
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.3 MARCH 2008
763

PAPER Special Section on Test and Verification of VLSIs

Design for Testability Method to Avoid Error Masking of
Software-Based Self-Test for Processors

Masato NAKAZATO†∗, Michiko INOUE†a), Satoshi OHTAKE†, Members, and Hideo FUJIWARA†, Fellow

SUMMARY In this paper, we propose a design for testability method
for test programs of software-based self-test using test program templates.
Software-based self-test using templates has a problem of error masking
where some faults detected in a test generation for a module are not de-
tected by the test program synthesized from the test. The proposed method
achieves 100% template level fault efficiency, that is, it completely avoids
the error masking. Moreover, the proposed method has no performance
degradation (adds only observation points) and enables at-speed testing.
key words: software-based self-test, processor, test program template, de-
sign for testability, error masking, at-speed testing

1. Introduction

In recent years, it has been essential that processors with
high performance and rich functionality have accurate and
at-speed testing. Though the full-scan approach is com-
monly used due to its simplicity, it induces performance
penalty, area overhead and excessive power consumption.
The hardware built-in self-test (BIST), which is one of the
other widely used techniques, applies pseudo-random test
patterns to modules on the circuit at the normal operational
speed. However, design modifications are required to make
a circuit to be BIST-ready, and involve large amount of man-
ual effort. The BIST also induces area overhead. Further-
more, an application of random patterns results in excessive
power consumption.

A number of approaches [1]–[7] have been proposed
for software-based self-test (SBST) as a promising approach
to resolve the above problems. In SBST, we test a processor
by executing a sequence of instructions called a test pro-
gram. A processor can be tested by communicating with a
memory, and thus it enables at-speed testing. We use com-
munication between the memory and an outside ATE as pre-
and post-processes of the execution of the test program.

Some methods among the SBST methods generate
a test program based on test program templates targeting
structural faults to achieve the high fault coverage [1], [2],
[5]–[7]. In this approach, gate-level test generation is ap-
plied to generate test patterns for each module under test
(MUT) of a processor (MUT test generation), and a test pro-
gram is synthesized from the test patterns (test program syn-

Manuscript received February 13, 2007.
Manuscript revised August 6, 2007.
†The authors are with Nara Institute of Science and Technol-

ogy (NAIST), Ikoma-shi, 630–0192 Japan.
∗Presently, the author is with Toshiba Corporation (Semicon-

ductor Company).
a) E-mail: kounoe@is.naist.jp

DOI: 10.1093/ietisy/e91–d.3.763

thesis), where a test program justifies the test pattern from
the memory to the MUT and propagates the test response
from the MUT to the memory. To guarantee the test pro-
gram synthesis, test program templates are used. A test pro-
gram template is an instruction sequence with unspecified
operands that delivers a test pattern to an MUT and observes
the test response. The approach extracts constraints on the
input and output of the MUT from each template, and ap-
plies test generation for the MUT under the constrains. In
this approach, we can easily synthesize a test program from
a test pattern for the MUT. However, the justification and
observation parts consider only behavior of a fault-free pro-
cessor and do not consider behavior of a faulty processor,
and such parts might not work as expected. In this case,
some faults detected by a test pattern for an MUT may not
be detected by the synthesized test program. We call such a
phenomenon “error masking.”

In this paper, we propose a design for testability (DFT)
method that completely resolves the problem of error mask-
ing for any test program generated by the template-based
SBST approach for the stuck-at fault. We show a suffi-
cient condition to avoid error masking and propose the DFT
method to make processors which satisfy the sufficient con-
dition. The proposed method has advantages in that (1) it
has no performance degradation in a sense that it does not
add any gate in a critical path but only observation point,
and (2) it enables at-speed testing. In the experimental re-
sults, we show the effectiveness of the proposed method on
hardware overhead and test application time.

This paper is organized as follows. In Sects. 2 and 3,
we show a processor model and test program generation
using templates, respectively. In Sect. 4, we analyze error
masking and define template level fault efficiency. In Sect. 5,
we propose a sufficient condition to avoid error masking. In
Sect. 6, we propose a DFT method of SBST for processors
and the experimental results are shown in Sect. 7. Finally,
the paper is concluded in Sect. 8.

