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Acceleration of Test Generation for Sequential Circuits Using
Knowledge Obtained from Synthesis for Testability

Masato NAKAZATO†a), Satoshi OHTAKE†, Members, Kewal K. SALUJA††, Nonmember,
and Hideo FUJIWARA†, Fellow

SUMMARY In this paper, we propose a method of accelerating test
generation for sequential circuits by using the knowledge about the avail-
ability of state justification sequences, the bound on the length of state dis-
tinguishing sequences, differentiation between valid and invalid states, and
the existence of a reset state. We also propose a method of synthesis for
testability (SfT) which takes the features of our test generation method into
consideration to synthesize sequential circuits from given FSM descrip-
tions. The SfT method guarantees that the test generator will be able to
find a state distinguishing sequence. The proposed method extracts the
state justification sequence from the FSM produced by the synthesizer to
improve the performance of its test generation process. Experimental re-
sults show that the proposed method can achieve 100% fault efficiency in
relatively short test generation time.
key words: sequential circuit, test generation, synthesis for testability, fi-
nite state machine, test knowledge

1. Introduction

For general sequential circuits, it is difficult to achieve 100%
fault efficiency in reasonable test generation time even for
single stuck-at faults. The full-scan design is utilized to ease
the test generation for sequential circuits [1]. However, we
cannot perform at-speed testing for full-scan designed se-
quential circuits. To realize at-speed testing, an efficient test
generation algorithm for sequential circuits, which gener-
ates tests for all the detectable faults and identifies all the
untestable faults in reasonable test generation time, is nec-
essary.

Most test generation algorithms for sequential cir-
cuits (e.g. HITEC [2], VERITAS [3], STALLION [5] and
FASTEST [6]) employ a time frame expansion model of a
sequential circuit. The time frame expansion model is a
combinational circuit that simulates the exact behavior of
the sequential circuit for a given number of time frames.

The HITEC is a well known test generator for sequen-
tial circuits. This method consists of two phases. The first
phase is the forward time processing phase in which a fault
is activated and the resulting fault effect is propagated to a
primary output. The second phase is the backward time pro-
cessing phase which justifies the state required for activating
the fault.
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The VERITAS test generation method is an extension
of the finite state machine (FSM) verification approach. This
method constructs a product machine of a good FSM and
its faulty version, and carries out reachability analysis by
traversing the product machine. The information obtained
by the reachability analysis is used to generate a test se-
quence. Although this simplifies generation of state justifi-
cation sequences, it is not efficient to generate tests because
it has to deal with huge product machines.

In this paper, we propose a method of accelerating
test generation for sequential circuits using the knowledge
about a set of state justification sequences, the bound on the
maximum length of state distinguishing sequences, the in-
formation about the valid states and the value of the reset
state. We assume that circuits are given in FSM descrip-
tion. For circuits designed at register transfer level (RTL),
controllers of the circuits are generally specified by FSM
description. The proposed method is effective for such con-
trollers. The sequential circuit is synthesized from a given
FSM by a synthesis for testability (SfT) method proposed
in this paper which takes the features of our test generation
method into consideration. The SfT method guarantees the
existence of state distinguishing sequences of the specified
length by making the given FSM reduced. Thus, the perfor-
mance of the test generator is improved as it uses state jus-
tification sequences extracted from the completely specified
state transition function of the FSM produced by the synthe-
sizer. The proposed method can completely identify every
fault in the circuit obtained by the proposed SfT method to
be detectable or untestable. In our experiments, 100% fault
efficiency is achieved for all the benchmark circuits in rela-
tively short test generation time.

The rest of this paper is organized as follows. Section 2
introduces our circuit model and defines the basic concepts.
Section 3 gives the outline of the proposed method. Sec-
tion 4 describes the proposed SfT algorithm. Section 5 de-
scribes the proposed test generation algorithm for sequen-
tial circuits synthesized by our SfT method. Section 6 re-
ports the results of experiments of our method using MCNC
benchmark circuits. Finally, Sect. 7 describes conclusions
and future work.

2. Preliminaries

In this paper we consider synchronous sequential circuits
composed of combinational logic and D-type flip-flops
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(FFs). All the FFs are controlled by a single clock. We
assume that a reset state is defined and a reset signal is avail-
able. We also assume that both the good and the faulty
circuits can be put on the reset state by applying the reset
signal. We consider the single stuck-at fault model but the
faults on the clock lines, inside the FFs, and on the reset
lines are not included in the fault set.

This paper deals with completely and incompletely
specified Mealy-type FSMs. A Mealy-type FSM M is de-
fined as a 6-tuple 〈 Σ, O, S , sr, δ, λ 〉. Σ = {x0 x1 . . . xni−1 |
xk ∈ {0, 1, X}, 0 ≤ k < ni} is the set of input vectors
and O = {z0z1 . . . zno−1 | zk ∈ {0, 1, X}, 0 ≤ k < no} is
the set of output vectors, where X is the don’t care, and ni

and no are the numbers of inputs and outputs, respectively.
S = {sr, s0, s1, . . . , sn−2} is the set of states, where n is the
number of states and sr is the reset state. The functions δ and
λ are the state transition function S × Σ→ S and the output
function S × Σ → O, respectively. We assume that all the
states defined in the FSM are reachable from the reset state
sr . For example, an incompletely specified Mealy-type FSM
is shown in Fig. 1. A sequential circuit Ms composed of a
combinational circuit part (CC) and FFs as shown in Fig. 2
is synthesized from an FSM, where x0, x1, x2, . . . , xni−1 are
the primary inputs, z0, z1, z2, . . . , zno−1 are the primary out-
puts and r is the reset input. We classify states represented
by FFs of Ms into valid states and invalid states as defined
below.

