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PAPER

Analysis of Test Generation Complexity for Stuck-At and Path
Delay Faults Based on τk-Notation

Chia Yee OOI†a), Thomas CLOUQUEUR††, Nonmembers, and Hideo FUJIWARA†††, Fellow

SUMMARY In this paper, we discuss the relationship between the test
generation complexity for path delay faults (PDFs) and that for stuck-at
faults (SAFs) in combinational and sequential circuits using the recently in-
troduced τk-notation. On the other hand, we also introduce a class of cyclic
sequential circuits that are easily testable, namely two-column distributive
state-shiftable finite state machine realizations (2CD-SSFSM). Then, we
discuss the relevant conjectures and unsolved problems related to the test
generation for sequential circuits with PDFs under different clock schemes
and test generation models.
key words: easily testable, stuck-at faults, path delay faults, test generation
complexity

1. Introduction

The τk-notation was introduced to express the test genera-
tion complexity of several classes of sequential circuits with
respect to the test generation complexity for stuck-at faults
(SAFs) in combinational circuits, which is named τ [1], [2].
The empirical observation showed that the test generation
complexity for practically encountered combinational cir-
cuits with single SAFs seems to be polynomial. Therefore,
the τk-notation allows classifying test generation problems
as easy or hard, although theoretically, they are proved NP-
complete. Our work consists of deriving the test generation
complexity for well-known classes of circuits and defining
new classes of circuits that can be considered easy to test.

An acyclic sequential circuit is a sequential circuit
without feedback. An acyclic sequential circuit is said to be
a balanced sequential circuit [4] if, for any pair of primary
input and primary output, all paths between them have the
same number of flip-flops while it is an internally-balanced
sequential circuit [3] if a circuit resulting from operation
1 of the extended combinational transformation in [3] on
an acyclic sequential circuit is a balanced sequential cir-
cuit. The test generation for internally balanced sequen-
tial circuits and balanced sequential circuits with SAFs has
been shown to be reducible into that for combinational cir-
cuits with SAFs [3], [4]. Furthermore, the test generation
complexity for acyclic sequential circuits with SAFs has
been proved to be bounded by the square of the combina-
tional test generation for single SAFs in [1], [2]. Apart from
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SAF, which is representative of static faults, path delay fault
(PDF) model need to be considered to ensure the tempo-
ral correctness of a circuit. As a first step, we only con-
sider robust and non-robust faults in this paper. Previous
works [5]–[7], [9] have shown that the combinational auto-
matic test pattern generation (ATPG) tool for SAFs, together
with some circuit transformations can be used as an ATPG
for robust and non-robust path delay faults. However, the
test generation was not discussed explicitly in the aspect of
time complexity. Neither was the test generation complexity
for sequential circuits with PDFs.

In this paper, we analyze the test generation complexity
for combinational circuits with robust and non-robust PDFs,
which is shown equivalent to the test generation for com-
binational circuit with SAFs. Furthermore, we analyze the
test generation complexity for sequential circuits including
cyclic sequential circuits with SAFs and PDFs. The study
conducted in this paper leads to two applications. First,
based on the properties of a known class, a special ATPG
can be designed to run the test generation for the circuit
more efficiently than a general sequential ATPG. Another
application is design for testability (DFT) and synthesis for
testability (SFT). For a given arbitrary sequential circuit
(resp. arbitrary design), a DFT method (resp. SFT method)
can be designed and applied to augment the circuit into one
of the easily testable classes of sequential circuits identified
in this paper.

After determining the test generation complexity for
each class of circuits with SAFs and PDFs, we compare
the test generation complexity for SAFs and that for PDFs.
Our interest is whether there exists any class of circuits for
which the test generation complexities with SAFs and PDFs
are not equivalent. If there exists such a class of circuits, the
following question arises. “Which complexity is higher, the
one for SAFs or PDFs?” We present a class of sequential
circuits named two-column distributive SSFSM realizations
for which the test generation for SAFs and that for PDFs
might not be equivalent.

The organization of the paper is as follows. In Sect. 2,
we present the τk-notation. In Sect. 3, we reconsider the test
generation complexity for combinational circuits with ro-
bust and non-robust PDFs. We also consider the test gener-
ation complexity for combinational circuits with robust and
non-robust segment delay faults (SDFs) in Sect. 4 as the re-
sult is useful in analyzing the test generation complexity for
sequential circuits with PDFs. In Sect. 5, we discuss the test
generation complexity for acyclic sequential circuits with
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path delay faults. This is followed by the discussion of the
test generation complexity for a class of cyclic sequential
circuits called 2CD-SSFSM with SAFs and PDFs in Sect. 6.
Conclusion is presented in the final section.

2. Preliminaries

The definition of τk-notation [1], [2] is presented briefly in
this section. Let g(n) be a given function. The following de-
scribes brieflyΘ(g(n)) and O(g(n)). A function f (n) belongs
to the setΘ(g(n)) if g(n) is an asymptotically tight bound for
f (n). A function f (n) belongs to the set O(g(n)) if g(n) is
an asymptotically upper bound for f (n). Empirical observa-
tion of combinational test generation complexity for SAFs
allows us to use the following assumption on the test gener-
ation complexity in our discussion.
Assumption: The test generation complexity for a combi-
national circuit with SAFs is Θ(nr) for some r larger than 2,
where n is the number of gates in the combinational circuit.

In the following text, the term “size” will be used in
place of “number of gates” since the term is more com-
mon in the discussion of time complexity. All gates are re-
garded as primitive gates. By denoting Θ(nr) as τ(n), the
τk-notation is defined as follows.

Definition 1: Let T (n) denote a time complexity. T (n) is
τk-equivalent if and only if T (n) = Θ(τk(n)) and τk-bounded
if and only if T (n) = O(τk(n)), where k > 0.