2. Processor Model

A processor is specified by register transfer level (RTL) de-
scription. Figure 1 illustrates an example of a processor. A
processor consists of combinational modules such as arith-
metic logic unit (ALU) or multiplexer (MUX), sequential
modules such as a controller, signals, and buses. A signal in
an RTL description has a bit width, and is referred to as an
RTL signal. A bus considered to be a tri-state bus [8]. For

Copyright c© 2008 The Institute of Electronics, Information and Communication Engineers



764
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.3 MARCH 2008

Fig. 1 An example of a processor.

a fault-free processor, we also assume the following about
tri-state buses.

(1) Two or more inputs of a tri-state bus are not activated
simultaneously.

(2) Each output of the tri-state bus has a masking circuit that
generates a logic value (‘0’ or ‘1’), and an output of a
tri-state bus is masked into some specific logic value if
any input of the tri-state bus is not activated.

A processor is assumed to be synthesized while pre-
serving the hierarchy of the modules, and therefore each
module can be identified in a gate-level description.

3. Template-Based Test Program Generation

We first explain test program generation using test program
templates. In the rest of this paper, we call a test program
template a template. Figure 2 illustrates an example of a
template, which consists of three sequences: a justification
instruction sequence, a test instruction sequence and an ob-
servation instruction sequence. A justification instruction
sequence is utilized for delivering test patterns to registers
which are adjacent to inputs of an MUT. A test instruction
sequence applies test patterns to the MUT and propagates
the test response to registers that are adjacent to outputs of
the MUT or the memory. An observation instruction se-
quence propagates the test response stored in registers to the
memory. For each template, we extract constraints on the
input space and the output space of the MUT and perform
the MUT test generation under constraints.

Figure 3 illustrates a model of an MUT test generation
under constraints extracted from a template. The input and
output constraint are extracted from a template, where these
constraints represent the relation between operands of a tem-
plate and inputs of the MUT, and outputs of the MUT and
outputs to the memory, respectively, in a fault-free proces-
sor. If a processor is fault-free, a test program synthesized
from test patterns can justify test patterns of the inputs of the
MUT and observe the test responses at some primary output.
However, in the case of a faulty processor, the test program
might not justify test patterns of the inputs of the MUT or
observe the test responses. We call a test program obtained
by the test program generation using templates template-
based test program and, in the rest of the paper, we restrict
fault model to a stuck-at fault.

Fig. 2 An example of a template.

Fig. 3 A model of an MUT test generation.

4. Error Masking

4.1 Template Level Fault Efficiency

In the test program generation method using templates, jus-
tification instruction sequences, and observation instruction
sequences are generated only in consideration of the behav-
ior of the fault-free processor. When applying a test pro-
gram to the faulty processor, errors may appear during the
execution of these sequences. Therefore, we cannot guaran-
tee that the test program justifies test patterns of the MUT,
or observe the test response. This means that some faults
detected in the MUT test generation may not be detected
by the test program synthesized from the generated test pat-
terns. We call this phenomenon “error masking.” In this
paper, we define template level fault efficiency (FET ) as a
measure to evaluate error masking as follows:

FET =
FTP

FMT
,

where FMT is the number of faults detected in the MUT test
generation and FTP is the number of faults detected by the
test program among the FMT faults. A template level fault
efficiency of 100% means that there is no error masking.

4.2 Analyzing Error Masking

Figure 4 illustrates examples of error masking using a time
frame expansion model of the execution of a test program,
where each time frame corresponds to one clock. In the time
frame expansion model, time frames that apply test patterns



NAKAZATO et al.: DESIGN FOR TESTABILITY FOR SOFTWARE-BASED SELF-TEST FOR PROCESSORS
765

(a)

(b)

(c)

Fig. 4 Examples of error masking:(a) unknown values are propagated to
RTL signals; (b) errors reach the MUT; (c) errors are propagated to two
RTL signals and meet at some module in some frame.

to the MUT are called “test frame”, while time frames be-
fore the test frame are called “justification frames” and time
frames after the test frame are called “observation frames.”
Modules MJ , MT and MO denote the same MUT which ap-
pears repeatedly in different time frames. In this figure, we
describe the value of an RTL signal as “the value in fault-
free circuit/value in faulty circuit.” We consider four values
‘0’, ‘1’, ‘X’ (uninitialized value) and ‘Z’ (high-impedance)
for each bit of an RTL signal line. We consider ‘X’ and ‘Z’
to be unknown value, and an error of an RTL signal line
means that at least one bit has different known values.