Definition 1 (Valid State and Invalid State): A state si rep-
resented by the FFs of a sequential circuit Ms is valid if si

is reachable from the reset state of Ms. Otherwise, si is in-
valid. �

Definition 2 (State Distinguishing Sequence): Let I be an
input sequence of an FSM M. Let oi and o j be output se-
quences of I for M with states si and s j, respectively. I
is called a state distinguishing sequence with respect to the
pair of states si and s j if oi and o j are not identical. �

Fig. 1 An incompletely specified finite state machine.

Fig. 2 A sequential circuit Ms synthesized from an FSM.

Definition 3 (Reduced FSM): An FSM is said to be re-
duced if every pair of states has at least one state distin-
guishing sequence. �

The proposed test generation method employs a time
frame expansion model for the test generation.

Definition 4 (Time Frame): A time frame is the combina-
tional circuit extracted from a sequential circuit by treating
its present state lines and next state lines as pseudo primary
inputs and pseudo primary outputs, respectively. �

Definition 5 (Time Frame Expansion Model): A time frame
expansion model of length l (l ≥ 2) for a sequential circuit
is a combinational circuit constructed by connecting time
frames such that the pseudo primary outputs of a time frame
i (0 ≤ i ≤ l − 2) is connected to the pseudo primary inputs
of a time frame i + 1. �

Examples of a time frame and a time frame ex-
pansion model are shown in Fig. 3 (a) and (b), where
(Yi

0, Y
i
1, . . . , Y

i
q−1) and (yi

0, y
i
1, . . . , y

i
q−1) are the pseudo pri-

mary inputs and the pseudo primary outputs of each time
frame i, respectively.

3. Outline of the Proposed Method

The proposed method consists of an SfT method and a test
generation method for sequential circuits synthesized by the
SfT method. The SfT method synthesizes a sequential cir-
cuit to have the three specific characteristics from a given
FSM. The proposed test generation method for the sequen-
tial circuit utilizes higher level knowledge of its character-
istics. By considering each characteristic, we can accelerate
the fault excitation, the state justification and the error prop-
agation, respectively. These three specific characteristics are
the following.

Characteristic I: Any state in a sequential circuit synthe-
sized from an FSM can be identified as either valid or
invalid.

Characteristic II: There exists one to one correspondence
between each state of the FSM and each valid state of
the sequential circuit.

Characteristic III: For each pair of states in the sequen-
tial circuit, there exists a state distinguishing sequence.
The maximum length of distinguishing sequences is k
which is known.

The flow chart of the proposed method is shown in
Fig. 4. The area surrounded by the dotted line shows the
SfT method and the outside area is our proposed automatic
test pattern generation (ATPG) method. The italicized types
in Fig. 4 show knowledge extracted by the SfT. The knowl-
edge is useful for the proposed test generation as follows.
Information of valid states:
In a justification process of test generation, we don’t need
to justify a fault excitation state of a sequential circuit from
the reset state if the fault excitation state is invalid. We can
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(a) (b)

Fig. 3 A time frame of a sequential circuit Ms (a) and a time frame expansion model of Ms (b).

Fig. 4 The flow chart of the proposed method.

prune the search space of the justification process if we uti-
lize the knowledge that helps to identify the fault excitation
state as either valid or invalid. The knowledge “information
of valid states” can be obtained since Characteristic I is sat-
isfied. We can accelerate the whole fault excitation process
during executing our proposed ATPG by reducing the num-
ber of calls of the fault excitation procedure by utilizing this
information.
A set of state justification sequences:
The state transition function of a given FSM is incompletely
specified. The behavior of the FSM and the behavior of a se-
quential circuit synthesized from the FSM may be different,
because the state transition function of the FSM is appro-

priately specified during the synthesis process and the state
transition function of the sequential circuit becomes com-
pletely specified. We can justify the state of the sequential
circuit easily if we can utilize the knowledge that helps to
justify it by utilizing an input sequence, which is extracted
from the FSM description, from the reset state to the exci-
tation state. The knowledge “a set of state justification se-
quences” can be obtained since Characteristic II is satisfied.
We can accelerate the state justification process using this
information.
The maximum length of state distinguishing sequences:
In general, we can’t know the number of time frames which
are required for propagating errors from the fault excitation
frame to primary outputs of a sequential circuit in advance.
However, we may limit the number of time frames expanded
from the fault excitation frame if we have the knowledge of
the number. The knowledge “the maximum length of state
distinguishing sequences” is given by k since Characteris-
tic III is satisfied. We can accelerate the error propagation
process using this information.

4. Synthesis for Testability

In this section, we describe the proposed synthesis for testa-
bility (SfT) method for FSMs in detail. In the method, a se-
quential circuit which has three specific characteristics de-
scribed in Chapter 3 is synthesized from a given FSM. In
order to synthesize a sequential circuit with such character-
istics, a given FSM is modified as follows.