3. Combinational Circuits with Path Delay Faults

In this section, we define a single-path leaf-dag CLD
P for path

P and a path rising-smooth circuit CRS
P for path P, which are

the pseudo circuits transformed from a given combinational
circuit prior to test generation, based on [5]. These trans-
formations allow us to generate tests for a PDF on P in the
given combinational circuit by running ATPG on the pseudo
circuits with the corresponding SAF. The complete proofs
for all lemmas and theorems in this section can be found in
[13].

Definition 2: A single-path leaf-dag CLD
P for path P is

a combinational circuit such that a fanout and an inverter
along P are only permitted at the starting point of P and the
output of the inverter, if one exists along P, is not allowed
to have fanouts.

Definition 3: Let P denote a path in a given combinational
circuit C. C can be transformed into a single-path leaf-dag
CLD

P for path P, by the single-path-leaf-transformation:

S1. P consists of an ordered set of gates {g1, g2, . . . , gm},
where g1 is a primary input and gm is a primary out-
put. Also, gate g j is an input to gate g j+1 (1 ≤ j ≤
m − 1). Let Pre(g j) denote a set of predecessor gates
{g1, g2, . . . , g j−1} on P. Traversing from gm, if a gate
g j has a fanout of two or more, each gate in Pre(g j)
with the connections to its immediate predecessor gates

are duplicated once. Let g′k denote the duplicate of gk,
where gk ∈ Pre(g j). For each gk in Pre(g j) and for
each immediate successor gate hk+1 of gk which is not
on P, the connection of gk to hk+1 is changed to the
connection of g′k to hk+1. The resulting path P is free of
fanout.

S2. Starting from gm along P, all the NAND (resp. NOR)
gates on P are changed to the OR (resp. AND) gates
using De Morgan’s Law.

The size of the transformed circuit is at most 2n where n is
the size of C [13].

Definition 4: The I-edge of path P with input i in a single-
path leaf-dag CLD

P refers to the first connection of P after the
inverter, if it exists. The I-edge is said to be associated with
input i.

Let i denote a primary input on a path P, the I-edge of
P and other fanout branches of i have a transition if i has
a transition. The transition from a fanout branch of i may
propagate to the side-input of a gate on P. Using I-edge as
one of the properties, the pseudo-circuit called path rising-
smooth circuit CRS

P (resp. path falling-smooth circuit CFS
P )

is introduced.

Definition 5: A single-path leaf-dag CLD
P for path P can

be transformed into a path rising-smooth circuit CRS
P (resp.

path falling-smooth circuit CFS
P ) for path P by the path

rising-smooth (resp. path falling-smooth) transformation:

S1. Let QOR (resp. QAND) denote the OR gates (resp. AND
gates) along P that have a rising (resp. falling) transi-
tion along. A gate may have no parity, 0, 1 or both par-
ities. A gate fed to the side-input of an OR gate (resp.
AND gate) in QOR (resp. QAND) has parity 1 (resp. 0).
Perform a reverse topological traversal of the gates Q
in the transitive fanout of i, to determine the parity of
all gates along the side-paths to P where i is the pri-
mary input on P. The parity is complemented across a
NOT gate. If some fanouts of a gate have parity 1 and
others have parity 0, the gate is assigned both parities.

S2 Duplicate the gates so that the parity of each resulting
gate is either nothing, 0, or 1, but not both, depending
on its successor gates.

S2.1 Traversing from the primary output gm on P, for
each gate h j with a parity (parities) and with a suc-
cessor gate that is off path and without parity, h j

and the connections to its immediate predecessor
gates are duplicated once and its duplicate h′j has
no parity. For each immediate successor gate h j+1

of h j that is off path and has no parity, the connec-
tion from h j to h j+1 is replaced by the connection
from h′j to h j+1.

S2.2 Traversing from the primary output gm on P, each
gate h j with both parities is duplicated along with
its connections to its immediate predecessor gates
and assigned parity 1. Its duplicate h′j is assigned
parity 0. For each immediate successor gate h j+1



1204
IEICE TRANS. INF. & SYST., VOL.E90–D, NO.8 AUGUST 2007

Fig. 1 (a) A circuit with PDF c2367x ↑. (b) Its single-path leaf-dag (left)
and its path rising-smooth circuit (right).

of h j that has parity 0 (1 if there is an inversion
between h j and h j+1), the connection from h j to
h j+1 is replaced by the connection from h′j to h j+1.

S3. Let input i denote the primary input on P. Assign 0
to any fanout branch of input i (or the first connec-
tion after the inverter, if it exists on the fanout branch)
that is connected to a gate with parity 0 and 1 to any
fanout branch of input i (or the first connection after
the inverter, if it exists on the fanout branch) that is
connected to a gate with parity 1.

The size of the resulting circuit is at most 2n where n is the
size of the circuit before transformation [13].

The parity at the fanout branch of i, which is not its
I-edge, is the constraint that makes sure the generated tests
does not propagate a transition from the fanout branch to the
side input of a gate on path P.

Figure 1 shows a combinational circuit and its single-
path leaf-dag and path rising-smooth circuit for path
c2367x. In order to analyze the test generation complexity
for PDFs, we now derive some results regarding the com-
plexity for the single-path-leaf transformation and the path
rising-smooth transformation. In the following text, P ↑
(resp. P ↓) denotes a rising (resp. falling) PDF where the
rising (resp. falling) transition refers to the transition type at
the starting point of P.

Lemma 1: Let C denote a given combinational circuit with
size n. The time complexity of the single-path-leaf transfor-
mation on C with P ↑ (resp. P ↓) is O(n2).

Lemma 2: Let C denote a single-path leaf-dag with size
n and P ↑ (resp. P ↓) denote a rising (resp. falling) PDF.
The time complexity of the path rising-smooth (resp. path
falling-smooth) transformation on C with P ↑ (resp. P ↓) is
O(n2).

