
J Electron Test (2010) 26:151–164
DOI 10.1007/s10836-009-5135-1

RTL DFT Techniques to Enhance Defect Coverage
for Functional Test Sequences

Hongxia Fang · Krishnendu Chakrabarty ·
Hideo Fujiwara

Received: 30 September 2009 / Accepted: 10 December 2009 / Published online: 6 January 2010
© Springer Science+Business Media, LLC 2009

Abstract Functional test sequences are often used in
manufacturing testing to target defects that are not de-
tected by structural test. However, they suffer from low
defect coverage since they are mostly derived in prac-
tice from existing design-verification test sequences.
Therefore, there is a need to increase their effective-
ness using design-for-testability (DFT) techniques. We
present a DFT method that uses the register-transfer
level (RTL) output deviations metric to select observa-
tion points for an RTL design and a given functional
test sequence. Simulation results for six ITC′99 cir-
cuits show that the proposed method outperforms two
baseline methods for several gate-level coverage met-
rics, including stuck-at, transition, bridging, and gate-

Responsible Editor: P. Mishra

This research was supported in part by the Semiconductor
Research Corporation under Contract no. 1588, and by an
Invitational Fellowship from the Japan Society for the
Promotion of Science. This paper is based on a preliminary
version of an invited paper in Proceedings of IEEE
International High Level Design Validation and Test
Workshop, 2009, and a presentation at the IEEE Workshop
on RTL and High-Level Testing, 2009.

H. Fang (B) · K. Chakrabarty
Department of Electrical and Computer Engineering,
Duke University, Box 90291, 130 Hudson Hall, Durham,
NC 27708, USA
e-mail: hf12@ee.duke.edu

K. Chakrabarty
e-mail: krish@ee.duke.edu

H. Fujiwara
Graduate School of Information Science,
Nara Institute of Science and Technology,
Kansai Science City, Nara 630-0192, Japan
e-mail: fujiwara@is.naist.jp

equivalent fault coverage. Moreover, by inserting a
small subset of all possible observation points using the
proposed method, significant fault coverage increase is
obtained for all benchmark circuits.

Keywords DFT · Output deviations · RT-level ·
Test-point insertion · Unmodeled defects

1 Introduction

Very deep sub-micron (VDSM) process technologies
are leading to increasing defect rates for integrated
circuits (ICs) [1, 24]. Since structural test alone is not
enough to ensure high defect coverage, functional test
is commonly used in industry to target defects that
are not detected by structural test [11, 28, 36]. An
advantage of functional test is that it avoids overtesting
since it is performed in normal functional mode. In con-
trast, structural test is accompanied by some degree of
yield loss [32]. Register transfer (RT)-level fault mod-
eling, design-for-testability (DFT), test generation and
test evaluation are therefore of considerable interest
[5, 26, 33, 35]. In RT-level design, a circuit’s behavior
is defined in terms of the flow of signals (or transfer
of data) between registers and the logical operations
performed on those signals.

A number of methods have been presented in the
literature for test generation at RT-level. In [5], the
authors proposed test generation based on a genetic
algorithm (GA), targeting statement coverage as the
quality metric. In [12, 15, 23, 31], the authors used
pre-computed test sets for RT-level modules (adders,
shifters, etc.) to derive test vectors for the complete
design. In [40], the authors presented a spectral method

152 J Electron Test (2010) 26:151–164

for generating tests using RT-level faults, which has the
potential to detect almost the same number of faults as
using gate-level test generation. In [19, 21], the authors
proposed a fault-independent test generation method
for state-observable finite state machines (FSMs) to
increase the defect coverage.

To increase the testability of the complete design and
to ease RT-level test generation, various DFT methods
at RT-level have also been proposed. The most com-
mon methods are based on full-scan or partial scan.
However, a scan-based DFT technique leads to long
test application time and it is less useful for at-speed
testing. On the other hand, non-scan DFT technique
[6, 9, 13, 14, 30, 37] offer low test application time
and they facilitate at-speed testing. In [6], non-scan
DFT techniques are proposed to increase the testability
of RT-level designs. In [30], the authors presented a
method called orthogonal scan. It uses functional data-
path flow for test data, instead of traditional scan-path
flow; therefore, it reduces test application time. In [13],
a technique was proposed to improve the hierarchical
testability of the data path, which can aid hierarchi-
cal test generation. In [14], the authors presented a
DFT technique for extracting functional control- and
data-flow information from RT-level description and
illustrated its use in design for hierarchical testability.
This method has low overhead and it leads to shorter
test generation time, up to 2–4 orders of magnitude
less than traditional sequential test generation due to
the use of symbolic test generation. In [37], the au-
thors presented a method based on strong testability,
which exploits the inherent characteristic of datapaths
to guarantee the existence of test plans (sequences
of control signals) for each hardware element in the
datapath. Compared to the full-scan technique, this
method can facilitate at-speed testing and reduce test
application time. However, it introduces hardware and
delay overhead. To reduce overhead, the authors pro-
posed a linear-depth time-bounded testability-based
DFT method in [9]. It ensures the existence of a linear-
depth time expansion for any testable fault and exper-
iments showed that it offers lower hardware overhead
than the method in [37].