• Appropriate values are assigned to some of the coordi-
nates which have don’t care values in output vectors of
the FSM.
• Extra outputs, if needed, are added to the FSM and ap-

propriate values are assigned to them.

4.1 Formulation of SfT Problem

We formulate the SfT problem as an optimization problem
as follows.

Input: An FSM with a reset state and the maximum length
of state distinguishing sequences.

Output: A gate level netlist of a sequential circuit which
has the three characteristics with a reset, a set of state
justification sequences and the number of valid states.
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Objective: Minimization of the number of extra outputs.

4.2 Synthesis for Testability Algorithm

In this section, we propose a heuristic algorithm of the SfT
since the minimization of the number of extra outputs is NP
hard. The heuristic algorithm of the SfT consists of 6 steps
as follows:

Step 1: Make the state transition function completely spec-
ified

Step 2: Make the FSM reduced

Step 2.1: Try to generate state distinguishing se-
quences of length 1 for each pair of states of the
FSM

Step 2.2: Generate the k-partial state distinguishing
tree in order to confirm that there exists a state
distinguishing sequence of length less than or
equal to k for each pair of states of the FSM and
a state compatibility graph

Step 2.3: Determine the number of extra outputs from
the state compatibility graph

Step 3: Assign continuous binary numbers to states in order
to identify as either a valid or an invalid state

Step 4: Add an extra output to the FSM in order to guar-
antee existence of a state distinguishing sequence of
length 1 for each pair of any valid state and any invalid
state

Step 5: Generate a set of state justification sequences
Step 6: Synthesize a sequential circuit

In the heuristic algorithm, we use a k-partial state dis-
tinguishing tree and a state compatibility graph. We first
define them as follows.

To clarify the discussion of state distinguishing se-
quences, we extend the definition of the successor tree de-
fined in the literature [4] as follows.

Definition 6 (k-Partial State Distinguishing Tree): Let M
be an FSM. Let Tk = (VTk , ETk ) be a tree of level k (0 ≤ k),
where VTk is a set of nodes {vi, ji | 0 ≤ i ≤ k, 0 ≤ ji < |Σ|i} and
ETk is a set of edges {(vi, ji , vi+1, ji·|Σ|+t) | 0 ≤ i < k, 0 ≤ ji <
|Σ|i, 0 ≤ t < |Σ|}. An edge (vi, ji , vi+1, ji·|Σ|+t) is also referred
to as ei, ji ·|Σ|+t and σt ∈ Σ is associated with the edge. Let
U be a set of states, which will be tried to be distinguished,
of M and it is referred to as an initial uncertainty. Let U p

i, ji
be a set of 3-tuples {un | 0 ≤ n < |U|} and be associated
with vi, ji , where p is the characteristic number and a 3-tuple
un ∈ U p

i, ji
is composed of sn ∈ U, s� which is a state suc-

ceeded by applying the input sequence, which corresponds
to a path from v0,0 to vi, ji , to sn, and o�, which appears as the
last output vector by applying the input sequence to sn, and
is denoted in < sn, s�, o� >. Here, un is called a distinguished
state history (DSH). For each U p

i, ji
of vi, ji , sets of DSHs of

vi+1, ji·|Σ|+t are generated so that the DSHs are obtained by
applying σt to M with the state of the second element of
each un ∈ U p

i, ji
and these are classified into the sets where

a set has the DSHs whose third elements are the same and
they are different from the third elements of the DSHs in the
other sets. The tree Tk is called a k-partial state distinguish-
ing tree. �

Figure 5 shows the 2-partial state distinguishing tree
T2 = (VT2 , ET2 ) for the FSM of Fig. 1. Here, we suppose an
initial uncertainty U of the FSM is a set of all the states of
the FSM. Suppose a set of DSHs, U0

0,0 = [u0, u1, u2, u3] =
[< sr, sr ,X >, < s0, s0,X >, < s1, s1,X >, < s2, s2,X >] is
assigned to v0,0 ∈ VT2 , whereX is don’t care vector such that
all the bits of the output vector are don’t care. By applying
the vectorσ1 = 1 to each DSH of v0,0, two sets U0

1,1 and U1
1,1,

where U0
1,1 is [u0] = [< sr , s2, 0 >] and U1

1,1 is [u1, u2, u3] =
[< s0, s0, 1 >, < s1, s0, 1 >, < s2, sr, 1 >], respectively, are
associated with v1,1. By applying the sequence σ1σ0 = 10
to each DSH of v0,0, three sets U0

2,2, U1
2,2 and U2

2,2, where
U0

2,2 is [u0] = [< sr, s1, 0 >], U1
2,2 is [u1, u2] = [< s0, s2, 0 >,

< s1, s2, 0 >] and U2
2,2 is [u3] = [< s2, s1, 1 >], respectively,

are associated with v2,2.

Definition 7 (State Compatibility Graph): An undirected
graph G = (VG, EG), where v ∈ VG is a vertex corresponding
to a state of an FSM and e ∈ EG is an edge corresponding to
a pair of indistinguishable states of the FSM, is said to be a
state compatibility graph. �

U is the initial uncertainty of an FSM. Let D jk
s be a set

of the distinguished states for s ∈ U of a leaf node vk, jk ∈
VTk of a k-partial state distinguishing tree Tk obtained from
the FSM where a distinguished state is a state in U except
for s and is distinguishable from s. For all the leaf node of
Tk, a set of states, which are distinguished from s, of U is
obtained by the following formula:

⋃|Σ|k
jk=0 D jk

s . The set of

indistinguishable states of s is the complement of
⋃|Σ|k

jk=0 D jk
s

forU. We make the state compatibility graph based on pairs
of indistinguishable states obtained from the above. Figure 6
shows the state compatibility graph corresponding to Fig. 5.

