
736
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.3 MARCH 2008

PAPER Special Section on Test and Verification of VLSIs

Scheduling Power-Constrained Tests through the SoC Functional
Bus

Fawnizu Azmadi HUSSIN†a), Nonmember, Tomokazu YONEDA†b), Member,
Alex ORAILOĞLU††c), Nonmember, and Hideo FUJIWARA†d), Fellow

SUMMARY This paper proposes a test methodology for core-based
testing of System-on-Chips by utilizing the functional bus as a test access
mechanism. The functional bus is used as a transportation channel for the
test stimuli and responses from a tester to the cores under test (CUT). To
enable test concurrency, local test buffers are added to all CUTs. In or-
der to limit the buffer area overhead while minimizing the test application
time, we propose a packet-based scheduling algorithm called PAcket Set
Scheduling (PASS), which finds the complete packet delivery schedule un-
der a given power constraint. The utilization of test packets, consisting
of a small number of bits of test data, for test data delivery allow an effi-
cient sharing of bus bandwidth with the help of an effective buffer-based
test architecture. The experimental results show that the methodology is
highly effective, especially for smaller bus widths, compared to previous
approaches that do not use the functional bus.
key words: functional bus, functional TAM, power-constrained, packet-
based scheduling, system-on-chip testing

1. Introduction

System designers are adapting to the system-on-chip (SoC)
design methodology because of its efficiency compared to
the traditional system-on-board approach. The main bene-
fit of the SoC approach is that it can drastically shorten the
design cycle by allowing pre-designed cores and their as-
sociated test set to be reused. The IEEE 1500 standard [1]
supports this test reuse methodology by standardizing a test
wrapper.

The use of SoC design methodology introduces sev-
eral new problems and challenges in testing [2]. First, the
cores that are embedded deep inside the silicon chip require
a Test Access Mechanisms (TAM) for test data transporta-
tion. Several TAM architectures have been proposed such
as TestRail [3], Virtual TAM [4], and TAMs based on trans-
parency [5]. Second, the SoC’s core-based design requires a
mechanism to isolate the cores during test. This is achieved
by the use of core wrappers [1], [3]. Third, the cores can
either be tested sequentially at the cost of longer test appli-

Manuscript received April 6, 2007.
Manuscript revised August 3, 2007.
†The authors are with the Graduate School of Information Sci-

ence, Nara Institute of Science and Technology, Ikoma-shi, 630–
0192 Japan.
††The author is with the Computer Science and Engineering De-

partment, University of California San Diego, La Jolla, California
92093, U.S.A.

a) E-mail: fawniz-h@is.naist.jp
b) E-mail: yoneda@is.naist.jp
c) E-mail: alex@cs.ucsd.edu
d) E-mail: fujiwara@is.naist.jp

DOI: 10.1093/ietisy/e91–d.3.736

cation time, or in parallel at the cost of larger area overhead
and power dissipation. In this regard, various test schedul-
ing solutions have been proposed [6]–[22]. The core test
scheduling approaches proposed by [6]–[15] rely on a ded-
icated TAM. This extraneous TAM is consistently added to
the SoC for the sole purpose of delivering the test vectors
from external automatic test equipment (ATE) to the core
under test (CUT).

Regardless of how efficient the test schedule optimiza-
tion, wrapper optimization, or TAM optimization algorithms
are, the idea of adding a dedicated TAM for test data trans-
portation by itself requires considerable area overhead. In
addition, the long TAM wires increase the routing conges-
tion. With small feature sizes below 90 nm, the long wires
are highly potential spots of production defects. Defects in
TAMs would prevent any cores from being properly tested,
thereby affecting yield. To avoid relying on TAMs, the ex-
isting functional communication architecture should be used
as an alternative to the extraneous TAM for testing purposes.
The test scheduling methods proposed in [6]–[15] cannot be
applied to this new problem, which has a single shared bus
where each bus wire cannot be individually assigned accord-
ing to the optimum test schedule. Cores can only be tested
sequentially by using all functional bus bit width.

In order to maximally reuse the existing chip resources
for testing, the authors in [16] described a method based
on consecutive transparency, where test access paths are
formed by creating transparent paths through existing func-
tional connections between the SoC cores, thereby reusing
most of the existing interconnects. However, the drawback
of the proposed approach is that it is intrusive; sometimes,
establishing the paths requires modification to the core in-
ternals, which might affect the critical paths of the cores.

Several test strategies which utilize the functional
bus [17]–[22] have been proposed; they are further dis-
cussed in Sect. 2. However, these methods do not consider
the test scheduling at the packet level. In our proposed
approach, we explicitly schedule the transportation of data
packets through the functional bus that carry the test vec-
tors and responses. The test application times are obtained
through complete packet-level simulations of the test data
transportation. The proposed approach is unique because of
the explicit packet transportation schedule, in addition to its
ability to make use of the functional bus effectively.

We begin with a review of some related works in
Sect. 2. In Sect. 3, a motivational example is given, followed

Copyright c© 2008 The Institute of Electronics, Information and Communication Engineers



HUSSIN et al.: SCHEDULING POWER-CONSTRAINED TESTS THROUGH THE SoC FUNCTIONAL BUS
737

by a brief technical overview in Sect. 4. In Sect. 5, the sup-
port architecture design for the efficient utilization of the
functional bus during testing is described. Section 6 elab-
orates the methodology to develop an efficient test schedule
using the functional bus. In Sect. 7, we thoroughly evalu-
ate our methodology experimentally. Finally, a brief set of
conclusions is offered in Sect. 8.

2. Related Work

The author in [17] discussed the functional bus based test
application for SoCs. When utilizing the embedded proces-
sor as tester [18]–[20], direct memory access (DMA) is used
to transport test data from the external tester to the embed-
ded memory [18], after which the test data are transported to
the CUT through the addressable system bus [19]. In [20],
the embedded processor is tested prior to core testing us-
ing software-based self-test [23]. The embedded memories
are tested by either the processor or the embedded memory
built-in-self-test (MBIST).

A hybrid TAM architecture which uses the existing
functional bus in addition to extra TAMs was proposed in
[8]. In this approach, the functional bus is converted into
a bundle of TAMs, by adding some logic to make the bus
wires controllable and observable to external testers. As
a result, each functional bus wire can be individually con-
trolled and assigned to cores for the test data transportation,
similar to added TAM. To further minimize the test applica-
tion time by optimizing TAM utilization, shared test vectors
are broadcast to multiple cores.

