnects test. Therefore, these paths
are classified as FT paths;

2) when logic type is multiplexer “ :”
These paths pass through a set of MUXs and behave as in-
terconnects if control signals are properly assigned. There-
fore, under the control constraints (proper assignment of
MUX select signals), data constraints are not applicable, as
other paths to will automatically be deselected with the
proper assignment of MUXs control signals. These paths
can be tested as interconnect test;
We consider two different distance cases separately:

a) when (normal flow inside a pipeline stage):
These paths transfer the data inside the same stage.
Therefore an instruction pair (IS , IS) is needed to
test these paths. Any instruction marked on the zero
distance in-edge of can be used as IS , and
any instruction marked on the target edge can be used
as IS . Instruction pair (IS , IS) gives the constraints
on the control signals in the stage. These paths
always find a sequence of instructions without any
data constraints, hence, classified as FT paths;

b) when (data flow across the pipeline stages, i.e.,
forwarding path):
These paths are responsible for the data transfer
across the pipeline stages. These paths are classified
as FUT paths if these are marked with and have
a self-loop because a transition cannot be launched.
Other paths can be tested by an instruction sequence
IP IP ID ID IS IS . The instructions

IP and IP must be marked on any of zero distance
in-edge of , and the instructions IS and IS must
be marked on the target edge. Therefore, the instruc-
tion pair (IP , IP) gives the control constraints on

Fig. 4. Edge consideration for constraint extraction: (a) structural organiza-
tion and (b) edges in PIE-graph.

the control signals of stage , and the instruction pair
(IS , IS) gives the constraints on the control signals
in stage . These paths are classified as FT paths;

3) when logic type is processing logic “ :”
This includes the paths which pass through the combina-
tional logic. Let an edge between two registers and

be marked with LT . The following
edges and nodes must be considered: 1) all the in-edges to

with distance and logic type “ ” (having some in-
structions common with); 2) all the in-edges to
with zero distance, logic type “ ,” and have some instruc-
tions common with ; and 3) all zero distance
in-edges to .
All those registers which have out-edge to (with dis-
tance —same as distance of target path, logic type “ ,”
and some instructions common with the target edge) pro-
vide the data constraints for the propagation of created
transition in the stage. All those registers which have
out-edge to (with zero distance, logic type “ ,” and
have some instructions common with the target path) pro-
vide data constraints for the propagation of the created
transition in the stage. Fig. 4 shows the edges and nodes
which are needed to be considered. Note that

, and ;
We consider two different distance cases separately:

a) when (Normal flow inside a pipeline stage):
This includes the paths in a single stage. We need
an instruction pair (IS , IS) for testing. IS can be
any instruction among the instructions marked on the
in-edge of , and IS can be any instruction among
the instructions marked on the target edge. An instruc-
tion pair (IS , IS) gives the constraint on the control
signal in the stage. We have to find out the data con-
straints on all those registers which have zero distance
in-edge to with logic type “ ” using the PIE-graph
and RTL description. Let have an in-edge from
register which is marked with common instruc-
tions with the target edge. Data constraints for these
registers can be obtained as follows.
If the selected instruction IS is not marked on any
of the in-edge of , then the register must have
constant value across two time frames (under IS and
IS);

SINGH et al.: INSTRUCTION-BASED SELF-TESTING OF DELAY FAULTS 1209

b) when (data flow across pipeline stages, i.e.,
forwarding path):
These paths are responsible to transfer data across
the pipeline stages. These paths need consec-
utive instructions IP IP ID ID IS IS
to test, which consists of filler instructions to
excite these paths. IP and IP can be any instruction
marked at any zero distance in-edge of , and IS
and IS can be any instruction marked at target edge.
Instruction pair (IP , IP) gives the control constraints
on the control signals of the stage, and instruction
pair (IS , IS) gives the constraint on the control sig-
nals of the stage. Note that IP IS for ,
and we need an instruction sequence IP IS IS to
test a path.
If an edge between register to is marked with
logic type “ ” and , then the paths from bit
to bit of register represents a self-loop. The paths
between bit to bit of the register can be function-
ally testable only when an odd inversion parity exists
in the path, i.e., when the odd number of gates which
can invert the logic (e.g., NOT, NOR, etc.) exists, oth-
erwise, these paths are functionally untestable. These
paths are classified as PCFUT. Many paths of this
kind exist in the circuit, such as paths in the pass logic
of ALU, paths in shifter, paths in logic operation block
of ALU, etc. The rest of the paths are classified as PFT
paths.
Instruction pair (IP , IP) imposes constraints on
those registers which have out-edge to with
distance , logic type “ ” and some instructions
common with the target edge. Instruction pair (IS ,
IS) imposes data constraints to those registers which
have zero distance out-edge of logic type “ ” to
register with some instruction common with the
target edge. Let register have out-edge to
which is marked with distance , logic type “ ,” and
have some common instructions with target edge,
and a register have zero distance out-edge to
which is marked with logic type “ ,” and has some
common instructions with target edge. Register
must have constant value across two time frames
(under IP and IP) if selected instruction IP is not
marked on any in-edge of . Register must have
constant value across two time frames (under IS and
IS) if selected IS is not marked on any the in-edge
of .
Note that during stall cycle a path cannot be excited.
The path can be excited when a stall cycle is followed
by a nonstall cycle that can also be achieved in normal
condition (without stall) and the previously stated pro-
cedure can be used.