Fig. 5 The 2-partial state distinguishing tree T2 = (VT2 , ET2 ).
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Fig. 6 The state compatibility graph corresponding to Fig. 5.

In this figure, indistinguishable states are s0 and s1.
Then, we describe the process for every step in detail.

Step 1: Let si be a state in M such that, there exist input
vectors for which next states of the state are not specified in
the state transition function. For each input vector σ ∈ Σ,
which is not defined for a transition from the state si, of M,
a state transition from si to si (i.e., a self-loop) in M for σ
is added to the state transition function. An output vector
oi for the self-loop is added to the output function. All the
bits of oi are don’t care. The FSM obtained in this step is
referred to as Mα.
Step 2: To make every pair of states defined in Mα distin-
guishable, we perform the following three processes.
Step 2.1: For each input vector σ ∈ Σ of M, we try to
distinguish all the pairs of states si and s j (si � s j) of M.
We perform the following two processes.
Step 2.1.1: Let oi and o j be output vectors of σ for Mα with
si and s j, respectively. We assign ‘0’ or ‘1’ to appropriate
don’t care bits of oi in order to differentiate oi and o j if o j is
covered by oi. Here, we define the relation between vectors
a and b which have don’t care values. We say that a covers
b if A ⊃ B, where A and B are the sets of values represented
by a and b, respectively.
Step 2.1.2: If oi and o j are the same and still have don’t
care bits, we assign ‘0’ or ‘1’ to some don’t care bits of
oi and o j to make oi and o j different. Let K be a set of
such the same output vectors. Let X (= x0x1 . . . xnX−1) be a
vector composed of don’t care bits in κ ∈ K, where nX is
the number of don’t care bits in κ. The number of values
represented by X is 2nX . If |K| ≤ 2nX , the unique value can
be assigned to each κ. In this case, for each κ, we assign an
unique value among 2nX to the don’t care bits. If |K| > 2nX ,
we assign a value to each κ so that the number of the same
output vectors is minimized. In this case, the continuous
binary number is cyclically assigned to the don’t care bits in
each κ. The FSM obtained in this step is referred to as Mβ.
Step 2.2: We construct the k-partial state distinguishing
tree to examine whether a pair of states si and s j of M could
be distinguishable by applying input sequences of length
less than or equal to k to Mβ with si and with s j. We use
the following two conditions of pruning for construction of
the tree. Here, v and U p are a current observed node of
the k-partial state distinguishing tree and a set of DSHs of v
whose the third elements are the same and they are different
from the third elements of DSHs in the other sets. Let Vq be
a set of nodes existing on the path from the root to v. Let

U p
q be a set of DSHs of vq ∈ Vq whose the third elements are

the same and they are different from the third elements of
DSHs in the other sets. Let F1(U p) and F2(U p) be a set of
first elements of all the DSHs in U p and a set of the second
elements of all the DSHs in U p, respectively.
Condition 1: For each U p of v such that |Up| ≥ 2, all the
elements of F2(U p) are the same.
Condition 2: There exists vq such that for each U p, whose
number of DSHs is larger than 1, of v, there exists U p

q , which
satisfies F1(U p

q ) = F1(U p) and F2(U p
q ) = F2(Up), of vq.

If v satisfies Condition 1 or Condition 2, v is a termina-
tion node. For example, in Fig. 5, v2,2 and v2,3 satisfy Con-
dition 1 and v2,0 satisfies Condition 2. For v2,2, all the ele-
ments of F2(U1

2,2) are the same state s2. For v2,0, F1(U1
2,0)

and F2(U1
2,0) of v2,0 are equal to F1(U1

1,0) and F2(U1
1,0) of

v1,0 on the path from v0,0 to v2,0, respectively. In this case,
the level of termination nodes is the same as the maximum
level of the 2-partial state distinguishing tree.
Step 2.3: We construct the state compatibility graph ob-
tained from the k-partial state distinguishing tree for repre-
senting all the indistinguishable state pairs of Mβ.

For example, we obtain the state compatibility graph
in Fig. 6 from Fig. 5. We can see that the indistinguishable
states are s0 and s1 in the state compatibility graph.

We perform the following process in order to distin-
guish these indistinguishable states. Some outputs are added
to Mβ to distinguish all the indistinguishable state pairs. The
problem to find the minimum number of additional outputs
to distinguish all the indistinguishable state pairs is solved
as a vertex coloring problem [7] of the state compatibility
graph. The number of outputs to be added to Mβ is ob-
tained by the following formula: na =

⌈
log2 C
|Σ|
⌉
, where C is

the number of colors obtained by solving the vertex coloring
problem and na is the number of the additional outputs.