Figure 4 (a) illustrates an example of error masking in-
duced by an unknown value. In Fig. 4 (a), unknown values
reach an input of MJ and logic values reach another input.
If MJ operates correctly, unknown values do not appear the
output of MJ . However, if MJ operates incorrectly under
the effect of the fault, an unknown value is propagated to its
output. This causes that value ‘01/0X’ is propagated to an
input of MT at the test frame and fails to excite the fault at
the test frame.

Figure 4 (b) illustrates an example of error masking in-
duced by a cycle of an RTL circuit. In this case, there is a
cycle including the MUT. In Fig. 4 (b), the fault is excited
at MJ in a justification frame and errors appear the output of
MJ . The errors reach inputs of MT in the test frame. A fault
of MT is not excited because incorrect test patterns reach to
inputs of MT .

Figure 4 (c) illustrates an example of error masking in-
duced by a convergence of errors. In Fig. 4 (c), the same
fault in MT and MO is excited, and the errors are propagated
through two paths p1 and p2 meet at some module MR. The
multiple errors mask each other in MR in the observation
frame and no error is propagated to the output of MR. In this
case, there are reconvergent paths between the MUT and

some module.

5. Sufficient Condition to Avoid Error Masking

In this section, we show a sufficient condition to avoid error
masking. In the sufficient condition, we utilize a reconver-
gent path.

Definition 1 (Reconvergent Path): Let M and M′ be mod-
ules. Paths pi and p j are reconvergent paths from M to M′ if
both pi and p j are paths from M to M′, and pi and p j share
no module except M and M′.

We give the following two assumptions for a test pro-
gram.

• The value stored in the memory cell referred to dur-
ing the execution of the test program is known. That
is, in the fault-free processor, unknown values are not
propagated from the memory to the processor.
• The memory cell written during the execution of the

test program is initialized to a different value from the
expected value, which will be stored in the memory cell
during the execution of the test program.

In this paper, we consider a fault is detected in the fol-
lowing cases.

(A1) No value or an unexpected value is stored in some
memory cell where the test program should write some
expected value.

(A2) The test program fails to read a value from a memory
cell designated to be read in the test program.

The second condition (A2) holds if the memory address
lines are observable. However, even if they are not observ-
able, we consider such incorrect behavior would cause some
observable errors.

To guarantee that the proposed method can achieve
100% template level fault efficiency, we show a sufficient
condition for a processor such that error masking does not
occur during the execution of the template-based test pro-
gram.

Theorem 1: For any template-based test program, error
masking does not occur during the execution of the test pro-
gram if a processor satisfies the following four conditions.

(1) Each register is initialized at the beginning of the exe-
cution of the test program.

(2) All the control signals of each tri-state bus and its mask-
ing circuits are observable.

(3) For each cycle, at least one RTL signal on the cycle is
observable.

(4) For each pair of reconvergent paths, at least one RTL
signal on the two paths is observable.

Proof :
Let f be a stuck-at fault detected by an MUT test gen-

eration in template-based test program generation. We con-
sider the execution of a test program for f . Let M be a
module with f .



766
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.3 MARCH 2008

First we show that f is detected or a value of any RTL
signal of the processor is known. Since all the registers are
initialized to known values at the beginning from condition
(1), if some signal has an unknown value, it comes from the
outside or is generated at the inside of the processor. If f
is not detected, (A2) implies that values are read from the
same memory addresses in both correct and faulty proces-
sors. Since the memory cells where the test program refers
to have known values, unknown values are not propagated
from the outside of the processor. Moreover, if f is not de-
tected, condition (2) implies that there is no error on control
signals or masking circuits of tri-state buses. Therefore, any
output of any bus has a value of some activated input of the
bus or a known value generated by its masking circuit. Since
the value of any RTL signal can be determined by values of
primary inputs, registers, and bus outputs, any RTL signal
has a known value.