Definition 6: A vector pair < ṽ, v > is a single-input-
change (SIC) two-pattern test if there exists a coordinate
i such that ṽi = vi for the coordinate i of v and ṽ j = v j for
each coordinate j other than i.

In robust PDF test generation using combinational
ATPG, the second pattern of a two-pattern test is first gen-
erated. Then, the first pattern is derived from the second

Fig. 2 A circuit Cδf .

pattern. Therefore, we are interested in the time complexity
to obtain an SIC two-pattern test.

Lemma 3: The time complexity of single-input-change
(SIC) two-pattern n-bit test transformation is O(n).

Definition 7: A given combinational circuit C with a SAF
f can be transformed into a circuit Cδf (Fig. 2) by the δ trans-
formation as follows:

S1. Let o1, . . . , op denote the primary outputs of C. Let
c1, . . . , cp denote the XOR function of each primary
output of C and the corresponding primary output of
the faulty circuit C f . Let G(C,C f ) be the circuit realiz-
ing c1 OR . . . OR cp.

S2. Connect the output of G(C,C f ) to a two-input AND
gate A. The other input of the AND gate A is a primary
input I while the output of the AND gate A is a primary
output O in Cδf .

Lemma 4: Let P = {I, A,O}. Let C and Cδf denote a com-
binational circuit and its δ-transformed circuit, respectively.
v is a test for a SAF f in C if and only if < v ∼ 0, v ∼ 1 >
(resp. < v ∼ 1, v ∼ 0 >) is a robust test for path IAO ↑ (resp.
IAO ↓) in the corresponding circuit Cδf where v ∼ b denotes
the concatenation of vector v and bit b that is a value at the
primary input of P.

Lemma 5: The test generation complexity for combina-
tional circuits with SAFs at primary inputs is τ-equivalent.

Now that we have defined and analyzed the transfor-
mations used to show the relationship between the test gen-
eration for PDFs and the test generation for SAFs, we derive
the theorems relating test generation complexity for combi-
national circuits with robust PDFs and with SAFs.

Lemma 6: < v1, v2 > is a robust test for the P ↑ (resp.
P ↓) in the path rising-smooth-circuit CRS

P for P, if and only
if < v1, v2 > is a robust test for the P ↑ (resp. P ↓) in the
single-path leaf-dag CLD

P for P.

Lemma 7: v is a test for the SA0 (resp. SA1) fault at the I-
edge of P in the CRS

P for path P if and only if the SIC vector
pair < ṽ, v > is a robust test for the P ↑(P ↓) in CLD

P .

Theorem 1: The test generation complexity for combina-
tional circuits with robust PDFs is equivalent to the test gen-
eration complexity for combinational circuits with SAFs,
i.e. it is τ-equivalent.

Sketch of proof: Lemmas 6 and 7 have proved the equiva-
lence between the test generation for combinational circuits
with robust PDFs and the test generation for path rising-
smooth circuits with SAFs at I-edges, which is τ-bounded.



OOI et al.: ANALYSIS OF TEST GENERATION COMPLEXITY FOR STUCK-AT AND PATH DELAY FAULTS BASED ON τK -NOTATION
1205

On the other hand, Lemmas 1-3 prove that the test genera-
tion for combinational circuits with robust PDFs is reducible
to the test generation for path rising-smooth circuits with
SAFs at I-edges in time O(n2). Assume the test genera-
tion for combinational circuits with robust PDFs is not τ-
equivalent, then by using transformation δ, the test genera-
tion for combinational circuits with SAFs is not τ-equivalent
from Lemmas 4 and 5 either, which is a contradiction. q.e.d.
Analogous to the test generation problem for combinational
circuits with robust PDFs, by considering single-path leaf-
dags instead of path rising-smooth circuits, we have the fol-
lowing theorem.

Theorem 2: The test generation complexity for combina-
tional circuits with non-robust PDFs is equivalent to the
test generation complexity for combinational circuits with
SAFs, i.e. it is τ-equivalent.

Theorems 1 and 2 show that the combinational test gen-
eration complexity for robust and non-robust PDFs is τ-
equivalent.

4. Combinational Circuits with Segment Delay Faults

In this section, we evaluate the test generation complexity
for combinational circuits with segment delay faults (SDFs).
The complete proofs for the lemmas and theorems presented
in this section can be found in [13]. Indeed, a PDF in a
given acyclic sequential circuit corresponds to a SDF in the
TEM of the circuit. Similar to the case of combinational
circuits with PDFs in the previous section, we first introduce
two transformed circuits and their transformations that are
used in the discussion on the test generation complexity of
combinational circuits with SDFs.

Definition 8: A segment-leaf-dag CLD
S for segment S

(S = {g1, g2, . . . , gm}) is a combinational circuit such that
a fanout and an inverter are only permitted at g1 of the seg-
ment S and the output of an inverter along S is not allowed
to have a fanout.

The segment-leaf-transformation is defined analo-
gously to the single-path-leaf transformation by considering
segment S instead of path P [13].

Definition 9: The S-edge of segment S with starting point
s in a segment-leaf-dag CLD

S refers to the first connection
of S after the inverter, if it exists. The S-edge is said to be
associated with s.

Figure 3 shows a combinational circuit (a) and its segment
leaf-dag for segment s45e (b). We now define the segment
transition-smoother S TS that will be used to guarantee sta-
ble non-controlling values on the side inputs of OR gates
(resp. AND gates) on segment S with rising SDF (resp.
falling SDF).

Definition 10: A segment transition-smoother STS (Fig. 4)
is a circuit with inputs V0 and V1 and outputs D0 and D1.
When V0 = V1, D0 and D1 have the same value as V0 and

(a) (b)

Fig. 3 (a) A combinational circuit (b) Its segment leaf-dag for segment
s45e.