Let P be a set of values represented by the additional

outputs. Let fi be a mapping Σ
fi	−→ P such that fi � f j,

∀i, j | 1 ≤ i, j ≤ C ∧ i � j. For any σ ∈ Σ, the output func-
tion of Mβ is changed so that the value of the additional out-
puts become fi(σ) for the state corresponding to each vertex,
whose degree is more than or equal to 1, of the state compat-
ibility graph. Thus, a state distinguishing sequence of length
less than or equal to k is guaranteed for any state pair. The
FSM obtained by this step is referred to as Mγ.
Step 3: Let ns be the number of states of the FSM Mγ. The
number of FF, n f f , in a sequential circuit synthesized from
Mγ is equal to �log2 ns
. The number of valid states of the
circuit is equal to ns and the number of invalid states, niv, is
equal to 2nf f − ns. Binary numbers within the range of 0 to
ns − 1 are used for the state assignment of Mγ and binary
numbers within the range of ns to 2nf f − 1 (if niv � 0) are
used for values of the state variables of invalid states of the
sequential circuit. The value assigned to the reset state sr is
referred to as nr.
Step 4: To guarantee existence of a state distinguishing se-
quence of length 1 for each pair of any valid state and any
invalid state of the sequential circuit synthesized by the SfT,
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one output is added to the FSM if niv is not equal to 0. This
process means that a pair of any valid state and any invalid
state is made distinguishable in order to realize Character-
istic III. For a transition from a valid state to a valid state,
‘0’ is assigned to the output. For a transition from an invalid
state, ‘1’ is assigned to the output. For a transition from a
valid state to an invalid state, we have already considered in
Step 1; all the transitions from valid states are succeeded by
valid states. The FSM obtained by this step is referred to as
Mε .
Step 5: For each valid state of Mε , an input sequence to
reach the state from the reset state is generated by a breadth-
first search on the state transition graph of Mε . By searching
breadth-first fashion, the shortest input sequence is guaran-
teed for each state. The input sequence is called a state jus-
tification sequence.

A set of state justification sequences for all the valid
states of Mε is referred to as S si.
Step 6: A gate level sequential circuit is synthesized from
Mε by a logic synthesis tool.

5. Test Generation Algorithm for Sequential Circuits

In this section, we describe the proposed test generation
method that utilizes the knowledge of S si: a set of state jus-
tification sequences, k: the maximum length of state distin-
guish sequences, ns: the number of valid states, and nr: the
value of a reset state extracted by the SfT.

Our test generation method uses a time frame expan-
sion model. A time frame expansion model has multiple
faults because every time frame has the same single stuck-at
fault. Therefore, our test generation method uses a 9 val-
ued logic system [8], [9] for the test generation to deal with
multiple faults.

Figure 7 shows the flow chart of our test generation
method for sequential circuits. The proposed test generation
method consists of three processes: fault excitation, state
justification and error propagation.

5.1 Fault Excitation

For a target fault, fault excitation finds an excitation vector
which is assigned to primary inputs and pseudo primary in-
put to produce errors and to propagate them to the primary
outputs and/or the pseudo primary outputs of the fault exci-
tation frame. The pseudo primary input part of an excitation
vector is referred to as an excitation state ne. The number
of valid states, ns, helps generating a valid excitation vec-
tor which is an excitation vector whose excitation state is a
valid state. If an excitation state is valid, the state may be
justified from the reset state. However, if the excitation state
is invalid, state justification is not required because the state
cannot be justified from the reset state. Hence, the proposed
method can prune a part of search space of a test generation.
This search space pruning is realized by comparing ns with
ne. If ne is less than ns, the excitation state is valid. Other-
wise, the state is invalid. This feature saves a large amount

Fig. 7 The flow chart of the proposed test generation method for sequen-
tial circuits.

of time for trying to generate invalid excitation vector and
trying to justify the invalid excitation state. If there exists no
valid state to excite the fault, the fault is proved untestable.

5.2 State Justification

Once an excitation vector is found, state justification is per-
formed. The excitation state must be justified for both the
fault-free circuit and the faulty circuit. We have a set of state
justification sequences, S si, for the fault-free circuit. The
fault-free state justification can be easily done by choosing
the state justification sequence for the excitation state from
S si. No backtracking is required and no failure can occur in
this step. The next step is to confirm if the fault-free state
justification sequence is also valid for the faulty circuit. This
is confirmed by fault simulation using the fault-free state
justification sequence and observing if any invalidation oc-
curs. An invalidation means that a state transition of the
faulty circuit is different from the fault free circuit. If an
invalidation occurs, the state justification sequence cannot
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justify the given excitation state because the state justifica-
tion sequence is not guaranteed to work under the faulty cir-
cuit. However, if an invalidation occurs, some error must
appear on the pseudo primary outputs of some frame (we
call this an actual excitation state) between the reset frame
and the fault excitation frame. We try to propagate errors
from the actual excitation state. If some error appears on
the primary outputs between the reset frame and the fault
excitation frame, the fault is detected.

5.3 Error Propagation

If a fault is not identified as detected or untestable by the first
two processes, error propagation is performed. Time frames
of length k are added to the (actual) fault excitation frame.
The error propagation process determines primary input val-
ues of the expanded time frames to propagate an error to a
primary output. This process may not propagate any error
to any primary output and any pseudo primary output be-
cause errors may be masked by the multiple faults within the
added k time frames. In this case, we try to search a different
excitation state by returning to the fault excitation process.
On the other hand, any error is not propagated to any pri-
mary output but any error is propagated to some pseudo pri-
mary output of the last time frame. This is because k-state
distinguishing sequence is not guaranteed for faulty circuit.
Therefore, in order to make error propagation complete, the
number of time frames expanded from the fault excitation
frame has to be increased (e.g., k = k × 10, where this num-
ber 10 might be changed empirically). We perform fault
excitation again.