In [21], the authors propose a test interface architec-
ture between PCI buses and CUTs. The CUTs are tested
using pseudo-random test vectors, generated by the embed-
ded processor. In [22], a buffer interface between a func-
tional bus and a CUT is proposed, while the control of test
application is performed by a Finite State Machine (FSM)
based controller. The hardwired controller has in [22] has
two main weaknesses compared to our approach: (1) the
area cost is proportional to the the volume of test data, and
(2) the FSM-based test schedule is fixed, making it impossi-
ble to change. This flexibility is especially important during
the hardware debugging stage. The test responses, on the
other hand, are not transported through the bus to the test
sink. Instead, they are compressed by local embedded mul-
tiple input signature registers (MISR), which could cause
aliasing. Furthermore, the MISRs incur hardware overhead.

Due to the use of MISRs, the test application time of
[22] should, in most cases, be shorter than our approach,
which transports the test responses back to the tester. How-
ever, the use of software-based test program in our proposed
approach has the advantage of being flexible, and does not
incur hardware overhead other than the buffers. The role
of the FSM-based test controller in [22] can be replaced by
an external tester or an embedded processor. This is further
discussed in Sect. 4

To differentiate the two types of test data transportation
approaches, we define the following terminologies:

Definition 1: Dedicated TAM is a set of dedicated wires
that are added to the SoC for the test data transportation be-
tween an ATE and all the SoC cores.

Definition 2: Functional TAM refers to the existing SoC’s
functional interconnects which are transformed and reused
for the test data transportation.

In this paper, we illustrate our power-constrained SoC
testing approach which utilizes the functional TAM for the
test data transportation. In order to take advantage of the
functional TAM, we approach the problem from two angles,
namely, a support architecture design framework and an al-
gorithmic framework. In the process, we show how our ap-
proach greatly simplifies the test program, one of the pri-
mary strengths and differentiators of our proposed method-
ology. Such a simplification is attained through the support
of an efficient test architecture, which includes appropriate
timing control circuitry.

3. Motivation

Let us look at some of the possible scenarios regarding
packet based test delivery utilizing the shared functional
TAM. To ease description, let us denote each of the small
test data units as a test packet. Figure 1 illustrate a sequence
of events when test packet are transported between a tester
and two CUTs, Core A and Core B, which are interfaced to
the functional TAM through dedicated local buffers Buffer
A and Buffer B, respectively, in Fig. 2. Bus and Core A/B
represent the activities on the functional TAM and at the
CUT, respectively. Once a packet carrying test vector data,
vt, (labeled V) is received by the local buffer, the test re-
sponse packet (labeled R) from a previous test vector, vt−1 is
returned in the next time slot.

The Round-robin packet delivery schedule in Fig. 1 is
a reasonable first attempt at scheduling the test delivery be-

Fig. 1 Test data transportation using packet-based delivery on the func-
tional TAM. A R packet carrying the test response data is returned to tester
after every V packet, which carries test vector data.

Fig. 2 Buffer-based test architecture enables parallel test application
while utilizing a shared functional TAM.



738
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.3 MARCH 2008

cause of its fair allocation of the bus. Figure 3 (a) shows a
similar delivery pattern for three unidentical CUTs m1, m2,
and m3. For each CUT mi, each packet will go through two
separate stages of transfer (illustrated by Fig. 2). First, it is
delivered from a tester to the buffer through the functional
TAM (labeled Bus in Fig. 3, where each time slot represents
both V and R packets). On the second stage, the packet is
transferred from the buffer into the scan chains (labeled mi

in Fig. 3 to illustrate the concurrent activities of all CUTs mi

in stage 2). A test response packet is returned to the tester
after every successful reception of a test vector packet by
the buffer.

Stage 1 of the subsequent test packet for a CUT can
only begin, to avoid buffer overflow, after stage 2 of the pre-
vious test packet for that CUT has been completed. Fur-
thermore, since stage 1 uses a common bus, only one test
packet can be in stage 1 at any given time. Stage 1 and stage
2 are also referred to as test delivery and test application,
respectively, for the test packet.

Figure 3 (b) shows CUT m3 idle, waiting for test data
because the test packet for m3 cannot be delivered until the
test packet for m2 has been delivered. However, the test
packet for m2 cannot be delivered until the test application
of the previous packet of m2 has been completed. Conse-
quently, m3 is starved for test data and at the same time the
bus remains idle while waiting for m2 to complete test ap-
plication even though m3 needs test data. An analogous sit-
uation holds for m1. CUT m2, on the other hand, always
receives its test data in a timely manner at the expense of
starving m1 and m3.

The problem can be remedied by increasing the packet
size for m1 and m3, as in Fig. 3 (b). However, this quick
fix implies that larger buffer spaces are required for m1 and
m3 to store the larger packet sizes. We can reduce packet
sizes for all cores, but the minimum packet size for each
core is constrained by the core with the smallest packet size
(i.e. m2). Further reduction in packet sizes for m1 and m3

would reintroduce the problem illustrated in Fig. 3 (a). The

(a) Fixed packet size

(b) Variable packet sizes

Fig. 3 Effect of repetitive packet delivery sequence for different packet
sizes.

two scenarios illustrated by Fig. 3 above are not the only
optimization problems that have to be solved to make core-
based testing using the functional TAM attractive. An addi-
tional challenge stems from the fact that packet sizes cannot
be arbitrary, because data delivery is conducted through a
discrete number of bus wires.

Figure 2 shows the buffer interface between the bus and
the core, which is considered in this paper. There are several
different variables that can affect test scheduling—bus fre-
quency, bus width, scan frequencies, number of scan chains,
and volume of test data for each core. All these variables
contribute to the efficiency of the test schedule.

4. Technical Overview

Even though a functional TAM and a dedicated TAM may
be similar in many ways, the underlying issues that need
to be considered are completely different. We can broadly
categorize them into two:

• Support architecture for test data delivery
• Algorithmic framework for efficient test scheduling

A functional TAM differs from a dedicated TAM be-
cause every functional TAM wire is connected to every em-
bedded core; it cannot be committed to multiple cores si-
multaneously like a dedicated TAM by assigning subsets of
TAM wires to different cores. Without a buffer-based test
support mechanism (Fig. 2) similar to the test buffer in [21],
[22], only one core can be tested at a time. Furthermore,
in the conventional approach of dedicated TAM-based SoC
testing, test control timing, including scan and capture clock
generation, is provided by the external ATE. Therefore, the
synchronization of test vector availability at the scan input
and scan/capture clock generation is trivial since the ATE
retains full control of all the event sequences for every core
under test. When utilizing the functional TAM, this con-
trol timing needs to be performed on-chip, posing a research
challenge, which we subsequently address in this paper.