Then we show that f is detected or the test pattern
reaches M. We assume that the test pattern of f does not
reach the inputs of M. We consider the registers used in or-
der to justify this test pattern in the correct operation of the
processor. In this case, there is a bit b of a register among
them such that b has a different value from the correct value.
If f is not detected, any RTL signals have known values and
the value of b is an error. Since an error is only caused by
f of M, a path P through b from an output of M to an input
of M exists and the error is propagated on P. Since at least
one RTL signal on each cycle is observable from condition
(3), at least one RTL signal on P is observable and the fault
is detected. Therefore, f is detected or the test pattern for f
reaches the inputs of M.

Finally, we show that the test response of M is prop-
agated to an intended primary output or f is detected. The
output of M can be observed at a primary output in the fault-
free processor. Therefore, there exists a path P such that an
error is propagated from M to an primary output. Suppose
the fault is not detected. In this case, an error is not propa-
gated to any primary output, and there exists a module M′
such that the error is prevented from propagating on P. If M′
is not faulty and errors are propagated to M′ only through
P, the errors are propagated to the outputs of M′. Therefore,
(a) M′ is faulty that is M = M′, or (b) errors are propagated
to some inputs of M′ which are not on P.

(a) If M′ is M, errors are propagated on a cycle, and are
observed from condition (3) and therefore f is detected.

(b) If errors are propagated to some inputs of M′ which
is not on P, errors are propagated on two reconvergent paths
from M to M′. By condition (4), errors are observed and f
is detected.

Therefore, a fault f detected by MUT test generation
can be detected during the execution of a test program syn-
thesized from the test pattern for f .

�

6. Design for Testability Avoiding Error Masking of
Software-Based Self-Test

6.1 Formulation

We propose a DFT method to avoid error masking. First,
we consider the following DFT elements since we add only
initialization functions of registers and observable points to
the original design in order to satisfy the sufficient condition
in Theorem 1.

• Add an initialization function to a register
• Add an observation point to an RTL signal

Since an advantage of SBST is the possibility of at-
speed testing, it is important that the processor after DFT
also preserves the possibility of at-speed testing. Therefore,
we capture the values of RTL signals at the normal oper-
ational speed. We use a multiple input signature register
(MISR) for this purpose.

In order to satisfy the sufficient condition, it is neces-
sary to add initialization functions to registers which do not
have it. Therefore, it is no room to consider an optimiza-
tion problem for initialization functions. We formulate the
problem to minimize the number of observation points as
follows.
Error Masking Resolution Problem:

Input: An RTL description of a processor
Output: An RTL description of an augmented processor

that can achieve 100% template level fault efficiency
for any template-based test program

Objective: To minimize the sum of the bitwidths of RTL
signals that are made observable

6.2 Algorithm

We propose a heuristic algorithm in order to solve the error
masking resolution problem. In the proposed algorithm, we
utilize a circuit graph, a reconvergent structure and a path
dependency graph.

Definition 2 (Circuit Graph): The circuit graph is a di-
rected graph of an RTL circuit GC = (VGC , EGC ), where
v ∈ V is a vertex corresponding to a combinational mod-
ule, a sequential module, a register, a primary input and a
primary output and e ∈ EGC is an edge corresponding to an
RTL signal and has the weight corresponding to the bitwidth
of the RTL signal.

Definition 3 (Reconvergent Structure): Let M and M′ be
modules. A set of all the paths from M to M′ is called a
reconvergent structure S .

Definition 4 (Path Dependency Graph): Let VReconvP be a
set of paths in all the reconvergent structures. Let E(p) be
a set of edges in a path p. A reconvergent path dependency
graph is a bipartite graph GPD = (VReconvP∪Ve, EGPD ), where



NAKAZATO et al.: DESIGN FOR TESTABILITY FOR SOFTWARE-BASED SELF-TEST FOR PROCESSORS
767

Path:
p1: e1, e4, e7
p2: e2, e5, e7

p3: e2, e6
p4: e3

p5: e1, e4
p6: e2, e5
p7: e5, e7

p8: e6

Fig. 5 A circuit graph of the reconvergent structure.