6. Experimental Results

Table 1 shows characteristics of the MCNC FSM bench-
marks [10] and the results of SfT. All the experiments ex-
cept for the proposed SfT were performed on a SUN Blade
2000 (CPU 1 GHz × 2) with 8 GB memory. The experi-
ments for the proposed SfT were performed on a PC/AT
machine (CPU Athlon 3000+) with 1 GB memory. Design
Compiler (Synopsys) is used as a logic synthesis tool for the
Step 6 of the proposed SfT method. The number of bench-
marks is 53. For all the benchmarks, the proposed method
could perform until Step 5. However, Design Compiler was
unable to perform Step 6 for 14 benchmarks because of re-
strictions on Design Compiler. One of the restrictions is
that the size of FSM descriptions which Design Compiler
can read is limited.

All the benchmarks shown in Table 1 were synthesized
by using some optimization options which optimize the area
and the delay of a circuit. The first four columns give the
benchmark name and the numbers of primary inputs, pri-
mary outputs and states, respectively. The column “k” gives
the maximum length of the state distinguishing sequences.
The columns “#EO,” “HOH” and “#MLG” give the results
of the proposed SfT. The column “#EO” denotes the num-
ber of extra outputs added to each benchmark. The column

Table 1 Characteristics of FSM benchmarks and results of SfT.

Circuit #Input #Output #State k #EO HOH (%)
#MLG

Prop. Orig.

bbara 6 2 10 3 2 3.36 14 17
bbsse 9 7 13 2 1 43.03 28 34
bbtas 4 2 6 5 1 3.45 11 8

beecount 5 4 7 2 1 12.82 27 11
cse 9 7 16 1 0 27.3 22 30

dk14 5 5 7 1 1 −0.28 22 26
dk15 5 5 4 1 0 0 18 18
dk16 4 3 27 2 1 9.76 48 39
dk17 4 3 8 1 0 0 15 15
dk27 3 2 7 2 1 −1.28 12 8

ex1 11 19 20 1 1 69.61 34 35
ex3 4 2 10 2 1 35.15 18 23
ex4 8 9 14 1 1 16.36 16 25
ex5 4 2 9 2 1 39.56 17 18
ex6 7 8 8 1 0 −1.69 17 26

keyb 9 2 19 1 1 44.6 36 29
kirkman 14 6 16 1 0 104.34 45 44

lion 4 1 4 2 0 0 9 12
lion9 4 1 9 6 1 14.29 17 33

mc 5 5 4 1 0 0 6 8
opus 7 6 10 1 1 28.52 21 28

planet 9 19 48 2 1 24.76 41 33
planet1 9 19 48 2 1 24.76 41 33

pma 10 8 24 1 1 303.04 100 59
s1 10 6 20 1 1 −5.83 47 67

s1488 10 19 48 2 1 −0.71 48 88
s1494 10 19 48 2 1 −20.73 42 73
s208 13 2 18 3 2 2.41 23 24

s27 6 1 6 2 2 4.4 14 15
s298 5 6 218 6 2 11.68 107 146
s386 9 7 13 2 1 −1.47 29 41
s420 21 2 18 1 2 56.02 14 24
styr 11 10 30 1 2 62.42 41 30
sse 9 7 16 1 0 77.27 76 48

tma 9 6 20 1 1 120.75 5 8
tbk 8 3 32 1 1 36.39 46 67
tav 6 4 4 3 0 0 48 50

train11 4 1 11 2 2 28.83 26 19
train4 4 1 4 2 0 4.08 8 17

“HOH” denotes the hardware overhead which is the ratio of
the area of the sequential circuit synthesized by the proposed
SfT to that of the original sequential circuit synthesized by
the ordinary synthesizer. The subdivided columns “Orig.”
and “Prop.” in “#MLG” are the maximum level of gates in
the original sequential circuit and that of gates in the sequen-
tial circuit obtained by the proposed SfT, respectively.

In this experiment, the maximum number of outputs
added to the FSMs is two: one for distinguishing between
valid and invalid states and the other for making the given
FSM reduced. The number of extra outputs decreases when
the FSM is reduced by only assigning values to the don’t
cares in the output vectors of the FSM.

The average hardware overhead is 30.18%. However,
the hardware overhead of the circuit ‘pma’ is more than
300%. It is considerable that the logic synthesis tool may
not be able to simplify logic because we assign logic values
to coordinates with don’t cares in input vectors and output
vectors to make a given FSM reduced. However, a hardware
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Table 2 Test generation results for each method.