The test source/sink to a functional TAM can either be
an external ATE or an internal programmable block. Un-
like dedicated TAMs, the ATE cannot be connected directly
to the functional TAM wires, but through a test interface
port shown in Fig. 4. For example, AMBA [24] bus archi-
tecture provides a Test Interface Controller (TIC), which

Fig. 4 Interfacing an ATE through a Test Interface Controller (TIC) port
for a functional mode test data transfer through the functional TAM.



HUSSIN et al.: SCHEDULING POWER-CONSTRAINED TESTS THROUGH THE SoC FUNCTIONAL BUS
739

communicates to the ATE and the CUT using the functional
read/write transactions. The TIC relays the vector data pack-
ets from the ATE to the CUT and vice versa for the response
packets. Several issues need to be resolved in order to utilize
the programmable core as a test source/sink, which among
others include testing of the programmable core itself, and
loading and offloading of the test data to the programmable
core. An external ATE (connected through a TIC) is used
as the test source/sink, therefore, these issues regarding the
programmable core are not addressed in this paper.

Test scheduling that enables the reuse of the functional
bus as functional TAMs involves three steps. First, break-
ing the test set into subsets capable of efficiently utilizing
the bus. Second, scheduling all tests for every core with
the objective of test time minimization, and third, genera-
tion of a test program which will execute in real-time by
the tester to perform test application for all the SoC cores.
In order for the benefits of utilizing the functional TAM for
testing to outweigh its counterparts in the dedicated TAM
approach, the test architecture needs to support the algorith-
mic framework, and vice versa. Otherwise, problems such
as bus underutilization arise because of the required arbi-
tration between different cores, and improper test schedules
causing certain cores to starve of test data while other cores
may be hogging the bus, resulting in prolonged test applica-
tion time.

Test data overflow/underflow is a particularly serious
potential problem, unless the necessary timing synchroniza-
tion or interlock between the tester and the cores under test
is provided. The test support architecture should be de-
signed to also provide timing synchronization, while min-
imizing the hardware overhead.

5. Test Support Architecture

Buffer based test architecture was proposed by [22] in order
to enable concurrency of core-based testing using a shared
functional TAM. Our general test architecture with buffers
similar to [22] is shown in Fig. 2 with the corresponding
test delivery and test application timing diagram similar to
Fig. 3.

Figure 5 shows the detailed architecture of the inter-
face between the functional TAM and the core through the
functional bus protocol interface. Both the functional con-
nections (solid lines) and design-for-testability (DFT) con-
nections (dotted lines) are shown. The components shown
in solid black shading are the proposed buffer-based DFT
architecture. Boundary cells (BC) are added to the core
PI/POs in order to isolate the core during test. The wrap-
per scan chains are formed by chaining the input BCs, inter-
nal scan chains (ISC), and output BCs, in that precise order.
Bidirectional I/Os are treated similarly to the ISCs since the
BC’s scan inputs, and not functional inputs, are used. Bidi-
rectional I/Os are not shown in Fig. 5 to avoid clutter.

During the test application, the test data are delivered
to the input buffer and then scanned into the scan chains. At
the same time, the test responses are scanned out and stored

Fig. 5 Core test architecture with input and output buffers to temporarily
hold the test vectors and test responses, respectively.

(a) The proposed buffer architecture interfaces the functional
TAM and the core scan chains.

(b) FIFO buffer controller generates test control signals to the
buffer and the CUT when test data are received.

Fig. 6 Test buffer architecture.

in the output buffer before being retrieved by the tester for
analysis.

The buffer consists of four main components—input
register, output register, fall-through stack, and FIFO buffer
controller—as shown in Fig. 6 (a), illustrating the input
buffer and the corresponding first-in first-out (FIFO) buffer
controller. The output buffer (not illustrated) has identical
structure as the input buffer but with reverse data flow. The
input register latches data from the bus. Upon registering
a full status bit for the input register, the top of the stack
copies the data from the input register if its status bit indi-
cates that it is empty. After copying, the input register status
bit is cleared, preparing it for the next cycle of data from the
bus. The stack will subsequently go through the fall-through
stages which will bring the data to the lowest empty slot.

The output register is composed of sm bits, where sm

is the number of wrapper scan chains for core m, possibly
differing from the bus width, wb. It is interfaced directly
to the scan chain inputs. The output register is designed to



740
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.3 MARCH 2008

support this mismatch in bus width and wrapper scan chains.
Therefore, it can be easily adapted to any number of scan
chains regardless of the bus width.

The test data is serially shifted out from the bottom of
the stack, and shifted into the output register. The FIFO
buffer controller keeps track of the number of bits being se-
rially shifted into the output buffer, nsi, and the number of
bits being serially shifted out of the bottom stack, nso. Serial
shifting is clocked by the tri-stated clock signal (labeled ε2
in Figs. 6 (a) and 6 (b)). When nsi equals sm, the FIFO con-
troller generates a scan clock ε3 to scan in the contents of
the output buffer into the scan chain, whereupon new data is
shifted into the output buffer. When nso equals wb, the FIFO
controller generates a signal ε1 to fill in the bottom of the
stack with new data.

The FIFO controller also keeps track of the number of
scan clocks already generated. When this number is equal
to the longest scan chain in the core, max(lm,i) for all i scan
chains in core m, a capture clock ε4 is generated. The FIFO
controller can be implemented using three modulo counters,
i.e., MOD sm, MOD wb and MOD max(lm,i) as illustrated in
Fig. 6 (b). The required input for this circuit is clock clkin,
whose frequency value is the product of the number of wrap-
per scan chains, sm, and the scan frequency, fm. The same
FIFO controller is used for both input and output buffers
because of their inverse operation. This eases timing syn-
chronization between the input and output buffers.