Fig. 6 A path dependency graph.

Ve =
⋃

p∈VReconvP

E(p), and EGPD = {(p, e) | p ∈ VReconvP, e ∈
E(p)}.

Figure 5 illustrates an example of circuit graph of a
reconvergent structure and names of paths in it. Figure 6
illustrates a path dependency graph corresponding to the re-
convergent structure in Fig. 5. From the path dependency
graph, we can identify which paths share an edge.

The proposed algorithm consists of the following four
steps.

Step 1: For each register, an initialization function is added
if the register does not have the function, and all the
control signals of each tri-state bus and all the control
signals of its masking circuits are made observable.

Step 2: The circuit graph GC of the processor is generated.
Step 3: For each cycle in the circuit graph, at least one RTL

signal on the cycle is made observable.
Step 4: For each reconvergent path, at least one RTL signal

is made observable.

We describe the details the Step 1, Step 3 and Step 4 of
the algorithm as follows.
Step 1:

For each register in the processor, an initialization
function is added. This initialization function is controllable
from a primary input. In general, the processor needs some
controls from the outside, and if primary inputs required for
this initialization function can be shared with the other con-
trols then it is not necessary to add a new primary input.
Step 3:

In this step, we find a set of RTL signals such that every
cycle has at least one RTL signal in the set. We perform the
following four steps.
Step 3.1:

We find a cycle C such that the sum of the weight of
edges is the minimum by using the minimum cost to profit

ratio cycles algorithm in [9]. Then the edge ei with the min-
imum weight in C is removed from GC . This process is
repeated until GC becomes acyclic. For later steps, we store
the set Cmin of selected cycles. All the removed edges are
restored to GC .
Step 3.2:

Let Ecut denote a set of edges corresponding to the
RTL signals to be observed. We initialize Ecut to be empty.
From the set of edges in Cmin, the edge ei with the minimum
weight among the edges that appear in the maximum num-
ber of cycles in Cmin is selected. The edge ei is removed
from GC and added to Ecut, and the cycles that include ei

are removed from Cmin. This process is repeated until Cmin

becomes empty.
Step 3.3:

Step 3.1 and 3.2 are repeated until GC becomes acyclic.
The circuit graph obtained in this step is referred to as GαC .
Step 3.4:

If some of the edges in Ecut obtained by processing
from Step 3.1 to Step 3.3 is restored to GαC , the circuit graph
may not become cyclic. For each ec ∈ Ecut, if the circuit
graph becomes acyclic when ec is added to it, ec is removed
from Ecut and ec is restored to GαC . The circuit graph ob-
tained in this step is referred to as GβC .
Step 4:

Let P be a set of paths in all the reconvergent structures
in GβC . We find a set of RTL signals such that every path has
at least one RTL signals in the set. We perform the following
four steps.
Step 4.1:

We generate the path dependency graph GPD =

(VReconvP ∪ Ve, EGPD ) from all the reconvergent structures in
GβC .
Step 4.2:

For each vertex vi ∈ Ve in GPD, we calculate a bit rate
Rvi . The bit rate Rvi is obtained by Rvi =

Wvi

Nvi
, where Wvi is

the bitwidth of the RTL signal corresponding to vi and Nvi is
the outdegree of vi in GPD. The bit rate means how may bits
needed to make one path observable, and is used to observe
more paths by less bitwidths.
Step 4.3:

The vertex ei ∈ Ve with the minimum bit rate in GPD

is selected, and ei and its neighbors are removed from GPD.
The edge of GβC which corresponds to ei is removed from
GβC , and is added to Ecut.
Step 4.4:

Steps 4.2 and 4.3 are repeated until the number of paths
in each reconvergent structure is less than or equal to one.

As the result of processing these steps, we observe RTL
signals corresponding to edges in Ecut . These RTL signals
are connected to an MISR.