Example 2: Paths from the node S1 to ALO in the VPRO
processor:

Paths from S1 to ALO are marked with
as shown in Fig. 5. This implies that any

instruction from to can transfer data on the target path.
We consider only normal data flow for the paths other than

Fig. 5. Edge consideration for the paths between S1 and ALO.

the target paths. Register S1 has only one zero distance edge
marked with the tuple . Therefore, IS
can be any instruction from to , and IS can also be any
instruction from to . We can extract constraints in terms of
instruction pairs and convert them into pairs of control signals
(alu control and comparator control). Register S2 also has an
out-edge with ALO marked with ,
which provides the data constraints. Since the register S2 does
not have any instruction marked at the in-edge which is not
marked at the zero distance in-edge of S1, these paths do not
observe data constraints. Since there are no constraints on
data registers, we can find the values for control signals (ALU
control signals and comparator signals) for the set of valid
instructions for IS and IS , i.e., set of control signals for
instructions to . All the possible combinations of control
signals under IS and IS are the control constraints. Eight sets
of control signals have been extracted under IS and the same
eight sets for IS .

B. Test Vector Generation

An inversion parity test program, which checks the parity of
the path, is used to further classify PCFUT paths into FUT paths
or PFT paths. The previously stated procedure can be used to
simplify the circuit for ATPG. Constrained ATPG is used to
generate test vectors for all the PFT paths by using extracted
constraints. ATPG is given with PFT paths and their respective
extracted constraints, and it returns the test vectors if paths are
functionally testable or identifies these to be untestable.

In order to generate test vectors under functional constraints,
a PODEM-based delay fault test generation algorithm is im-
plemented. For each PFT path, at first, it generates test vectors
under extracted constraints for a nonrobust (NR) test if it exists.
Otherwise, it declares the path as functionally NR untestable
and generates the test vector under extracted constraints for that
path for a functional sensitizable (FS) test if it exists. If a FS
test does not exist then it identifies that path as a functionally
FS untestable path. The algorithm flow is shown in Fig. 6.

VI. CONTROLLER

This section deals with the paths that contribute to control sig-
nals. Any path, which goes through control logic, is dealt with
in this section. In order to execute an instruction, the instruc-
tion is decoded by the decode unit (in the decode stage). The
decode unit dispatches control signals along with the required
data to the pipeline stages ahead. Therefore, each pipeline stage
has control signals that are not structured in nature but most of
the time these can be grouped together in a small group.

1210 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 11, NOVEMBER 2006

Fig. 6. Constraint test generation flow.

A. Path Classification and Constraint Extraction

In our approach, a small grouping of control signals is used
to find constraints. We need to extract two types of constraints:
1) constraints on the legitimate values of the group of control
signals and 2) constraints on inter group signals in a pipeline
stage.

1) Constraints on the Legitimacy of Signals: Control signals
generally form a group of a small number of signals, where
every possible value is not valid. Therefore, we need to ex-
tract all the legitimate values. Test patterns must be generated
under the legitimate values. For example, comparator control
(comp_ctrl) signals in VPRO are grouped in a group of 3 bits,
and the legitimate values are and .