The proposed buffer architecture offers two distinct ad-
vantages. First, the test application at the core operates asyn-
chronously with respect to the availability of test data in the
buffer. When empty, the buffer disables the control signal
generation by means of status signal α, which is an input to
the FIFO controller. Because of the asynchronous scan and
capture clock generation by the FIFO controller, the buffer
can accommodate unpredictable delivery time of the test
vectors, thus handling the synchronization issue. As a result,
the scan clock and the bus clock can be decoupled. Such de-
coupling enables the proposed test mechanism to utilize a
bus frequency higher than the scan frequency. Such a ca-
pability is lacking in a dedicated TAM-based approach be-
cause TAM wires are connected directly to the scan chains.

The second advantage is that the buffer allows the test
data to be delivered in chunks of any arbitrary multiple of
bus width. This flexibility proves to be quite useful in op-
timizing the test schedule, in addition to minimizing the
buffer area overhead.

On the other hand, the multiplexer at the output buffer
(Fig. 5) introduces one additional gate-delay, compared to
the standard IEEE 1500 architecture. However, the impact
on functional timing between the functional bus and the core
is minimized because the buffers are added in parallel to
the functional paths. Another drawback is that gated scan
clock is used to disable the scan operation when the buffer
is empty, which might affect the delay characteristics of the
clock tree.

Due to the DFT architecture, which interfaces the core
directly to the functional bus, the proposed methodology is

not applicable to embedded cores that are not directly acces-
sible from the bus. One possible way of mitigating this is by
introducing bypass interconnects between the core and the
bus; this issue is out of the scope of this paper therefore not
discussed.

In Sect. 6, the scheduling of test vectors and responses
transportation for the embedded cores is discussed. It is as-
sumed that the FIFO buffers and controllers are fault-free,
therefore not the target of testing. The test of these DFT
architectures can be either done in an integrated fashion, or
independent of the core tests (i.e. in priory). In this paper,
the latter is assumed.

6. Packet Delivery Scheduling Algorithm

In this section, the issues related to packet delivery schedul-
ing discussed in Sect. 3 are addressed. The packet delivery
schedule that minimizes the test application time is devel-
oped with two objectives:

1. Minimization of the total required buffer size.
2. Maximization of bus utilization.

The above objectives are sought while at the same time
ensuring that all cores receive the test data in a timely man-
ner. In order to satisfy these twin objectives, the buffer size
for each core and the test delivery sequence need to be opti-
mal.

The scheduling algorithm consists of two hierarchical
steps. The first step (described in Sects. 6.2 and 6.3) is the
grouping of cores which can be tested simultaneously un-
der a maximum power constraint. In the second step (de-
fined in Sects. 6.4 and 6.5), for each group of cores, the opti-
mum number of packets (and the corresponding packet size)
for every core is determined. Each of these packets is then
scheduled for delivery through the functional TAM.

In this section, the algorithmic framework is discussed
in terms of the two hierarchical steps above. We start
by defining a set of nomenclature useful in describing the
methodology.

6.1 Terminology

Definition 3: A test packet is composed of a number of bits
of test data delivered to a core by the tester, in one burst
transfer through the bus.

Definition 4: Due to the delivery of test packets through
the wb-bit wide functional TAM, the number of bits of test
data that makes up a test packet is typically pm × wb, where
pm is denoted as the packet size.

Definition 5: A test group consists of a subset of cores in
an SoC that are tested simultaneously.

Definition 6: A packet set is composed of a series of pack-
ets delivered to all cores mi ∈ MG, where MG is a test
group. Several identical packet sets can be cascaded to form
a packet schedule consisting of all packets for all cores mi



HUSSIN et al.: SCHEDULING POWER-CONSTRAINED TESTS THROUGH THE SoC FUNCTIONAL BUS
741

Fig. 7 Power-constrained scheduling with variable test frequencies al-
lows better power utilization to minimize the test application time.

to complete the test of MG. Figure 1 shows a packet set
{Core A, Core B} repeated three times to form part of a test
schedule.

Definition 7: A core mi is said to have a split ratio of k, if k
packets are scheduled for core mi in one packet set. In other
words, it means that core mi will have k times the number of
packets of the smallest cores with a split ratio of one. The
core is also called a split-k core.

Definition 8: The scan rate (Rm) is the speed at which the
test vectors are loaded into the wrapper scan chains and the
test responses are shifted out of the wrapper scan chains in
bits per second (bps). A core with sm wrapper scan chains
and fm scan frequency has a scan rate of Rm = sm × fm.

6.2 Scan Frequency Reductions

In typical SoC testing, due to the design characteristics such
as heat dissipation and current carrying capacity of wires, a
limit is imposed on power dissipation that a circuit can tol-
erate without causing permanent damage to the chip. An
illustrative example in Fig. 7 (a) shows that core m3 cannot
be tested together with m1 and m2 without exceeding the
maximum power dissipation, Pmax. However, as shown in
Fig. 7 (b), if the rectangles for m2 and m3 can be reshaped
while keeping the area inside the rectangles constant, all
cores can be tested concurrently, resulting in shorter total
test application time. This power-time rectangle’s shape
transformation by means of changing the scan frequency has
been used and discussed by [13] in their dedicated TAM-
based SoC scheduling methodology.

The implementation of the frequency divider is out of
the scope of this paper. However, since the use of multi-
frequency clocks in IC design is commonplace, we as-
sume that such frequency divider implementation is possi-
ble, without causing timing violating. In the proposed al-
gorithm (Sect. 6.3), the choice of frequency values are con-
strained; these values can be selected based on the actual
clock frequencies that can be made available on-chip.

6.3 Forming Non-overlapping Test Groups

The distinctive characteristic of our test scheduling method-
ology (Sect. 6.5) is that it produces a delivery schedule for
only a very small subset of test data packets of every core
that can be cycled to produce a complete test data delivery
schedule. The small delivery schedule means that a small
and simple test program is needed to enumerate the start

(a) No group boundary constraint (b) Constrained group boundary

Fig. 8 Forming non-overlapping test groups by reducing the test fre-
quencies of cores m3 and m5.

time for the delivery of each packet. The existing functional
TAM approach [22] requires that the delivery time of each
data packet to all CUTs be individually specified. For large
SoCs, the test program (or the control circuit as proposed by
[22]) can be very large.

Therefore, when grouping the cores, we utilize a
method—forming non-overlapping test groups (Fig. 8 (b))—
that supports this novel aspect to ensure that it can be fully
exploited. The grouping in Fig. 8 (b), for an SoC with five
CUTs, requires two different test packet delivery schedules
which start at time ti, compared to four for Fig. 8 (a).