We show an example of the execution of Step 3 and
Step 4 by using the circuit graph GC in Fig. 7. In Step 3.1,
we find the set of cycles Cmin = {C1,C2,C3} by removing
edges e6, e3 and e5, respectively, where C1 includes edges
(e2, e4, e6), C2 includes edges (e2, e3, e7, e1) and C3 includes



768
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.3 MARCH 2008

Fig. 7 An example of a circuit graph.

edges (e2, e4, e5, e7, e1). In Step 3.2, in the set of edges in
Cmin, the edge with the minimum weight among the edges
that appear in the maximum number of cycles is e2, and e2

is added to Ecut and is removed from GC . In this case, all the
cycles are cut by e2. Therefore, we complete Step 3. In Step
4.1, we generate the path dependency graph GPD of GC . In
Step 4.2, the vertex with the minimum bit rate is e5. In Step
4.3, the vertex e5 is selected, and e5 and its neighbors are
removed from GPD. The edge of GC which corresponds to
e5 is removed from GC , and is added to Ecut. However, the
number of paths in each reconvergent structure is more than
one. Therefore, we return to Step 4.2 and repeat similar
processes. In this case, the edges e6 and e10 are removed
in each process and are added to Ecut. Finally, we obtain
observation points e2, e5, e6 and e10 and the total bitwidth of
the observation points is 38.

7. Experimental Results

We evaluate the proposed method using a non-pipelined
processor SAYEH [10] and a five-stage pipelined processor
Dlx N that is based on Dlx processor [11]. All the registers
of SAYEH processor are resetable. All the registers except
for registers of the register-file of Dlx N processor are re-
setable.

Table 1 shows hardware overhead of the proposed
method and the full-scan design for SAYEH and Dlx N. In
the column “DFT,” “FS” and “PM” denote the full-scan de-
sign method and the proposed method, respectively. The
columns “Area” and “HO” denote the area of the proces-
sor and the hardware overhead, respectively. In the columns
“Area,” “Original” and “Additional” denote the original area
of the processor without DFT and the additional area that
increases by applying the proposed DFT method to the pro-
cessor, respectively. A unit of the area is an area for one
NOT gate. In the columns “Additional” and “HO”, the sub-
columns “Init.” and “OB” denote the additional area and the
hardware overhead of the initialization function and MISR
that increase by applying the proposed DFT method to the
processor, respectively. In these sub-columns, “-” denotes
no additional area or no hardware overhead. The column
“#OB” denotes the number of observable bits. In the full-
scan design method and the proposed method, an observable
bit means the number of scan flip-flops and the number of

Table 1 Hardware overhead.

Processor DFT
Area

HO(%)
Original

Additional
#OB

Init. OB Init. OB

SAYEH
FS

12389
- 1485 165 - 11.99

PM - 2958 102 - 23.88

DLX N
FS

55995
- 13635 1379 - 23.23

PM 3968 4379 151 7.09 7.46

inputs of MISR.
There are not any additional area or hardware overhead

of the initialization function of SAYEH processor since all
the registers are resetable. In the case of the full-scan de-
sign method, both processors do not induce the additional
area and the hardware overhead of the initialization func-
tion. The number of observable bits of the proposed method
becomes less than that of the full-scan design method for
both processors. For Dlx N processor, the hardware over-
head of the proposed method is smaller than that of the
full-scan design method. The Dlx N processor has many
registers including the architecture registers that appear in
instruction set architecture and the pipeline registers to en-
hance the performance. Therefore, the full-scan design in-
duces a large area overhead. For details of the area for
Dlx N processor, the area of the initialization function is al-
most the same as MISR for observable points. However, if
Dlx N processor has already had the initialization function
for all the registers, the area of the initialization function is
not required. The area of the initialization function depends
on the design specification of the processor. On the other
hand, for the SAYEH processor, the hardware overhead of
the proposed method is larger than that of the full-scan de-
sign method. This is because that the SAYEH processor
has a very area-optimized design with a lot of loops and a
few registers; therefore, the proposed method needs many
observation points whereas full-scan design requires little
area overhead. Moreover, the hardware overhead per one
observed bit of the proposed method is larger than for the
full-scan design. However, this hardware overhead can be
reduced if we compress the observed space before applying
it to MISR.