Circuit
TGT [s] TTGT [s] FC [%] FE [%] TSL

m1 m2 m3 m1 m2 m3 m1 m2 m3 m1 m2 m3 m1 m2 m3

bbara > 10h 2.12 0.09 > 10h 2.26 0.24 94.95 95.63 95.63 96.46 100.00 100.00 891 690 486
bbsse 1.70 2.03 0.28 1.83 2.23 0.44 98.27 97.46 97.46 100.00 100.00 100.00 486 762 801
bbtas 1.60 2.89 0.03 1.68 3.03 0.11 98.61 95.24 95.24 100.00 100.00 100.00 276 318 216

beecount 0.26 0.28 0.02 0.38 0.38 0.14 97.53 97.80 97.80 100.00 100.00 100.00 342 285 270
cse 2.28 1.69 0.21 2.49 1.87 0.40 100.00 100.00 100.00 100.00 100.00 100.00 1119 915 924

dk14 0.32 0.29 0.02 0.45 0.41 0.13 98.61 98.21 98.21 100.00 100.00 100.00 300 288 270
dk15 0.09 0.15 0.00 0.21 0.28 0.11 100.00 100.00 100.00 100.00 100.00 100.00 108 108 117
dk16 > 10h 92.75 0.63 > 10h 93.06 0.87 98.29 98.17 98.17 99.74 100.00 100.00 1323 1368 951
dk17 0.13 0.12 0.02 0.22 0.24 0.16 100.00 100.00 100.00 100.00 100.00 100.00 171 180 171
dk27 0.10 0.12 0.00 0.21 0.21 0.11 95.59 94.44 94.44 100.00 100.00 100.00 81 75 54

ex1 5538.05 > 10h 1.02 5538.23 > 10h 1.32 97.57 98.52 98.52 100.00 99.89 100.00 906 1026 990
ex3 10.53 0.53 0.06 10.65 0.65 0.19 96.46 97.27 97.27 100.00 100.00 100.00 372 399 330
ex4 0.82 0.31 0.03 0.97 0.39 0.15 97.08 97.08 97.08 100.00 100.00 100.00 660 306 372
ex5 5639.33 3.86 0.04 5639.44 3.96 0.16 95.65 95.20 95.20 100.00 100.00 100.00 417 390 294
ex6 0.19 0.16 0.01 0.30 0.27 0.14 100.00 100.00 100.00 100.00 100.00 100.00 240 183 201

keyb 10.39 30.20 1.12 10.59 30.42 1.35 97.81 97.38 97.38 100.00 100.00 100.00 1050 1104 1188
kirkman 1.13 1.51 0.61 1.34 1.80 0.96 100.00 100.00 100.00 100.00 100.00 100.00 1437 1698 1839

lion 0.08 0.11 0.00 0.16 0.22 0.08 100.00 100.00 100.00 100.00 100.00 100.00 120 120 81
lion9 > 10h 36.69 0.05 > 10h 36.81 0.16 95.71 95.62 95.62 98.57 100.00 100.00 408 456 432

mc 0.09 0.09 0.00 0.19 0.20 0.07 100.00 100.00 100.00 100.00 100.00 100.00 87 87 51
opus 7.72 7.19 0.10 7.85 7.30 0.22 98.76 96.50 96.50 100.00 100.00 100.00 408 456 498

planet 1562.30 1160.20 2.26 1562.83 1160.95 3.22 98.96 98.97 98.97 100.00 100.00 100.00 2721 3426 3963
planet1 1562.30 1160.20 2.26 1562.83 1160.95 3.22 98.96 98.97 98.97 100.00 100.00 100.00 2721 3426 3963

pma > 10h 10185.70 25.71 > 10h 10187.76 27.88 98.83 99.44 99.44 99.61 100.00 100.00 1248 4404 4527
s1488 1282.41 4544.74 1.18 1283.00 4545.43 1.79 98.74 99.01 99.01 100.00 100.00 100.00 2787 3693 3129
s1494 1965.04 6027.33 1.37 1965.60 6027.95 2.07 98.71 98.87 98.87 100.00 100.00 100.00 2676 2856 3375

s1 > 10h 170.99 1.01 > 10h 171.23 1.22 97.02 96.84 96.84 99.46 100.00 100.00 1182 1542 972
s208 > 10h 2.45 0.04 > 10h 2.55 0.18 95.00 94.44 94.44 98.57 100.00 100.00 603 612 510
s27 0.27 0.19 0.12 0.36 0.28 0.21 91.03 90.12 90.12 100.00 100.00 100.00 102 102 81

s298 > 10h > 10h 48.01 > 10h > 10h 57.09 95.75 95.75 92.12 96.12 92.56 100.00 29325 22422 14052
s386 4.60 2.44 0.16 4.78 2.60 0.30 97.22 96.27 96.27 100.00 100.00 100.00 663 795 567
s420 > 10h 3.66 0.08 > 10h 3.78 0.22 95.00 96.12 96.12 98.57 100.00 100.00 651 858 1020

sse 377.75 1.61 0.44 377.91 1.79 0.63 97.17 97.26 97.26 100.00 100.00 100.00 543 645 747
styr 18.30 30.22 4.25 18.79 30.92 4.95 99.54 99.72 99.72 100.00 100.00 100.00 2367 2460 1783
tav 0.09 0.11 0.01 0.18 0.19 0.11 100.00 100.00 100.00 100.00 100.00 100.00 81 81 120
tbk > 10h 7.47 2.99 > 10h 8.12 3.08 98.85 100.00 100.00 98.85 100.00 100.00 1200 2586 2025
tma > 10h > 10h 1.17 > 10h > 10h 1.69 99.02 98.92 98.92 99.41 99.91 100.00 789 1287 1233

train11 55.01 0.71 0.05 55.13 0.86 0.18 97.31 97.06 97.06 100.00 100.00 100.00 342 300 321
train4 0.13 0.13 0.00 0.23 0.22 0.09 100.00 100.00 100.00 100.00 100.00 100.00 120 138 99

overhead may be able to be reduced by carrying out recod-
ing of input vectors and output vectors. Hence, still there is
a room for research, how to assign coordinates with don’t
cares in input vectors and output vectors during SfT.