A test group is formed by scheduling the core with the
longest test time first. When scheduling the next core into
the same group, its frequency is reassigned to one of the dis-
crete frequencies smaller than the maximum scan frequency.
The smallest frequency that will not cause the core test time
to exceed the test time of the first core in the group is se-
lected as it meets the twin goals of not exceeding the maxi-
mum frequency while approaching it maximally within the
preset flip-flop quantity constraint for the clock divider cir-
cuit.

When the largest unscheduled core cannot fit the cur-
rent group within the power constraint, a core that brings
total power dissipation for the group closest to the power
limit is chosen. This is repeated until no core can fit in,
upon which, the same procedure is repeated to create a new
group. The process is repeated until all cores are assigned
to one of the test groups.

6.4 Buffer Sizes

Assuming that each packet starts to be loaded into the scan
chains as soon as it arrives at the buffer (i.e. zero buffer load-
ing latency), the required buffer size for a core mi to store the
packet can be specified as [(packet size in bits) − (number of
bits loaded into the scan chains during the delivery period
of the packet)], or

Bmi = pmi · wb − pmi

fb
· Rmi (1)

where pmi = packet size, wb = bus width, fb = bus frequency,
and Rmi = scan rate.

Equation (1) holds under the assumption that the next
packet is delivered only when the previous packet has al-
ready been scanned in completely. Therefore, the total
buffer size, Btotal, is given by Eq. (2) for all cores mi ∈ M,
where M represents all cores under test in the SoC.



742
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.3 MARCH 2008

Fig. 9 Packet set scheduling algorithm. An example of a perfect-fit delivery sequence.

Btotal =
∑

mi∈M

Bmi (2)

6.5 PAcket Set Scheduling (PASS) Algorithm

The packet set scheduling algorithm consists of three steps.
First, to determine how to split the test packet for each core
(i.e. finding the split ratios) so that the individual packet
sizes are equal. If the packet sizes are not equal, the largest
packet will become the constraint when minimizing the total
buffer sizes as illustrated in Sect. 3. In the second step, once
the split ratio has been identified, the packet sizes are deter-
mined by solving a set of linear equations. In the third step,
a sequence of packet set delivery schedules is systematically
formed.

6.5.1 Step 1

Let us consider a test group which has n cores to be tested
simultaneously. In the first step of the algorithm, all k < n
cores with scan rates smaller than the average scan rate for
all cores are considered to have a split ratio of one—the
smallest split ratio. This is because other larger cores will
be assigned split ratios of larger than or equal to one. Under
the PASS scheme, the smallest possible number of packets is
desirable when forming a packet set in order to minimize the
complexity of the resulting test program. Before proceed-
ing, we define a relevant terminology to aid the description
of the algorithm.

Definition 9: Assuming that the bus delivery rate is suffi-
ciently high, a packet set is considered to be in perfect-fit if
(i) it does not have cores that are waiting for test data, (ii)
there are no two consecutive packets delivered that belong
to the same core and (iii) the number of packets between ad-
jacent split-1 packets are equal. Furthermore, all three con-
ditions need still hold when two adjacent perfect-fit packet
sets are cascaded, except possibly for the initial or final legs
of test application.

Figure 9 shows a perfect-fit delivery sequence, where
the test group consists of nine cores, m1 to m9. Between the
four split-1 cores (m1−m4), eight packets belonging to other
cores (m5 − m9) are delivered (perfect-fit condition (iii)).
In order to ensure the perfect-fit criteria are not violated
when forming a perfect-fit packet set consisting of split-1

and split-r cores, for any value of r > 1 such that k mod r
is zero, the number of split-r cores must equal d × k/r for
some positive integer d. This requirement is imposed in or-
der to achieve an even utilization of bus time, as implied by
condition (iii) of Definition 9, we need to schedule the same
number of split-r packets in between the delivery of split-1
packets. This forms d subgroups of (k/r) split-r cores which
make up the split-r group.

To determine the split-r cores, we iteratively check for
all possible values of r, starting with the smallest. Let Ravg

be the average scan rate of split-1 cores. For the remain-
ing cores with split ratio value unassigned, if there exist k/r
cores mi that fulfill Rmi < βr × Ravg for some constant β, then
all the k/r cores are assigned split ratio values of r. The con-
stant β gives a cut-off limit on the largest core to be assigned
to split-r group. It limits the relative buffer sizes of split-r
cores and split-1 cores. The value of β = 1.5 was chosen
after thorough experimentation.

The process above is repeated when identifying the
next k/r subgroups of split-r cores. As a result, d sub-
groups of k/r cores are assigned the split ratio of r. If no
subgroup could be found for the current value of r, this pro-
cess is repeated for the next larger value of r until r equals
k. Then, the remaining q = (n − k − d × k/r) cores are as-
signed a split ratio of 2k to form the split-2k group.

Instead of assigning split ratio of 2k for the remaining
cores, the same procedure for forming the split-r group can
be extended to form other split groups. However, to mini-
mize the algorithm complexity, we have chosen only three
split ratio values (1, r, and 2k) since they provide sufficiently
good results (i.e. overall test application time) as illustrated
in Sect. 7.

6.5.2 Step 2

Once the split ratios are determined, the next step is to deter-
mine the packet size for each core. Equation (3) describes
the scan in time of a test packet, where wb = bus bit width,
pmi = packet size, and fmi = scan frequency, for core mi.

Tmi ,p =
wb · pmi

fmi

(3)

To preclude introduction of gaps between the test appli-
cations of two consecutive packets of a core (condition (i) of



HUSSIN et al.: SCHEDULING POWER-CONSTRAINED TESTS THROUGH THE SoC FUNCTIONAL BUS
743

Definition 9) as illustrated by Fig. 3 (b), the packet loading
time (i.e. scan in time of a packet worth of test data from the
input buffer into the scan chains) multiplied by the corre-
sponding split ratio must be identical as shown by the illus-
trative example in Fig. 10. This is necessary to ensure that
there are no gaps between the packets within the packet set
and between adjacent packet sets.