Fig. 4 Segment transition-smoother.

V1, respectively. When V0 � V1, D0 becomes 0 while D1

becomes 1.

Definition 11: A segment-leaf-dag CLD
S for segment S can

be transformed into a segment-rising-smooth circuit CRS
S

(resp. segment-falling-smooth circuit CFS
S ) for segment

S by the segment-rising-smooth (resp. segment falling-
smooth) transformation:

S1& S2. Analogous to S 1 and S 2, respectively in Definition
5 by considering segment S instead of path P and the
reverse topological traversal in S 1 is performed on the
transitive fanout of the primary inputs that are in the
transitive fanin of g1 on S (= {g1, g2, . . . , gm}).

S3. Let C2P denote the transformed circuit after the above
two steps. C2P is called the second pattern partial cir-
cuit. Duplicate the transitive fanin of S-edge of C2P

as C1P, which is called the first pattern partial circuit.
Each primary input i1P in C1P has a corresponding pri-
mary input i2P in C2P. Each gate g1P in C1P has a
corresponding g2P in C2P. Insert a segment transition-
smoother STS to a primary input i2P if i2P has an imme-
diate gate with parity 0 or 1 by connecting the inputs i1P

of C1P and i2P of C2P to the inputs V0 and V1 of STS,
respectively and connecting D0 and D1 of STS to the
immediate gates with parity 0 and 1, respectively. Note
that when the segment S is also a path P, no first partial
circuit C1P is generated and this step is same as S 3 in
Definition 5.

The size of the resulting circuit is at most 6n − 5 where n is
the size of the circuit before transformation [13].

Figure 5 shows a combinational circuit with a SDF
345 ↑(a), its corresponding segment-leaf-dag for segment
345 (b) and its corresponding segment-rising-smooth circuit
for 345 (c). The two-pattern test at the inputs ABC of the
original circuit is < 111,101 >.

Lemma 8: Let n denote the size of a given combinational
circuit C. The time complexity of the segment-leaf transfor-
mation on C is O(n2).

Lemma 9: Let C denote a segment-leaf-dag and S ↑ de-
note a rising SDF in C. The time complexity of the segment
rising-smooth transformation on C is O(n2).
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Fig. 5 (a) A combinational circuit. (b) Its segment leaf-dag for segment
345. (c) Its segment rising-smooth circuit for segment 345.

In the following subsection, we will show that the test
generation problem for combinational circuits with SDFs is
reducible to the test generation problem for its transformed
circuits with double SAFs. The objective of the test gener-
ation problem for the segment-rising-smooth circuits with a
double SAF is to generate tests that detect both faults simul-
taneously for a given pair of faults.

Lemma 10: The test generation complexity for segment-
rising-smooth circuits CRS

S with double SAFs is equivalent
to the test generation complexity for combinational circuits
with single SAFs, i.e. it is τ-equivalent.

Sketch of proof: The fault in the first pattern partial circuit
of the segment smooth rising circuit is always at the line of
the only primary output, the fault is tested if it is excited or
assigned with a value that is opposite to the faulty value. In
the case where the fault in the first pattern partial circuit is
SA1 (resp. SA0), a new 2-input OR gate (resp. AND gate)
is introduced to each primary output of the second pattern
partial circuit where one input is connected to the primary
output while the other input is connected to the only output
of the first pattern partial circuit. The number of the new
gates is at most the number of primary outputs of the sec-
ond pattern partial circuit. The SA1 (resp. SA0) fault in the
first pattern partial circuit is removed while the SA0 (resp.
SA1) fault in the second pattern partial circuit remains. Let’s
called the modified circuit as modified segment smooth ris-
ing circuit. If a test pattern can detect the SA0 (resp. SA1)
fault in the modified segment smooth rising circuit at a new
primary output, then the test pattern can also excite the SA1
(resp. SA0) fault at the only primary output of the first pat-
tern partial circuit in the segment smooth rising circuit and
simultaneously detect the SA0 (resp. SA1) fault in the sec-
ond pattern partial circuit of the segment smooth rising cir-
cuit. Therefore, the double SAF test generation of segment
smooth rising circuits has same complexity as the single
SAF test generation of combinational circuits. q.e.d.

Lemma 11: < v1, v2 > is a robust test for S ↑ in CLD
S if and

only if u2 = v2 ∼ v1 is a test for the double SAFs consisting
of SA0 at the S-edge of S 2P and SA1 at the S-edge of S 1P

in CRS
S where v2 ∼ v1 denotes the concatenation of vectors

v2 and v1.

Sketch of proof: The test generation for the segment leaf-
dag CLD

S for S is reducible to the test generation for the cor-

responding segment rising-smooth circuit CRS
S for S . The

latter problem is further reducible to the test generation
problem for CRS

S with a double SAF of SA0 at the S-edge
of S 2P and SA1 at the S-edge of S 1P. q.e.d.

Theorem 3: The test generation complexity for combina-
tional circuits with robust SDFs is equivalent to the test gen-
eration complexity for combinational circuits with SAFs,
i.e. it is τ-equivalent.

Sketch of proof: Lemma 11 shows the equivalence of the
test generation for combinational circuits with SDFs and its
segment rising-smooth circuits with SAFs at the S-edges,
which is τ-bounded. Lemmas 8-10 prove that the former
problem is reducible to the latter in time O(n2). A segment-
rising-smooth circuit is also a path rising-smooth circuit
when the starting point and the ending point of a segment
S are also the primary input and the primary output of the
circuit, respectively. Therefore path rising-smooth circuits
is a subclass of segment-rising-smooth circuits. Assume the
test generation for combinational circuits with robust SDFs
is not τ-equivalent, then by using transformation δ, the test
generation for combinational circuits with SAFs is not τ-
equivalent from Lemmas 4 and 5 either, which is a contra-
diction. q.e.d.
Similarly, we can analyze the test generation complexity for
non-robust SDFs by looking merely at the segment leaf-dag
and the related transformations.