2) Constraints on Inter Group Signals: It is not sufficient to
consider only the legitimate values for a group of signals but
we also need to consider the legitimacy of the inter group sig-
nals in a pipeline stage, as all the possible combinations are not
valid. We extract these in terms of instructions, i.e., map the con-
trol signals to the instructions which can generate the particular
combination and all possible combinations are extracted. For
example, in VPRO when ALU ctrl (alu_ctrl) signal is the
comparator control (comp_ctrl) signal must be .

The part of a pipeline register which carries the control sig-
nals is called the control register (CR). There may be paths from
the CR to the CR, the CR to the data register (DR), the DR
(such as IR) to the CR, or the DR to the DR through control
logic. Paths from CR-to-CR are used to carry the control signals
for the pipeline stages ahead. These paths are usually connected
directly and can always be tested as interconnect tests. Hence,
these paths are classified as FT paths. Test vectors are generated
under the previously stated constraints. Paths from the DR to

the CR are usually present in the decode stage. These paths are
classified as PFT paths, and the test vectors for these paths can
be generated under the previously stated constraints. Paths from
CR to DR are the paths which pass through the combinational
logic and are significant in number. We construct a table that
shows the transition on some bit in CR with instructions after
exclusion of equivalent instructions.

Let there be a path between a bit of control register and
data register . Constraints can be extracted in the following
manner:

1) when control register and data register are in the same
stage:
It needs an instruction sequence of two instructions (IS ,
IS). All those instruction pairs that can produce a transi-
tion at bit and those are also marked on the in-edge of the
register can be the test instructions (IS , IS). All the
data registers that have zero distance out-edge to (have
some common instructions with the selected potential in-
struction pairs) are needed to check for data constraints.
Data constraints can be obtained in the same way as we ob-
tain for datapath. These paths are classified as PFT paths;

2) when control register and data register are in dif-
ferent stages:
Register must have an edge from a register that lies
in the same stage in which lies. This edge gives us the
distance (say), and we need a instruction se-
quence IP IP ID ID IS IS to apply a test.
All those instructions which can produce a transition at bit

of and marked on any of the in-edge of those regis-
ters which have out-edge to with same distance , can
act as IP , and IP . Constraints on those registers which
have out-edge to (with distance) must be considered
under IP , and IP . All those instructions which are marked
on the in-edge of (with) can act as IS
and IS , and data constraints on those registers which have
zero distance out-edge to must be considered under the
control constraints of IS , IS instructions. These data con-
straints can be obtained in the same way as in datapath.
These paths are classified as PFT paths.

Paths from DR to DR through control logic, usually carry con-
trol signals to multiplexers in the forwarding paths. Let there be
a path from register to .

1) when both registers and are in the same stage:
Register must have zero distance in-edges. The in-
structions marked on these edges provides the control con-
straints. These paths do not observe data constraints and
these are classified as PFT paths.
Depending on the multiplexer control signals, an
in-edge to is selected which forwards data during
this test. Let that edge be marked with distance .
These paths can be tested by an instruction sequence
IP IP ID ID IS IS ;

2) when both registers and are in different stages:
Register must have an edge from a register that
lies in the same stage in which lies. The edge from

to gives us the distance (say). The test vec-
tors can be applied through an instruction sequence
IP IP ID ID IS IS . All the instructions

SINGH et al.: INSTRUCTION-BASED SELF-TESTING OF DELAY FAULTS 1211

marked on the edge from to can act as IS and IS .
All the instructions marked on the in-edges of can act
as IP and IP . These paths do not observe data constraints
and these are classified as PFT paths.

B. Test Vector Generation

Constrained ATPG, as discussed in Section V-B, is used to
generate test vectors for all the PFT paths under the extracted
constraints. ATPG is given with PFT paths and their respective
extracted constraints, and it returns the test vectors if the paths
are functionally testable or it identifies these to be untestable.

VII. TEST INSTRUCTION SEQUENCE GENERATION

The generated test vector pairs as explained before are as-
signed to control signals and registers. A sequence of instruc-
tions is needed to apply these test vectors. This process needs
the following three steps:

1) test instruction sequence generation;
2) justification instruction sequence generation;
3) observation instruction sequence generation.
Test instruction sequence generation step generates a se-

quence of instructions which is responsible to launch the
transition, propagates the launched transition, and latches the
result provided that desired data are available in the appropriate
registers. These data are made available by the justification
instruction sequence. Finally, the result must be transferred
to memory by a sequence of instructions, called observation
sequence.