Equation (4) describes the general packet loading times
as illustrated by Fig. 10, where r and 2k are the correspond-
ing split ratios for each core. Equation (4) assumes that the
split-1, split-r, and split-2k cores are labeled m1 to mk, mk+1

to mk+dk/r, and mk+dk/r+1 to mk+dk/r+q, respectively. For ex-
ample, given k = 4, r = 4, d = 2, and q = 3 as in Fig. 9, cores
{m1,m2,m3,m4} ∈ split-1 group, {m5,m6} ∈ split-r group,
and {m7,m8,m9} ∈ split-2k group, respectively. Packet size,
pmi , and buffer size, Bmi , for each core mi can be calculated
by solving Eqs. (1), (2), and (4) simultaneously. For each
value of Btotal, a unique solution can be obtained.

wb ·pm1

fm1

= · · · = wb ·pmk

fmk

=r ·wb ·pmk+1

fmk+1

= · · · = r ·
wb ·pm

k+ dk
r

fm
k+ dk

r

= 2k·
wb ·pm

k+ dk
r +1

fm
k+ dk

r +1

= · · · = 2k·
wb ·pm

k+ dk
r +q

fm
k+ dk

r +q

(4)

6.5.3 Step 3

In step one, the cores are assigned to either split-1, split-r,
or split-2k groups. Once the split ratios are determined,
the complete packet set schedule that fulfills conditions (ii)
and (iii) of Definition 9 can be systematically represented
by Fig. 11, assuming k and q cores for split-1 and split-2k

Fig. 10 Equating split ratio × packet loading time for all cores in a test
group.

Fig. 11 Packet set delivery sequence for a test group with three split
groups—split-1, split-r, and split-2k.

groups, respectively. Each pg
i, j represents a test packet de-

livery followed by a response packet retrieval where,

g = core number from split-i group
i = split ratio for core g
j = packet number for core g, and j ≤ i

In Fig. 11, the odd rows (horizontal) show the schedule
delivery for q split-2k packets followed by d split-r packets.
The even rows show the schedule delivery for the subse-
quent q split-2k packets followed by a single split-1 packet
from one of the k cores. The packet delivery ordering is
from left to right and top to bottom.

The retrieval of the response packet is scheduled after
every test packet delivery. This can be implemented using
the write-read data transfer which requires a single address
cycle. If it is not supported by the functional operation, an
additional address cycle would be required to initiate the
read cycle to fetch the response packet. This approach re-
quires minimal overhead on the control algorithm.

7. Experimental Results

We have conducted experiments on several ITC’02 bench-
mark [25] circuits in order to verify the efficiency of the pro-
posed algorithm. Since the power dissipation information
is not available (except for h953 circuit) in the benchmark
suite definition, we obtained power information for p93791
and p22810 from [10] and d695 from [12]. In order to an-
alyze the efficiency of functional TAM utilization for test
data delivery, a single shared functional bus is assumed to
be connected to every core.

The effect of the frequency divider resolution on the
test application time is shown in Fig. 12. In each plot, the
bottom curve represents the test application time after the
test group has been formed under a power constraint. The
higher frequency divider resolution allows us to achieve a
shorter test application time. A significant reduction in test
time can be achieved within the first four bits of clock di-
vider resolution. The packet scheduling test application time
(top curves) are always higher as they incur an additional
overhead when splitting the test data into smaller packets.

In order to evaluate the performance of our test
scheme, we need to compare with dedicated TAM-based
test scheduling approaches. No direct comparison can be
offered with previous functional TAM-based test schemes
as the experimental results in [22] use four benchmark cir-

Fig. 12 Test application time vs. cost of the frequency divider (in flip-
flop count) before (solid) and after (dotted) splitting the test data into pack-
ets.



744
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.3 MARCH 2008

Table 1 Experimental setup. Same frequency settings for dedicated
TAM-based approaches and our PASSa approach, while PASSb uses higher
bus frequency.

Scan frequency Bus frequency
Dedicated TAM-based fs = Fs fb = fs < Fb

PASSa fs = Fs fb = fs < Fb

PASSb fs = Fs fb = 2 × fs < Fb

Table 2 Test application time (h953). Btotal ≤ 100 × wb.

cuits which lack required comparison information such as
information on test data and scan chain configurations that
are needed. The authors of [22] subsequently proposed a
method which uses a combination of a functional TAM and
a dedicated TAM [8], which is subsequently analyzed and
compared.

Table 1 shows the frequency information for ded-
icated TAM approaches and two variations of our ap-
proaches, PASSa and PASSb, with distinct bus frequencies.
The scan frequency, fs, is set to the assumed maximum,
Fs = 100 MHz; therefore all the dedicated TAM-based
TATs [9]–[12] are divided by 105 to convert from the num-
ber of clock cycles to time (millisecond). The bus frequency,
fb, for PASSb is double that of dedicated TAM-based and
PASSa approaches (but less than the maximum bus oper-
ating frequency, Fb) to illustrate the benefit of our buffer-
based approach.

In Table 2, the TATs for [9], [11], [12] are all equal at
three Pmax values for h953 circuit. In our approach, rel-
atively similar results were obtained. No noticeable im-
provement was achieved when increasing the bus frequency
(PASSb). These steady results were due to a single domi-
nant core, m1, that constrains the TAT minimization for this
circuit.

Figure 13 shows plots of the TAT for different bus
widths. For 64- to 128-bit bus, the TAT is constrained by the
largest core; therefore, increasing bus widths has no signifi-
cant effect on test application time. However, for bus widths
between 12 and 48 bits, PASSa delivers improvements of
4.8% and 18.2% over [10] for both maximum power, Pmax,
values of 3,000 and 10,000 for p22810. PASSb is improved
by 25.9% to 47.8% when test data delivery time is the lim-
iting factor. Similar trends can be observed for p93791 in
Fig. 13 (c) and 13 (d). In fact, our test methodology delivers
marked improvements in reducing test application time for
smaller bus widths.

For d695 (Table 3), our approach proves to be highly
effective, even for the same bus frequency as [10], [12], at
all power levels for bus widths ranging from 32 to 80 bits.
For 96-bit and wider buses, our methodology though fails
to perform as well. It is interesting to note, however, that
the dedicated TAM-based approach requires quite elevated

Fig. 13 Test application time (ms) vs. bus width for selected Pmax.
Btotal ≤ 200 × wb .

Table 3 Test application time (ms) of d695. Btotal ≤ 50 × wb.

Table 4 Performance comparison of several testing approaches (d695)
[*Pmax=2500; maximum hardware overhead constraint = 300† and
400‡ units].

levels of TAM overhead in order to outperform our packet
scheduling approach using the functional TAM.