Theorem 4: The test generation complexity for combina-
tional circuits with non-robust SDFs is equivalent to the
test generation complexity for combinational circuits with
SAFs, i.e. it is τ-equivalent.

5. Acyclic Sequential Circuits with Path Delay Faults

Based on the theoretical results in the previous section, we
address the reducibility of the test generation for acyclic se-
quential circuits with PDFs to that for combinational circuits
with SAFs. When generating tests for PDFs, we consider
only slow-fast-slow clocking scheme. In slow-fast-slow
clock scheme, justification phase and propagation phase are
done at slow clock such that the circuit can be considered
fault-free during these phases while the phase of deriving
tests to excite the fault is done at normal operational clock
or rated clock.

Lemma 12: Let < v1, v2 > denote a two-pattern test of a
given balanced sequential circuit with size n. The time com-
plexity of the sequence transformation to obtain < v1, v2 >
from the test pattern generated for the combinational equiv-
alent is O(n).

Theorem 5: [10] The test generation problem for a bal-
anced sequential circuit SB with PDFs can be reduced to
the test generation problem for its combinational equivalent
C(SB) with SDFs.



OOI et al.: ANALYSIS OF TEST GENERATION COMPLEXITY FOR STUCK-AT AND PATH DELAY FAULTS BASED ON τK -NOTATION
1207

Theorem 6: The test generation complexity for balanced
sequential circuits with PDFs under rated clock and slow-
fast-slow clock is equivalent to the test generation com-
plexity for combinational circuits with SAFs, which is τ-
equivalent.

Proof: According to Theorem 5, the test generation for bal-
anced sequential circuits with PDFs is equivalent to the test
generation for its combinational equivalents with SDFs. In
the previous section, we showed that the test generation for
combinational circuits with SDFs is τ-equivalent. Based on
Theorem 5, the theorems and lemmas of the test generation
for combinational circuits with SDFs, the theorem is proved.
q.e.d.

Lemma 13: Let x and y denote two different primary in-
puts of TEM CE(SA) of an acyclic sequential circuit SA.
To avoid conflicts during sequence transformation Γ to ob-
tain the two-pattern test from the test pattern generated on
CE(SA) [12], v2

x = v1
y if x and y are corresponding to the

same primary input z in SA and signals on y are the signals
to be assigned to z one clock cycle later than are signals on
x, where v2

x (resp. v1
y) is the second pattern (resp. the first

pattern) at x (resp. y) in the TEM.

Definition 12: Let x and y denote two different primary in-
puts of CE(SA). x and y are called pattern-dependency in-
put pair (x, y) if x and y are corresponding to the same pri-
mary input z in SA and signals on y are the signals to be
assigned to z one clock cycle later than are signals on x.

Definition 13: Given a segment leaf dag CLD
S ((S)A) of

a TEM CE(SA) of SA, the circuit can be transformed
into a pattern-dependency circuit CPD

S (SA) by the pattern-
dependency transformation.

S1. In the case of non-robust test generation, duplicate
the transitive fanin of S-edge of CLD

S where the seg-
ment leaf dag CLD

S becomes the second pattern par-
tial circuit C2P while the duplicate becomes the first
pattern partial circuit C1P. In the case of robust test
generation, perform the segment-rising-smooth (resp.
segment-falling-smooth) transformation on CLD

S .
S2. For each pattern-dependency input pair (x, y) of

CE(SA), connect the corresponding x2P and y1P to
form a new primary input called unified input w. The
resulting circuit is called pattern-dependency circuit
CPD

S (SA), where x2P (resp. y1P) is the input in C2P

(resp. C1P) corresponding to x (resp. y) in CE(SA).

The idea of pattern-dependency was introduced in [12].
Figure 6 shows the transformations of an acyclic sequential
circuit into its pattern-dependency circuit to represent its test
generation problem for PDFs based on the test generation
for SAFs. Note that only one PDF is considered, that is in
block 21, under slow-fast-slow clock. When registers a − e
in the acyclic sequential circuit in Fig. 6 (a) are transformed
into its TEM in Fig. 6 (b), all registers are changed to wires
and some blocks are duplicated. For example, blocks 21
and 22 correspond to block 2 in Fig. 6 (a). When the TEM is

Fig. 6 (a) An acyclic sequential circuit. (b) Its TEM. (c) Its pattern-
dependency circuit.

tranformed into its pattern-dependency circuit in Fig. 6 (c),
some blocks are also duplicated. For example, block 211P in
the first pattern partial circuit and block 212P in the second
pattern partial circuit correspond to block 21 in the TEM.

Definition 14: Given a pattern-dependency circuit CPD
S (SA)

derived from a given acyclic sequential circuit SA, let C1P

and C2P denote the first pattern partial circuit and the sec-
ond pattern partial circuit of CPD

S (SA), respectively. Let
v1

1, v
1
2, . . . , v

1
m of an m-bit vector v1 denote a vector bit at each

primary input of C1P of CPD
S (SA) or the stem of the primary

input fanout branches fed to C1P of CPD
S (SA) if the input is a

unified input, respectively where m is the number of vector
bits. Let v2

1, v
2
2, . . . , v

2
m of an m-bit vector v2 denote a vector

bit at each primary input of C2P of CPD
S (SA) or the stem of

the primary input fanout branches fed to C2P of CPD
S (SA)

if the input is a unified input, respectively where m is the
number of vector bits. d(v1, v2) denote the input vector of
the pattern-dependency circuit CPD

S (SA).