In order to show the effectiveness of the proposed
method, we apply the proposed DFT method to the arith-
metic logic unit (ALU) in Dlx N processor. Table 2 and
Table 3 show the results of the MUT test generation for the
ALU in Dlx N processor and the execution of the template-
based test program before/after the proposed DFT method
is applied, respectively. We used the SBST method in [7] as
an MUT test generation and a test program synthesis.

In Table 2, the columns “Total”, “RF”, “DF”, “FC”,
“FE” and “TGT” denote the number of total faults of ALU,
the number of the identified redundant faults, the number of
the detected faults, the fault coverage, the fault efficiency,
and the total test generation time for the MUT test gener-
ation, respectively. A unit of “TGT” is second. In order to
identify redundant faults, we use the method in [7]. The total
fault coverage and fault efficiency are 99.83% and 100.00%,



NAKAZATO et al.: DESIGN FOR TESTABILITY FOR SOFTWARE-BASED SELF-TEST FOR PROCESSORS
769

Table 2 MUT test generation for ALU.

Total RF DF FC FE TGT (sec)

7030 12 7018 99.83 100.00 358.70

Table 3 Test program execution for ALU.

DFT DF EM FC FE FET TAT (clock)

Before 6948 54 98.83 99.00 99.26 7508
After 7022 0 99.89 100.00 100.00 7124

respectively. The total test generation time is 358.70 second.
This test generation time is reasonable because the method
in [7] generates combinational circuits as constraint circuits,
and a combinational test generation is applied.

In Table 3, the columns “DF”, “EM”, “FC”, “FE”,
“FET ” and “TAT” denote the number of the detected faults,
the number of faults undetected by error masking, the fault
coverage, the fault efficiency, the template level fault effi-
ciency and the test application time during the execution of
the test program, respectively. A unit of “TAT” is clock. In
Table 3, there exist 54 faults undetected by error masking
before the proposed DFT method. However, after the DFT
method is applied, the number of faults undetected by error
masking is 0. The proposed DFT method can achieve 100%
template level fault efficiency. The fault coverage after the
proposed DFT is larger than that of before the DFT. More-
over, the proposed DFT method can also reduce about 5%
of the total test application time.

8. Conclusions and Future Work

In this paper, we showed a sufficient condition to avoid er-
ror masking for template-based test programs, and proposed
a design for testability method to satisfy the sufficient con-
dition. The experimental results reveal that the proposed
method achieves less hardware overhead than full-scan de-
sign if the processor features many registers and less loops
or reconvergent paths. In general, modern processors ori-
ented to high performance have many registers to acceler-
ate their speed, while the structure tends to be simpler than
the design oriented to area optimization. From this obser-
vation, we consider that the proposed method is suitable for
such modern processors. The proposed method was no per-
formance degradation in a sence that it adds only observa-
tion points to the original design and moreover, it enables
at-speed testing. The reduction of the hardware overhead
caused by the DFT method is the issue to be investigated in
our future work.

Acknowledgements

Authors would like to thank Dr. Tomokazu Yoneda of
Nara Institute Science and Technology for his useful com-
ments. This research was supported in part by 21st Cen-
tury Center of Excellence Program “Ubiquitous Networked
Media Computing” and Japan Society for the Promotion
of Science (JSPS) under Grants-in-Aid for Scientific Re-

search B (No.15300018) and for Scientific Research C
(No.18500038).

References

[1] L. Chen and S. Dey, “Software-based self-testing methodology for
processor cores,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol.20, no.3, pp.369–380, March 2001.

[2] L. Chen, S. Rabi, A. Raghunath, and S. Dey, “A scalable software-
based self-test methodology for programmable processors,” Proc.
Design Automation Conference, pp.548–553, 2003.

[3] W.C. Lai, A. Krstic, and K.T. Cheng, “Test program synthesis for
path delay faults in microprocessor cores,” Proc. International Test
Conference, pp.1080–1089, 2000.

[4] W.C. Lai, A. Krstic, and K.T. Cheng, “Instruction-level DFT for
testing processor and IP cores in system-on-a chip,” Proc. Design
Automation Conference, pp.59–64, 2001.