In Table 4, some performance comparisons with sev-
eral scheduling approaches is given. The second row shows
the TAT for the dedicated TAM-based scheduling without
considering power and hierarchy constraints [14]. The TAT
is bounded by the lower bound of TLB = 10.2 ms [14]. When
the design hierarchy is considered as a constraint, the re-
sulting TAT [10] is shown on the third row. On rows 4-6,
the TAT of a test set sharing and broadcasting approach is
given. When using only the functional TAM (fourth row),
the TAT is 27% higher than the case of using only the dedi-



HUSSIN et al.: SCHEDULING POWER-CONSTRAINED TESTS THROUGH THE SoC FUNCTIONAL BUS
745

Fig. 14 Little reduction in the test application time (ms) as the total
buffer sizes (×wb flip-flops) are increased. Bus width, wb = 32 bits.

Table 5 Average buffer sizes per core for the corresponding TAT of
PASSa and PASSb in Fig. 13 and Table 3.

cated TAM [10].
The author improves the performance by using a hybrid

architecture with twice the previous bit width (rows 5-6) [8],
but comparable hardware overhead due to the same bit width
of dedicated TAM as [10]. The last row shows our proposed
approach which uses only the functional TAM, with com-
parable performance when the functional TAM frequency
is constrained by the scan frequency. The real advantage is
illustrated when a higher functional TAM frequency (not ex-
ceeding the maximum functional frequency) is used for test
data transportation, which is made possible by the frequency
decoupling provided by the buffer architecture.

Figure 14 shows the trend in TAT under different buffer
size utilization for the two circuits with the same power con-
straints as in Fig. 13. The buffer size represents the total
size, in multiples of bus width, allocated to all cores in the
circuit. It is interesting to note that increasing buffer size
only reduces the TAT marginally. Therefore, buffer size can
be reduced with only a small penalty on TAT. Table 5 shows
the area cost in terms of average buffer sizes per core, aver-
aged over wb = 32 . . . 128, for the corresponding TAT re-
sults reported in Fig. 13 and Table 3.

With the flexibility of bus frequency selections, unique
to our proposed approach as a dedicated TAM-based ap-
proach is unable to utilize such flexibility, we can further im-
prove the TAT while ensuring that nothing more than mini-
mal bus widths are utilized. This is illustrated by PASSb in
Fig. 13 and Table 3.

8. Conclusion

The functional bus is an essential part of any SoC design. As
the performance of SoCs increases, the bus speed has also
been increased even though not at the same pace. There are
many different bus architectures and protocols that provide
various functionalities and performance. Therefore, this pa-
per explains our research effort to take advantage of the ex-

isting functional bus for testing purposes.
The utilization of the functional bus for power-

constrained core-based SoC testing entails a number of chal-
lenges. These include frequency and bit-width mismatch be-
tween the bus and the cores under test, allocation of bus time
slots for an efficient test data delivery schedule that maxi-
mizes bus utilization and that ensures that all cores always
have the test data that they need to continue testing simulta-
neously without exceeding the power constraint.

We have herein proposed an efficient methodology that
overcomes all of these challenges through a test support
architecture design framework and an algorithmic design
framework. The proposed methodology offers a solution
that also minimizes the size of the test program. The exper-
imental data clearly showcases the benefits of the proposed
methodology in reducing test application time especially for
smaller bus widths, while also eliminating the need to add
extraneous TAMs to the SoC solely for testing purposes.

Acknowledgements

This work was supported in part by Japan Society for the
Promotion of Science (JSPS) under Grants-in-Aid for Sci-
entific Research B (No.15300018) and for Young Scientists
(B) (No.18700046). The authors would like to thank Prof.
Michiko Inoue, Dr. Satoshi Ohtake and members of Com-
puter Design and Test Laboratory in Nara Institute of Sci-
ence and Technology for their valuable comments.

References

[1] E.J. Marinissen, R. Kapur, M. Lousberg, T. McLaurin, M. Ricchetti,
and Y. Zorian, “On IEEE P1500 standard for embedded core test,” J.
Electron. Test., Theory Appl., vol.18, pp.365–383, Aug. 2002.

[2] Y. Zorian, E.J. Marinissen, and S. Dey, “Testing embedded-core
based system chips,” Proc. International Test Conference, pp.130–
143, 1998.

[3] E.J. Marinissen, R. Arendsen, G. Bos, H. Dingemanse, M. Lousberg,
and C. Wouters, “A structured and scalable mechanism for test ac-
cess to embedded reusable cores,” Proc. International Test Confer-
ence, pp.284–293, 1998.

[4] A. Sehgal, V. Iyengar, M.D. Krasniewski, and K. Chakrabarty, “Test
cost reduction for SoCs using virtual TAMs and lagrange multipli-
ers,” Proc. 40th Design Automation Conference 2003, pp.738–743.

[5] T. Yoneda and H. Fujiwara, “A DFT method for core-based systems-
on-a-chip based on consecutive testability,” Proc. Asian Test Sym-
posium, pp.193–198, 2001.

[6] E. Larsson and H. Fujiwara, “System-on-chip test scheduling with
reconfigurable core wrappers,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol.14, no.3, pp.305–309, March 2006.

[7] A. Sehgal, V. Iyengar, and K. Chakrabarty, “SoC test planning us-
ing virtual test access architectures,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol.12, no.12, pp.1263–1276, Dec. 2004.

[8] A. Larsson, E. Larsson, P. Eles, and Z. Peng, “SoC test scheduling
with test set sharing and broadcasting,” Proc. IEEE Asian Test Sym-
posium, pp.162–169, 2005.

[9] Y. Xia, M. Chrzanowska-Jeske, B. Wang, and M. Jeske, “Using a
distributed rectangle bin-packing approach for core-based SoC test
scheduling with power constraints,” Proc. International Conference
on Computer Aided Design, pp.100–105, 2003.

[10] J. Pouget, E. Larsson, and Z. Peng, “Multiple-constraint driven
system-on-chip test time optimization,” J. Electron. Test., Theory



746
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.3 MARCH 2008

Appl., vol.21, pp.599–611, 2005.
[11] C.P. Su and C.W. Wu, “A graph-based approach to power-

constrained SoC test scheduling,” J. Electron. Test., Theory Appl.,
vol.20, pp.45–60, 2004.