Lemma 14: Let P be a path in a given acyclic sequen-
tial circuit SA and let S 2P and S 1P be the corresponding
segments in its pattern-dependency circuit CPD

S (SA). Let
d(v1, v2) be an input pattern for CPD

S (SA). Let ΓL(v1, v2) de-
note a two-pattern sequence of length L transformed from
the two-pattern vector < v1, v2 > by the sequence trans-
formation Γ. ΓL(v1, v2) is a robust (resp. non-robust) two-
pattern sequence for the P ↑ in SA with sequential depth
L − 2 if and only if d(v1, v2) is a test for SA0 at the S-edge
of S 2P and SA1 at the S-edge of S 1P in CPD

S (SA) with (resp.
without) STS.

In Lemma 14, only rising SDFs are discussed. The lemma
for falling SDF can be derived by considering SA1 at the
S-edge of S 2P and SA0 at the S-edge of S 1P in CPD

S (S A).

Theorem 7: The test generation complexity for internally
balanced sequential circuits with PDFs under rated clock
and slow-fast-slow clock is equivalent to the test generation
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complexity for combinational circuits with SAFs, i.e. it is
τ-equivalent.

Proof: Lemma 14 shows that the test generation for inter-
nally balanced sequential circuits with PDFs is equivalent
to the test generation for pattern dependency circuits with
SAFs at S-edges while Lemmas 8-10 prove that the former
is reducible to the latter in O(n2). To show that the test gen-
eration for internally balanced sequential circuits with PDFs
is τ-equivalent, we also have to prove that the test generation
for combinational circuits with SAFs is equivalent to that
for a subclass of internally balanced sequential circuits with
SAFs. Since test generation for balanced sequential circuits
with PDFs is τ-equivalent, the test generation for internally
balanced sequential circuits with PDFs is equivalent to the
test generation for combinational circuits with SAFs, which
is τ-equivalent. q.e.d.

Theorem 8: The test generation complexity for acyclic se-
quential circuits with PDFs under slow-fast-slow clock is
τ2-bounded.

Proof: Let TS L, TPD, T mS A
C and TP denote the time com-

plexity of the segment-leaf transformation, the pattern-
dependency circuit transformation, the test generation for
double SAFs and the two-pattern sequence transformation,
respectively. Let NS L, NPD, NmS A

C and NP denote the prob-
lem size of the segment-leaf transformation, the pattern-
dependency circuit transformation, the test generation for
double SAFs and the two-pattern sequence transformation,
respectively. Let SA denote a given acyclic sequential cir-
cuit. The size of its TEM CE(SA) is (d + 1)n where d is
the sequential depth. For n ≤ NS L ≤ (d + 1)n, n ≤ NPD ≤
2((d+1)n), 2n ≤ NmS A

C ≤ 6((d+1)n)−5, NP ≤ n. Therefore,
the test generation complexity is

T PD
A (n) = TS L(NS L) + TPD(NPD)

+ T mS A
C (NmS A

C ) + TP(NP)

= O(τ2(n)) since d = O(n)

q.e.d.
Besides the test generation for PDFs under slow-fast-slow
clock, there are analogous issue for the case under rated
clock testing.

Open Problem 1: Is the test generation complexity for
acyclic sequential circuits with PDFs under rated clock τ2-
bounded?

Theorem 9: The test generation complexity for acyclic se-
quential circuits with PDFs under TEM at slow-fast-slow
clock is not τ-equivalent.

There might exist also other test generation mod-
els for acyclic sequential circuits with PDFs besides
TEM.Consequently, we have the following conjecture.

Conjecture 1: The test generation complexity for acyclic
sequential circuits with PDFs under slow-fast-slow clock is
not τ-equivalent.

Also, we have not yet considered the case under rated clock.
Open Problem 2 corresponds to Theorem 9 and Conjecture
1.

Open Problem 2: Is the test generation complexity for
acyclic sequential circuits (under TEM or other test genera-
tion models) with PDFs under rated clock τ-equivalent?

Answering these open problems would be useful in devel-
opment of ATPG and DFT.

6. Cyclic Sequential Circuits with Stuck-At and Path
Delay Faults

Generally, the test generation for cyclic sequential circuits
with SAFs (resp. PDFs) involves derivation of the excita-
tion state for the SAF (resp. PDF), state justification and
state differentiation. In this section, we introduce an eas-
ily testable class of sequential circuits, namely two-column
distributive SSFSM realizations (2CD-SSFSM). We address
the test generation complexity for this class with SAFs and
PDFs, and the relationship between the test generation prob-
lems. We assume a slow-fast-slow clock is used during test-
ing. From this assumption, we derive that their test genera-
tion for PDFs may be easier or equivalent to the test gener-
ation for SAFs.

Formally, a finite state machine FSM is defined as a
5-tuple (I, S T,O,DEL,GAM) where I is a set of input sym-
bols, S T is a set of states, O is a set of output symbols,
DEL : I × S T → S T is the next-state function, and GAM is
the output function [15].
A state-shiftable finite state machine [14] with p states is a
machine that possesses

1. transfer sequences of length at most 	log2 p
 to carry
the machine from state s0 to state si for all i, and

2. distinguishing sequences of length 	log2 p
, which are
arbitrary input sequences consisting of two in put sym-
bols.

The degree of a state-shiftable finite state machine is equal
to 	log2 p
. Figure 7 (a) shows the state diagram of a state-
shiftable finite state machine of degree 2 and Fig. 7 (b) illus-
trates its state diagram. IS denotes input symbol while PS
denotes present state.

Definition 15: Distributive SSFSM is a two-column SS-
FSM with different pairs of input symbols for each state.
Let the input symbols of two-column for state s j be de-
noted by γ0(s j) and γ1(s j), respectively. Let ε0 and ε1 de-
note the input symbols of a two-column SSFSM, which has
same degree with the distributive SSFSM. For each j, the
next state function δ is such that δ(ε0, s j) = δ(γ0(s j), s j) and
δ(ε1, s j) = δ(γ1(s j), s j).