1) Test Instruction Sequence Generation: We have generated
the test vectors for the paths between a register pair, under ex-
tracted constraints, and the information regarding the registers
is available to us. We can use this information and PIE-graph to
generate test instructions, which make this process simpler. It is
clear from the earlier discussion that if an edge between regis-
ters and is marked LT , then we need
an instruction sequence IP IP ID ID IS IS to
apply the test vectors provided that test vectors are available in
desired registers. Instructions IP (when) and IP (when

) are decided by the control signals of the stage , and
instructions IS and IS are decided by the control signals of the

stage. If there are more than one potential candidates for these
instructions then we must select an easy to observe instruction
(such as STORE) for IS and an easy to justify instruction for
the rest. Once IP , IP , IS , and IS instructions are decided, we
fill the rest of the instructions by NOP instructions which can be
replaced later on by the justification instructions for IS and IS
that can reduce the number of instructions.

2) Justification Instructions: During the test instruction se-
quence generation, we assumed that the desired data are avail-
able in appropriate registers. Now, we need to generate a se-
quence of instructions to justify the data in the registers.

We cannot directly justify data in the pipeline registers.
Therefore, we map back the data to either memory or architec-
ture registers where we can justify easily. In order to do this, we
construct a table that maps every pipeline data/address register
to a justifiable register or memory and to an output register or

TABLE I
REGISTER MAPPING—VPRO PROCESSOR

TABLE II
RESULTS FOR VPRO PROCESSOR

TABLE III
RESULTS FOR PIPELINED DLX PROCESSOR

memory when we execute some particular instruction. Such
a table for VPRO is shown in part which contain some of the
mapped I/O in Table I.

We use Table I to find the register/memory where we need to
justify data. Simple justification instructions are used. A routine
developed specifically for justification of a value in a special
register, is used to justify the value in the special register. For
example, we need to have a sequence of instructions, as opposed
to a pair of instructions, to justify the data in the status register
which sets some flag(s).

3) Observation Instructions: Result from the register
must be transferred to memory. The instruction IS transfers
data to some output register or memory, and that information
we can get from Table I. If it is transferred to memory then we
do not need any observation instruction, otherwise, we need to
transfer data from register file to memory using the STORE in-
struction. A special routine is used for the data transfer from
the special registers and the control registers. For example, data
from a status register can be observed by a sequence of instruc-
tions which checks the status of different flags.

Example 3: Consider a test vector pair for a path between
registers S1 and ALO of the VPRO processor

,

1212 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 11, NOVEMBER 2006

Fig. 7. Structural organization of VPRO processor.

and
. The test instruction sequence will be

where

and

This edge is marked with . Therefore, we need
two test instructions IS and IS which can be obtained from the
control signals of the execution stage. Control signals imply that
the instruction IS must be ADD (provide ,

) and IS must be SUB (provide
,). We map pipeline register S1 and S2 to

memory or architectural registers using a mapping table. Both
these registers are mapped to the register file. We must choose
four different registers from the register file to justify the value.
Let R1 and R2 be chosen for S1, and R3 and R4 be chosen for
S2. The content of R1, R2, R3, and R4 must be 0024H, 0004H,
0428H, and 0224H, respectively. We must also map the output
pipeline register to memory or architectural register using the
mapping table. ALO is mapped to the register file. Therefore,
we must once again choose some register from the register file,
and let it be R5 (it can also be R1 or any other register). Test

instructions will be ADD R5, R1, R3, and SUB R5, R2, R4. In
order to observe the result we have to transfer data to memory.
Observation instruction will be STORE instruction. In order to
justify data in registers R1, R2, R3, and R4, we need LOAD
instructions.

The previously stated method can generate a test sequence to
apply the generated test vectors under architectural constraints.
However, in theory, it is possible that a fault effect (error) that
is captured in a register may be masked when the results are
propagated for storage in the memory, or even the justifica-
tion sequence may not be valid. It may happen due to mul-
tiple excitation of the same fault either during the justification
process or during the observation process. But, we believe that
the likelihood of this to happen is very little and in any case such
fault masking can be identified by fault simulation. If a fault is
masked by the justification sequence then the fault effect from
the justification sequence can be directly transferred to memory
by an observation sequence without going through the test in-
struction sequence, because the fault is already excited by the
justification instruction sequence. If a fault is masked by the ob-
servation sequence then it can be eliminated by the insertion
of some dummy instruction(s) between the test instruction se-
quence and the observation instruction sequence. Hence, fault
masking can be eliminated.