[12] Y. Huang, S.M. Reddy, W.T. Cheng, P. Reuter, N. Mukherjee, C.C.
Tsai, O. Samman, and Y. Zaidan, “Optimal core wrapper width se-
lection and SoC test scheduling based on 3-D bin packing algo-
rithm,” Proc. International Test Conference 2002, pp.74–82.

[13] T. Yoneda, K. Masuda, and H. Fujiwara, “Power-constrained test
scheduling for multi-clock domain SoCs,” Proc. Design, Automa-
tion and Test in Europe, pp.297–302, 2006.

[14] S.K. Goel and E.J. Marinissen, “SoC test architecture design for effi-
cient utilization of test bandwidth,” ACM Trans. Des. Autom. Elec-
tron. Syst., vol.8, no.4, pp.399–429, Oct. 2003.

[15] K. Chakrabarty, V. Iyengar, and M.D. Krasniewski, “Test planning
for modular testing of hierarchical SoCs,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol.24, no.3, pp.435–448, March
2005.

[16] T. Yoneda and H. Fujiwara, “Design for consecutive testability of
system-on-a-chip with built-in self testable cores,” J. Electron. Test.,
Theory Appl., vol.18, no.4/5, pp.487–501, Aug. 2002.

[17] P. Harrod, “Testing reusable IP — A case study,” Proc. International
Test Conference 1999, pp.493–498.

[18] C.A. Papachristou, F. Martin, and M. Nourani, “Microprocessor
based testing for core-based system on chip,” Proc. Design Automa-
tion Conference 1999, pp.586–591.

[19] S. Hwang and J.A. Abraham, “Reuse of addressable system bus for
SoC testing,” Proc. IEEE ASOC/SOC Conference 2001, pp.215–
219.

[20] A. Krstic, L. Chen, W.C. Lai, K.T. Cheng, and S. Dey, “Embed-
ded software-based self-test for programmable core-based designs,”
IEEE Des. Test Comput., vol.19, no.4, pp.18–27, July/Aug. 2002.

[21] J.R. Huang, M.K. Iyer, and K.T. Cheng, “A self-test methodology for
IP cores in bus-based programmable SoCs,” Proc. VLSI Test Sym-
posium 2001, pp.198–203.

[22] A. Larsson, E. Larsson, P. Eles, and Z. Peng, “Optimization of a bus-
based test data transportation mechanism in system-on-chip,” Proc.
8th Euromicro Conference on Digital Systems Design, pp.403–409,
2005.

[23] L. Chen and S. Dey, “Software-based self-testing methodology for
processor cores,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol.20, no.3, pp.369–380, 2001.

[24] D. Flynn, “AMBA: Enabling reusable on-chip designs,” IEEE Mi-
cro, vol.17, no.4, pp.20–27, July/Aug. 1997.

[25] E.J. Marinissen, V. Iyengar, and K. Chakrabarty, “A set of bench-
marks for modular testing of SoCs,” Proc. International Test Confer-
ence 2002, pp.519–528.

Fawnizu Azmadi Hussin is a Ph.D. stu-
dent in the Computer Design & Test Labora-
tory at Nara Institute of Science and Technol-
ogy. He obtained his B.Sc. in Electrical Engi-
neering, specializing in Computer Design from
the University of Minnesota, U.S.A. and subse-
quently his M.Eng.Sc. in Systems and Control
from the University of New South Wales, Aus-
tralia. His research interests are in VLSI design
and testing, especially in the area of System-on-
Chip (SoC), multiprocessor SoC, and Network-

on-Chip (NoC) based SoC. Fawnizu is a member of the IEEE.

Tomokazu Yoneda received the B.E. degree
in information systems engineering from Osaka
University, Osaka, Japan, in 1998, and M.E.
and Ph.D. degree in information science from
Nara Institute of Science and Technology, Nara,
Japan, in 2001 and 2002, respectively. Presently
he is an assistant professor in Graduate School
of Information Science, Nara Institute of Sci-
ence and Technology. His research interests are
VLSI CAD, design for testability, and SoC test
scheduling. He is a member of the IEEE Com-

puter Society.

Alex Orailoğlu received his S.B. Degree
cum laude from Harvard University in Applied
Mathematics and his M.S. and Ph.D. degrees in
Computer Science from the University of Illi-
nois, Urbana-Champaign. Alex Orailoğlu is cur-
rently a Professor of Computer Science and En-
gineering at the University of California, San
Diego. His research interests include Embedded
Systems and Processors, digital and analog test,
fault tolerant computing, Computer-Aided De-
sign, and nanoelectronics. Professor Orailoğlu

serves in the technical, organizing and/or steering committees of the major
VLSI Test, Design Automation, Embedded Systems and Computer Archi-
tecture conferences and workshops. He is an associate editor of the Journal
of Electronic Test: Theory and Applications, of the IEE Digital Systems and
Design Journal, and of the Journal of Embedded Computing. Dr. Orailoğlu
has published 200 research articles. Dr. Orailoğlu is a Golden Core member
of the IEEE Computer Society.

Hideo Fujiwara received the B.E., M.E.,
and Ph.D. degrees in electronic engineering
from Osaka University, Osaka, Japan, in 1969,
1971, and 1974, respectively. He was with
Osaka University from 1974 to 1985 and Meiji
University from 1985 to 1993, and joined Nara
Institute of Science and Technology in 1993.
Presently he is a Professor at the Graduate
School of Information Science, Nara Institute
of Science and Technology, Nara, Japan. His
research interests are logic design, digital sys-

tems design and test, VLSI CAD and fault tolerant computing, including
high-level/logic synthesis for testability, test synthesis, design for testabil-
ity, built-in self-test, test pattern generation, parallel processing, and com-
putational complexity. He is the author of Logic Testing and Design for
Testability (MIT Press, 1985). He received many awards including Okawa
Prize for Publication, IEEE CS (Computer Society) Meritorious Service
Awards, IEEE CS Continuing Service Award, and IEEE CS Outstanding
Contribution Award. He served as an Editor and Associate Editors of sev-
eral journals, including the IEEE Trans. on Computers, and Journal of Elec-
tronic Testing: Theory and Application, and several guest editors of special
issues of IEICE Transactions of Information and Systems. Dr. Fujiwara is a
fellow of the IEEE, a Golden Core member of the IEEE Computer Society,
and a fellow of the IPSJ.