Figure 7 (c) and Fig. 7 (d) shows the state diagrams and state
tables for a distributive SSFSM.

Definition 16: Two-column distributive SSFSM realiza-
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Fig. 7 State diagrams and state tables for SSFSM and distributive SS-
FSM.

tion (2CD-SSFSM) is an SSFSM realization that fulfills the
following conditions:

C1. There exists a two-column submachine of SSFSM of
degree m in its state table, where m = O(n) and n is the
size of the 2CD-SSFSM. Let the input symbols of the
two-column be denoted by ε0 and ε1.

C2. There exists a distributive submachine of SSFSM over
the columns other than those of ε0 and ε1. The number
of columns is 2N−1 + 2 where N is an integer.

C3. There exists an input symbol c and a state s j for 0 ≤
j ≤ m − 1 such that sk = δ(c, s j) and sk � δ(ε0, s j),
sk � δ(ε1, s j) for k � j and 0 ≤ k ≤ m − 1.

C4. Let C0 and C1 denote the input combinations of ε0
and ε1 respectively after the input assignment. C0 and
C1 are two-bit assignments, such that C0 = ab′ and
C1 = ab where a,b are variables for primary inputs and
a is complement in other input combinations.
S HIFT = C0 + C1

D0 = C0 OR F0
...
Di = (C0 + C1) AND Qi−1 OR Fi
...
Dm−1 = (C0 +C1) AND Qm−2 OR Fm−1

Oss = (C0 +C1) AND Qm−1 OR FOss

Qi (resp. Di) is an output (resp. input) of flip-flop bit i.
Gate sharing is permitted during the synthesis. A OR
B (resp. A AND B) means both implicants are ORed
(resp. ANDed) together. F0, Fi, Fm−1 and FOss are 0
and independent of states under the input cubes con-
tained by both C̄0 and C̄1.

Fig. 8 General block diagram of a two-column distributive SSFSM real-
ization.

Figure 8 shows the general block diagram of a 2CD-SSFSM.
The following discusses the test generation complexity for
SAFs and PDFs.

6.1 Test Generation Complexity for Stuck-At Faults

Theorem 10: The test generation complexity for 2CD-
SSFSM with SAFs is τ2-bounded.

Sketch of proof: The realization of logic C0 + C1 is even-
tually an input, namely SHIFT that is ANDed with Qi−1

for i > 0 (Fig. 8). The justification sequence is an input
sequence consisting of ε0 and ε1 with length at most m-1.
Shifting operation fails when a s-a-0 occurs at SHIFT or at
the output of SHIFT AND Qi−1. The latter can always be ac-
tivated and differentiated in shifting operation since the fault
location is in the fanout-free region and the shifting opera-
tion of all the more significant flip-flops are still working.
Looking in the former case where the fault is at the stem of
SHIFT, the shifting operation of the circuit fails. However,
the distributive shifting operation is intact. For other faults,
shifting operation always works. First, the SAF activation
is performed at τ(n). To differentiate a pair of fault-free an
faulty states after SAF activation, the fault effect at a flip-
flop is propagated to the output OS S by searching the input
sequence on its iterative logic array of size at most m − 1.
Since m = O(n), the time complexity of the differentiation
is O(τ2(n)). Let TE , TJ and TD denote the time complexity
of SAF excitation, justification and differentiation. The test
generation for other faults is easier. Therefore,

T S A
2CD(n) = TE(n) + TJ + TD

= τ(n) + O(m − 1) + O(τ((m − 1)n))

= O(τ2(n)) for m = O(n)

q.e.d.
However, we cannot conclude that the test generation com-
plexity for 2CD-SSFSM with SAFs is not τ-equivalent al-
though it seems to be correct.

Conjecture 2: The test generation complexity for 2CD-
SSFSM with SAFs is not τ-equivalent.
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Fig. 9 A duplex combinational circuit.

6.2 Test Generation Complexity for Path Delay Faults

Definition 17: Let P and P′ denote a path in a given cyclic
sequential circuit SC and the corresponding path in its com-
binational part c. A duplex combinational circuit CD

P (SC)
for P (Fig. 9) of a cyclic sequential circuit S can be obtained
by the following transformation:

S1. Perform the single-path-leaf transformation for P′ on c.
The inputs of c corresponding to the outputs of the flip-
flops in SC are called the pseudo inputs while the out-
puts of c corresponding to the inputs of the flip-flops in
SC are called the pseudo outputs. The resulting single-
path leaf-dag is denoted by cLD

P′ .
S2. Duplicate cLD

P′ . The single-path leaf-dag cLD
P′ and its du-

plicate are named as the first partial circuit c1 and the
second partial circuit c2.

S3. Connect the pseudo outputs of c1 to the corresponding
pseudo inputs of c2 to form an iterative logic array of
single-path leaf-dag of size 2. The new connections be-
tween c1 and c2 are called pseudo interconnections and
a pseudo interconnection is labeled as QDi while a re-
sulting pseudo input and pseudo output are labeled as
Qi and Di respectively, corresponding to flip-flop i in
SC. Note that the path P in SC corresponds to two seg-
ments S c1 and S c2 in CD

P (SC). A primary input and a
primary output of c1 is denoted by I1 j and O1k, respec-
tively while a primary input and a primary output of c2

is denoted by I2 j and O2k.

Definition 18: Let P ↑ denote a rising PDF in a given
cyclic sequential circuit SC. A duplex combinational circuit
CD

P (SC) for P can be transformed into a path-rising-smooth
duplex circuit (resp. path-falling-smooth duplex circuit)
CPRS

S (SC) (resp. CPFS
S (SC)) for the corresponding segment

S c2 by the following procedure:

S1. Let QOR (resp. QAND) denote the OR gates (resp. AND
gates) along S c2 corresponding to P ↑ (resp. P ↓). A
gate may have no parity, 0, 1 or both parities. A side-
input to an OR gate (resp. AND gate) in QOR (resp.
QAND) has parity 1 (resp. 0). Perform a reverse topo-
logical traversal from the transitive fanout of all pseudo
interconnections, to determine the parity of all gates
along the side-paths to S c2. The parity is comple-
mented across a NOT gate. If some fanouts of a gate
have parity 1 and others have parity 0, the gate is as-
signed both parities.