SINGH et al.: INSTRUCTION-BASED SELF-TESTING OF DELAY FAULTS 1213

VIII. EXPERIMENTAL RESULTS

We have applied our methodology to two processors namely
16-bit 5-stage pipelined VPRO processor and 32-bit 5-stage
pipelined DLX processor. The VPRO processor has been syn-
thesized using 2345 gates and 268 sequential elements, and the
pipelined DLX processor [17] is synthesized with 34 347 gates
and 1898 sequential elements. Complete PIE-graphs for both
processors are constructed by using instruction set architecture
and RTL descriptions. The PIE-graph is used for the constraint
extraction and the path classification. Our developed con-
strained ATPG for path delay faults is used, as commercially
available ATPG are not capable of handling constraints.

Results for the VPRO and DLX processors for the NR and
FS [16] tests are shown in Tables II and III, respectively. The
order of the generation of test vectors is the NR test followed
by the FS test. For each path, at first, ATPG generates a test
vector pair for the NR test, if it exists under the extracted archi-
tectural constraints. Otherwise, it generates the test vector pair
for the FS test if it exists under architectural constraints. The
FS testable paths include the NR testable paths. The abort limit
was set to 500. Here, we considered a path that goes through
the control logic as a part of the controller. The results show
that only a small fraction (about 24%) of paths are function-
ally testable. However, we achieve 100% fault efficiency in the
test generation. These test vectors are generated under architec-
tural constraints; hence, these can be applied through instruction
sequences. As pointed out in Section VII, these instruction se-
quences may lead to fault masking due to the observation and
the justification sequences. Fault masking can be identified by
fault simulation and eliminated as explained in Section VII.

We now estimate the size of the test programs to test these
processors. In order to apply a test vector pair, a sequence
consisting of approximately 15 instructions is sufficient as
follows. We need a sequence of about eight instructions to load
operands, about four test instructions—without filler instruc-
tions, one observation instruction, and about two instructions to
load the memory locations. Therefore, a maximum of 2 858 130
instructions are needed to apply the generated 190 542 test
vector pairs for DLX processor. Assuming each instruction
to be 4 bytes, we need 10.9-MB storage space. Such a test
program will take 37 ms to run on a 100-MHz implementation
of a DLX processor, assuming on average 30% stalls during
execution. Although these numbers can be reduced substan-
tially by merging some vector pairs. None the less, these figures
(storage requirement and test time) show that this approach is
suitable for self-testing of processors and it can also be applied
for periodic online testing in order to enhance the reliability.

IX. CONCLUSION

In this paper, we presented a systematic hierarchical approach
for the delay fault testing of pipelined processor cores using
their instruction sets. To achieve this we developed a graph theo-
retical model using the RTL description of the processor to cap-
ture the complex pipeline behavior. The graph model is used to
extract architecture constraints for test generation. The extrac-
tion process can also identify some functionally untestable paths

TABLE IV
INSTRUCTION ENCODING—VPRO PROCESSOR

at this stage. The test generator uses the gate level description of
the design and the extracted constraints to generate test vectors.
In order to apply these generated test vectors in the functional
mode which enables at-speed testing, an instruction sequence
generation procedure is developed. The graph model also as-
sists the test instruction sequence generation process. The ef-
fectiveness of this approach is demonstrated through the exper-
imental results on two representative pipelined processors. The
estimated test program size and test application time fit into the
online periodic testing criterion. Hence, the proposed approach
can also be used for online periodic testing which can further
improve the reliability of the system in the field. We would like
to extend this model for the more complex processors such as
super-scalar and VLIW architectures in future.

APPENDIX I
VPRO PROCESSOR

The VPRO is a 16-bit, 5-stage pipelined RISC processor. It
has 24 most common instructions. It uses load/store architecture
and consists of 8 general purpose 16-bit registers.

Instruction Set Architecture:
It consists of three types of instructions.

1) Register- Register type instructions

2) Immediate type instructions

1214 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 11, NOVEMBER 2006

3) Jump type instructions

The structural organization of the processor is shown in Fig. 7
and the instruction encoding is given in Table IV.

ACKNOWLEDGMENT

The authors would like to thank Dr. S. Ohtake and Dr. T.
Yoneda of Nara Institute of Science and Technology for their
valuable comments. They would also like to thank the STARC
members for their valuable comments.