[5] M. Inoue, K. Kambe, N. Hoashi, and H. Fujiwara, “Instruction-
based self-test for sequential modules in processors,” Proc. IEEE
5th Workshop on RTL and High Level Testing, pp.109–114, 2004.

[6] K. Kambe, M. Inoue, and H. Fujiwara, “Efficient template gener-
ation for instruction-based self-test,” Proc. IEEE 13th Asian Test
Symposium, pp.152–157, 2004.

[7] M. Inoue, M. Nakazato, S. Yokoyama, K. Kambe, and H. Fujiwara,
“Efficient and effective test program generation for software-
based self-test of pipelined processors,” NAIST Technical Reports,
no.2006005, Aug. 2006.

[8] Semiconductor Technology Academic Research Center (STARC),
RTL design style guide, STARC, 2000. (In Japanese).

[9] K. Mehlhorn and S. Näher, LEDA, Cambridge university press,
1999.

[10] Z. Navabi, VHDL Analysis and Modeling of Digital Systems,
McGraw-Hill, 1997.

[11] J.H. Hennesy and D.A. Patterson, Computer Architecture: A Quan-
tative Approach, Morgan Kaufmann Publishers, 1996.

Masato Nakazato received the B.E. de-
gree in Photonics from Ritsumeikan University,
Shiga, Japan, in 2001, and the M.E. and Ph.D.
degrees in information science from Nara Insti-
tute of Science and Technology, Nara, Japan,
in 2005 and 2007, respectively. Presently he
is an engineer with Toshiba Corporation (Semi-
conductor Company). His research interests
are fault analysis, VLSI CAD, fault diagnosing
technique, test generation for logic circuits and
synthesis for testability.



770
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.3 MARCH 2008

Michiko Inoue received her B.E., M.E, and
Ph.D. degrees in computer science from Osaka
University in 1987, 1989, and 1995 respectively.
She worked at Fujitsu Laboratories Ltd. from
1989 to 1991. She is an associate professor of
Graduate School of Information Science, Nara
institute of Science and Technology (NAIST).
Her research interests include distributed algo-
rithms, parallel algorithms, graph theory and de-
sign and test of digital systems. She is a member
of IEEE, the Information Processing Society of

Japan, and Japanese Society for Artificial Intelligence.

Satoshi Ohtake received the B.E. de-
gree in computer science from the University
of Electro-Communications, Tokyo, Japan, in
1995 and the M.E. and Ph.D. degrees in infor-
mation science from Nara Institute of Science
and Technology, Nara, Japan, in 1997 and 1999,
respectively. He was a Research Fellow of the
Japan Society for the Promotion of Science from
1998 to 1999. Presently he is an Assistant Pro-
fessor at the Graduate School of Information
Science, Nara Institute of Science and Technol-

ogy. His research interests are VLSI CAD, design for testability, and test
pattern generation. He is a member of IEEE Computer Society and IPSJ.

Hideo Fujiwara received the B.E., M.E.,
and Ph.D. degrees in electronic engineering
from Osaka University, Osaka, Japan, in 1969,
1971, and 1974, respectively. He was with
Osaka University from 1974 to 1985 and Meiji
University from 1985 to 1993, and joined Nara
Institute of Science and Technology in 1993.
Presently he is a Professor at the Graduate
School of Information Science, Nara Institute
of Science and Technology, Nara, Japan. His
research interests are logic design, digital sys-

tems design and test, VLSI CAD and fault tolerant computing, including
high-level/logic synthesis for testability, test synthesis, design for testabil-
ity, built-in self-test, test pattern generation, parallel processing, and com-
putational complexity. He is the author of Logic Testing and Design for
Testability (MIT Press, 1985). He received many awards including Okawa
Prize for Publication, IEEE CS (Computer Society) Meritorious Service
Awards, IEEE CS Continuing Service Award, and IEEE CS Outstanding
Contribution Award. He served as an Editor and Associate Editors of sev-
eral journals, including the IEEE Trans. on Computers, and Journal of Elec-
tronic Testing: Theory and Application, and several guest editors of special
issues of IEICE Transactions of Information and Systems. Dr. Fujiwara is a
fellow of the IEEE, a Golden Core member of the IEEE Computer Society,
and a fellow of the IPSJ.