S2. Duplicate gates so that each resulting gate has parity of

either nothing, 0 or 1 but not both.

S2.1. Traversing from pseudo output or primary output
gm on P, for each gate h j with a parity (parities)
and with a successor gate that is off path and with-
out parity, h j and the connections of its immediate
predecessor gates are duplicated once and its du-
plicate h′j has no parity. For each immediate suc-
cessor gate h j+1 of h j that has no parity, the con-
nection from h j to h j+1 is replaced by the connec-
tion from h′j to h j+1.

S2.2. Traversing from pseudo output or primary output
gm, each gate h j with both parities and the connec-
tions to its immediate predecessor gates are dupli-
cated once and assigned parity 1 while its dupli-
cate h′j is assigned parity 0. For each immedi-
ate successor gate h j+1 of h j that has parity 0 (1
if there is an inversion between h j and h j+1), the
connection from h j to h j+1 is replaced by the con-
nection from h′j to h j+1.

S3. Insert to the fanout branch of a second circuit primary
input I2 j a segment-transition-smoother STS(I2 j, I1 j) if
the fanout branch has an immediate gate with parity 0
or 1. At the fanout branch of a pseudo interconnection
QDi, insert a segment transition-smoother STS(QDi,
Qi) if the QDi has an immediate gate with parity 0 or
1.

Lemma 15: < v1, v2 > is an input sequence that robustly
excites a PDF P ↑ (resp. P ↓) of a sequential circuit SC in
present state s1 if and only if s1 ∼ v1 ∼ v2 is a test for SA0
at the S-edge of S c2 with an input constraint of 0 at the S-
edge of S c1 in the corresponding path-rising-smooth duplex
circuit CPRS

S (SC).

Lemma 16: < v1, v2 > is an input sequence that non-
robustly excites a PDF P ↑ (resp. P ↓) of a sequential circuit
SC in present state s1 if and only if s1 ∼ v1 ∼ v2 is a test for
SA0 at the S-edge of S c2 with an input constraint of 0 at the
S-edge of S c1 in the corresponding duplex combinational
circuit CPRS

S (SC).

Definition 19: A combinational circuit C with a SAF f can
be transformed into a cyclic sequential circuit S cδ

f (Fig. 10)
by cyclic δ transformation:

S1. Same as S 1 in Definition 7.
S2. Connect the output of G(C,C f ) to a two-input AND

gate. The output O of the AND gate A is fed back to
the AND gate through an inverter I.

Lemma 17: v is a test for SAF f in a combinational circuit
C if and only if < v, v > excites the PDF IAO ↑ or IAO ↓ in
the corresponding cyclic sequential circuit S cδ

f .

Theorem 11: The derivation of PDF excitation state is τ-
equivalent.

Proof: Lemmas 15 and 16 show that the derivation of PDF
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Fig. 10 A cyclic sequential circuit S cδ
f .

excitation state is equivalent to the test generation for path-
rising-smooth duplex circuits and duplex combinational cir-
cuits with SAFs at S-edges, which is τ-bounded. The time
complexity for the transformation between the two problems
is O(n2) as described in Definitions 17 and 18. Assume
the derivation of PDF excitation state is not τ-equivalent,
then by using cyclic δ transformation, the test generation for
combinational circuits with SAFs is not τ-equivalent from
Lemma 17 either, which is a contradiction. q.e.d.

Theorem 12: The test generation complexity for two-
column distributive SSFSM realization with PDFs under
slow-fast-slow clock is equivalent to the test generation
complexity for combinational circuits with SAFs, i.e. it is
τ-equivalent.

We also have not yet solved the PDF test generation com-
plexity of the 2CD-SSFSM under rated clock.

Open Problem 3: Is the test generation complexity for
2CD-SSFSM with PDFs under rated clock equivalent to the
test generation complexity for combinational circuits with
SAFs, i.e. it is τ-equivalent?

The test generation for 2CD-SSFSM with PDFs under slow-
fast-slow clock is τ-equivalent while that with SAFs is τ2-
bounded. In other words, if Conjecture 1 is proved, then
2CD-SSFSM would be a class whose test generation com-
plexity for PDFs under slow-fast-slow clock is less than that
for SAFs.

7. Conclusion

The time complexity and the relationships between the test
generation problem for several existing classes of circuits
with SAFs and PDFs have been described in this paper.
The test generation for internally balanced sequential cir-
cuits with SAFs and PDFs under rated clock and slow-fast-
slow clock is equivalent to the test generation for combi-
national circuits with SAFs. On the other hand, the test
generation for the acyclic sequential circuits with SAFs and
PDFs under slow-fast-slow clock is τ2-bounded. It is shown
that under TEM at slow-fast-slow clock the test generation
for PDFs is not τ-equivalent. For 2CD-SSFSM with PDFs
under slow-fast-slow clock, its test generation complexity
is τ-equivalent but that with SAFs is τ2-bounded. The test
generation for 2CD-SSFSM with SAFs seems not to be τ-
equivalent and remains as a conjecture. If it is proved, 2CD-
SSFSM will be a class of circuits that has the test generation
complexity for PDFs less than the test generation complex-
ity for SAFs. The test generation for acyclic sequential cir-

cuits and cyclic sequential circuits with PDFs is discussed
under the assumption of slow-fast-slow clock. Similar dis-
cussion is also needed for the condition under rated clock.
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