REFERENCES

[1] S. M. Thatte and J. A. Abraham, “Test generation for microprocessors,”
IEEE Trans. Comput., vol. C-29, no. 6, pp. 429–441, Jun. 1980.

[2] J. Shen and J. A. Abraham, “Native mode functional test generation
for processors with applications to self test and design validation,” in
Proc. Int. Test Conf., 1998, pp. 990–999.

[3] K. Batcher and C. Papachristou, “Instruction randomization self test
for processor cores,” in Proc. VLSI Test Symp., 1999, pp. 34–40.

[4] L. Chen and S. Dey, “Software-based self-testing methodology for pro-
cessor cores,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
vol. 20, no. 3, pp. 369–380, Mar. 2001.

[5] N. Krantis, D. Gizopoulos, A. Paschalis, and Y. Zorian, “Instruction-
based self-testing of processor cores,” in Proc. VLSI Test Symp., 2002,
pp. 223–228.

[6] N. Krantis, A. Paschalis, D. Gizopoulos, and Y. Zorian, “Instruction-
based self-testing of processor cores,” J. Electron. Testing: Theory and
Appl. (JETTA), vol. 19, pp. 103–112, 2003.

[7] K. Kambe, M. Inoue, and H. Fujiwara, “Efficient template generation
for instruction-based self-test of processor cores,” in Proc. IEEE Asian
Test Symp., 2004, pp. 152–157.

[8] L. Chen, S. Ravi, A. Raghunath, and S. Dey, “A scalable software-
based self-test methodology for programmable processors,” in Proc.
Des. Autom. Conf., 2003, pp. 548–553.

[9] N. Krantis, G. Xenoulis, A. Paschalis, D. Gizopolous, and Y. Zorian,
“Application and analysis of RT-level software-based self-testing for
embedded processor cores,” in Proc. Int. Test Conf., 2003, pp. 431–440.

[10] A. Paschalis and D. Gizopoulos, “Effective software-based self-test
strategies for on-line periodic testing of embedded processors,” in Proc.
Des. Test Eur., 2004, pp. 578–583.

[11] W.-C. Lai, A. Krstic, and K.-T. Cheng, “On testing the path delay faults
of a microprocessor using its instruction set,” in Proc. VLSI Test Symp.,
2000, pp. 15–20.

[12] ——, “Test program synthesis for path delay faults in microprocessor
cores,” in Proc. Int. Test Conf., 2000, pp. 1080–1089.

[13] W.-C. Lai and K.-T. Cheng, “Instruction-level DFT for testing pro-
cessor and IP cores in system-on-a-chip,” in Proc. Des. Autom. Conf.,
2001, pp. 59–64.

[14] V. Singh, M. Inoue, K. K. Saluja, and H. Fujiwara, “Instruction-based
delay fault testing of processor cores,” in Proc. Int. Conf. VLSI Des.,
2004, pp. 933–938.

[15] ——, “Delay fault testing of processor cores in functional mode,”
IEICE Trans. Inf. Syst., vol. E-88D, no. 3, pp. 610–618, Mar. 2005.

[16] A. Krstic and K.-T. Cheng, Delay Fault Testing for VLSI Circuits.
Norwell, MA: Kluwer, 1998.

[17] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-
tative Approach. San Mateo, CA: Morgan Kaufmann, 1996.

[18] V. Singh, M. Inoue, K. K. Saluja, and H. Fujiwara, “Instruction-based
delay fault self-testing of pipelined processor cores,” in Proc. IEEE Int.
Symp. Circuits Syst., 2005, pp. 5686–5689.

[19] ——, “Software-based delay fault self-testing of pipelined processor
cores,” NAIST, Nara, Japan, (2004). [Online]. Available: http://isw3.
naist.jp/IS/TechReport/report/2004006.ps

[20] S. Shamshiri, H. Esmaeilzadeh, and Z. Navabi, “Instruction-level test
methodology for CPU core self-testing,” ACM Trans. Des. Autom.
Electron. Syst., vol. 10, no. 4, pp. 673–689, Oct. 2005.

Virendra Singh (M’03) received the B.E. and
M.E. degrees in electronics and communication
engineering from Malaviya National Institute of
Technology, Jaipur, India, in 1994 and 1996, respec-
tively, and the Ph.D. degree in computer science
from Nara Institute of Science and Technology
(NAIST), Nara, Japan, in 2005.