The maximum time spent for the proposed SfT method
is about twenty minutes. For small circuits (ex. lion, bbara,
bbsse, bbtas and so on), the time spent for the SfT is 0.1 sec-
ond or less. Notice that since we have no way to obtain an
optimal length of state distinguishing sequences, in the ex-
periments, we determined a practical length k by running tri-
als as follows. For an FSM, we set a time limit to determine
k for the trials. For k, we tried recursively to create k-partial
state distinguishing tree and to confirm that there exists a
state distinguishing sequence of length less than or equal to
k for each pair of states of an FSM by running the proce-
dure of Step 2.2 in the proposed SfT method. If the whole
run time of the trials exceeds the time limit or the number of
distinguishable states does not increase compared with that
of the previous trial, we take k of the previous trial. Oth-

erwise, we increment k by one and perform the next trial.
In the experiments, we incremented k from one and set the
time limit one hour for each benchmark circuit. To find a
way to do that is included in our future work.

For almost all the circuits, the maximum level of gates
in the sequential circuits obtained by the SfT is less than
that in the sequential circuit synthesized from the FSM with-
out using the SfT. However, the maximum level of gates
in some circuits synthesized by the proposed SfT becomes
about twice compared with that synthesized by the ordinary
synthesizer. In this case, the performance of these circuits
degrades from the original sequential circuits. Typically, the
maximum level of gates in these circuits is much less than
that of the data path in a VLSI. We believe that the per-
formance of these circuits depends on the performance of a
data path and the delay of a circuit is able to be absorbed on
the data path side.

Table 2 shows the test generation results for three dif-
ferent methods. Method 1 applies TestGen (Synopsys) to the
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original sequential circuit synthesized from the FSM with-
out using the proposed SfT. Method 2 applies TestGen to the
sequential circuit obtained by the proposed SfT. Method 3
applies the proposed test generation method to the sequen-
tial circuit obtained by the proposed SfT. The column “TGT
[s]” denotes the time, in seconds, which was spent on the test
generation excluding the fault simulation time. The subdi-
vided columns “m1,” “m2” and “m3” denote the method 1,
the method 2 and the method 3, respectively. The column
“TTGT [s]” denotes the time, in seconds, which is the sum
of “TGT” and the fault simulation time. The fault simulation
time is calculated by “TTGT” - “TGT.” The time ‘> 10h’ in
the columns “TGT [s]” and “TTGT [s]” means that the test
generation did not finish within 10 hours.

All the methods performed the equivalent fault analysis
and the fault simulation which are implemented in TestGen.
Since our test generator does not have the desired fault simu-
lation capability, the method 3 requires a call to the external
fault simulator. Therefore, in order to compare the test gen-
eration time of the proposed method with that of TestGen on
equal terms, we performed the fault simulation for the test
sequence obtained by the test generation.

The total test generation time for each benchmark of
the method 3 is shorter than that of the other methods.
For some benchmarks, the total test generation time of the
method 2 is longer than that of the method 1. For all the
experiments of the method 3, k was not increased. In other
words, the error propagation process of the method 3 per-
formed completely within k frames expanded for the process
where k was given as the input of our proposed ATPG. We
believe that the method 3 can effectively use the knowledge
obtained by the SfT but the method 2 cannot effectively use
it. The average total test generation time of the method 1,
that of the method 2 and that of the method 3 are 9694.06 (s),
3371.99 (s) and 2.97 (s), respectively. The actual average
total test generation time of the method 1 and the method 2
will be longer because these methods did not achieve 100%
fault efficiency for some circuits. The method 3 identified
all the untestable faults within reasonable time.

The columns “FC [%],” “FE [%],” and “TSL” are the
fault coverage, the fault efficiency and the length of the test
sequence, respectively. The method 3 can achieve 100%
fault efficiency for all the benchmarks within reasonable
time and the time is shorter than both the test generation
time of the method 1 and that of the method 2. However, the
method 1 and the method 2 did not achieve 100% fault effi-
ciency for several these benchmarks. Particularly, both the
method 1 and the method 2 for ‘s298’ did not achieve 100%
fault efficiency within 10 hours. The proposed method can
perform faster test generation than the conventional method
for benchmarks.

The test sequence length of the method 3 is shorter than
that of other methods for about a half of benchmarks. There
are some cases where the test sequence length of the method
3 is longer than that of other methods, this is because Test-
Gen uses techniques of test sequence compression.

7. Conclusions and Future Work

In this paper, we proposed a method for high speed test gen-
eration for sequential circuits with some specific character-
istics. Such a sequential circuit can be synthesized from
a given FSM by the synthesis for testability (SfT) method
which takes the features of our test generation method into
consideration. We accelerated test generation for sequential
circuits by utilizing the knowledge that consisted of a set of
state justification sequences, the maximum length of state
distinguishing sequences, the number of valid states, and the
value of the reset state extracted by the SfT. The experimen-
tal results show that the proposed method can achieve 100%
fault efficiency in shorter test generation time compared to a
state of the art test generator. Reduction of hardware over-
head caused by the SfT method, its speed up, and further
reduction of test generation time are the issues to be investi-
gated in our future work.
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