He has been a Scientist at Central Electronics En-
gineering Research Institute (CEERI), Pilani, India,
since March 1997. Prior to this, he served as an As-
sistant Professor at Banasthali University, Vanasthali,

India, from June 1996 to March 1997. His research interests include design val-
idation and test of high performance processors and fault tolerant computing.

Dr. Singh is a member of the ACM and a life member of the Institute of
Electronics and Telecommunication Engineers (IETE) of India.

Michiko Inoue (M’95) received the B.E., M.E.,
and Ph.D. degrees in computer science from Osaka
University, Osaka, Japan, in 1987, 1989, and 1995,
respectively.

She worked at Fujitsu Laboratories Ltd.,
Kawasaki, Kanagawa, Japan, from 1989 to 1991.
She is currently an Associate Professor of Graduate
School of Information Science, Nara institute of
Science and Technology (NAIST), Nara, Japan. Her
research interests include distributed algorithms,
parallel algorithms, graph theory, and design and test

of digital systems.
Dr. Inoue is a member of the Institute of Electronics, Information, and Com-

munication Engineers of Japan, the Information Processing Society of Japan,
and Japanese Society for Artificial Intelligence.

Kewal K. Saluja (F’94) received the B.E. degree
in electrical engineering from the University of
Roorkee, Roorkee, India, in 1967, and the M.S. and
Ph.D. degrees in electrical and computer engineering
from the University of Iowa, Iowa City, in 1972 and
1973, respectively.

He is currently a Professor with the Department
of Electrical and Computer Engineering at the
University of Wisconsin-Madison, where he teaches
courses in logic design, computer architecture,
microprocessor-based systems, VLSI design and

testing, and fault-tolerant computing. Prior to this, he was with the University
of Newcastle, Newcastle, Australia. He has held visiting and consulting
positions at various national and international institutions including University
of Southern California, Los Angeles, CA, Hiroshima University, Hiroshima,
Japan, Nara Institute of Science and Technology, Nara, Japan, and the Uni-
versity of Roorkee. He has also served as a consultant to the United Nations
Development Program. He was the general chair of the 29th FTCS and he
served as an Editor of the IEEE TRANSACTIONS ON COMPUTERS (1997–2001).
He is currently the Associate Editor for the letters section of the Journal of
Electronic Testing: Theory and Applications (JETTA).

Professor Saluja is a member of Eta Kappa Nu, Tau Beta Pi, and a fellow of
the JSPS.

Hideo Fujiwara (S’70–M’74–SM’83–F’89) re-
ceived the B.E., M.E., and Ph.D. degrees in electronic
engineering from Osaka University, Osaka, Japan, in
1969, 1971, and 1974, respectively.

He was with Osaka University from 1974 to 1985
and Meiji University, Tokyo, Japan, from 1985 to
1993, and joined Nara Institute of Science and Tech-
nology (NAIST), Nara, Japan, in 1993. He served as
a Senator of NAIST from 1998 to 2000. Presently, he
is a Professor at the Graduate School of Information
Science, NAIST. His research interests include logic

design, digital systems design and test, VLSI computer-aided design (CAD),
and fault tolerant computing, including high-level/logic synthesis for testability,
test synthesis, design for testability, built-in self-test, test pattern generation,

SINGH et al.: INSTRUCTION-BASED SELF-TESTING OF DELAY FAULTS 1215

parallel processing, and computational complexity. He has authored seven
books including Logic Testing and Design for Testability (MIT Press, 1985).
He has also authored or coauthored more than 270 technical papers. He has
served as an Editor of the IEEE TRANSACTIONS ON COMPUTERS, Journal of
Electronic Testing, Journal of Circuits, Systems, and Computers, Journal of
Very Large Scale Integration (VLSI) Design, and others, and is an advisory
member of IEICE Transactions on Information and Systems.

Dr. Fujiwara was a recipient of the IECE Young Engineer Award in 1977,
IEEE Computer Society Certificate of Appreciation Awards in 1991, 2000 and

2001, Okawa Prize for Publication in 1994, IEEE Computer Society Meritorious
Service Awards in 1996 and 2005, IEEE Computer Society Continuing Service
Award in 2005, and IEEE Computer Society Outstanding Contribution Award
in 2001. He is a Golden Core member of the IEEE Computer Society, a fellow
of the Institute of Electronics, Information and Communication Engineers of
Japan (IEICE), and a fellow of the Information Processing Society of Japan.