The goal of the above prior work on RTL DFT was
to increase testability and ease RT-level test genera-
tion. To enhance the effectiveness of given functional
test sequences, the focus in prior work was on func-
tional test selection based on various metrics, such as
transition input/output (TRIO) [22], toggle coverage
[10], validation vector grade (VVG) [34], etc. DFT
involving scan-chain insertion at RTL has also been
studied [2, 20]. However, the use of RTL DFT to in-
crease the defect coverage of existing functional test se-

quences for non-scan designs has largely been ignored.
The generation of functional test sequences is a partic-
ularly challenging problem, since there is insufficient
automated tool support and this task has to be ac-
complished manually or at best in a semi-automated
manner. Therefore, functional test sequences for manu-
facturing test are often derived from design-verification
test sequences [16, 18, 27] in practice. It is impractical to
apply all such long verification sequences during time-
constrained manufacturing testing. Therefore, shorter
subsequences must be used for testing, and this leads to
the problem of inadequate defect coverage. Therefore,
we focus on RTL DFT to increase the effectiveness of
these existing test sequences for non-scan designs.

In this paper, we address the problem of improving
the defect coverage of given functional test sequences
for an RT-level design. The proposed method adopts
the RT-level deviation metric from [8] to select the
most appropriate observation test points. The devia-
tion metric at the gate-level has been used in [38] to
select effective test patterns from a large repository
of n-detect test patterns. It has also been used in [39]
to select appropriate LFSR seeds for reseeding-based
test compression. The deviation metric at RT-level has
been defined and used in [8] for grading functional test
sequences.

Simulation results for six ITC′99 circuits show that
the proposed method outperforms two baseline meth-
ods for several gate-level coverage metrics, including
stuck-at, transition, bridging, and gate-equivalent fault
coverage. Moreover, by inserting a small subset of all
possible observation points using the proposed method,
significant fault coverage increase is obtained for all
benchmark circuits. Since functional test sequences are
used to target unmodeled defects, especially when they
are used in conjunction with structural testing for mod-
eled faults, we evaluate test effectiveness by multiple
and different fault models.

The remainder of this paper is organized as follows.
Section 2 presents the problem formulation. Section 3
describes the RT-level output-deviations metric and its
prior application to functional test grading. Section 4
presents the proposed observation-point selection
method based on RT-level deviations. The design of
experiments and experimental results are reported in
Section 5. Section 6 concludes the paper and outlines
directions for future work.

2 Problem Formulation

We first formulate the problem being tackled in this
paper.

J Electron Test (2010) 26:151–164 153

Given:

– The RT-level description for a design and a func-
tional test sequence S;

– A practical upper limit n on the number of obser-
vation points that can be added.

Goal: Determine the best set of n observation points
that maximizes the effectiveness of the functional test
sequence S.

Functional test sequences can be instruction-based
for processors or application-based for application
specific integrated circuit (ASIC) cores such as an
MPEG decoder. They can be in the format of high-level
instructions or commands, or in the format of binary bit
streams.

To increase testability, we can insert an observation
point for each register output. We can obtain the high-
est defect coverage by inserting the maximum number
of observation points. However, it is impractical to do
so due to the associated hardware and timing overhead.
In fact, the number of observation points that can be
added is limited in practice. For a given upper limit n,
the challenge is to determine the best set of n obser-
vation points such that we can maximizes the defect
coverage of the given functional test sequence. Our
main premise is that RT-level output deviation can be
used as a metric to guide observation-point selection.

3 Output Deviations at RT-level: Preliminaries

The RT-level output deviations metric has been defined
and used in [8] to grade functional test sequences. The
RT-level output deviations metric was used as a surro-
gate coverage metric to grade functional test sequences
and test sequences with higher deviation values were
found to provide higher defect coverage.

Before describing RTL output deviations, we intro-
duce basic concepts. The first concept is the transition
count (TC) of registers. Typically, there is dataflow
between registers when an instruction is executed and
the dataflow affects the values of registers. For any
given bit of a register, if the dataflow causes a change
from 0 to 1, it records that there is a 0 → 1 transition.
Similarly, if the dataflow causes a change from 1 to 0, it
records that there is a 1 → 0 transition. If the dataflow
makes no change to this bit of the register, it records
that there is a 0 → 0 transition or a 1 → 1 transition, as
the case may be.

After a transition occurs, the value of the bit of a
register can be correct or faulty (thus an error may
be produced). With any transition of a register bit, a
“confidence level” (CL) parameter is associated, which

represents the probability that the correct transition
occurs. The CL is not associated with the test sequence;
rather, it provides a probabilistic measure of the correct
operation of instructions at the RT-level. It can be esti-
mated from low-level failure data or it can be provided
by the designer based on the types of faults of interest.
Low CL values can be assigned to registers that are
to be especially targeted by functional test sequences
for error observation and propagation. Experiments
showed that small differences in the CL values have
little impact on the effectiveness of grading functional
test sequences using RT-level output deviations.

Without loss of generality, the CL values for 0 → 0
and 1 → 1 are assumed to be higher than that for the
transitions 0 → 1 and 1 → 0 for a register bit. The CL
values for 0 → 1 and 1 → 0 are assumed to be identical.
The CL for a register can be described as a 4-tuple,
e.g., < 0.998, 0.995, 0.995, 0.998 >, where the elements
in the tuple correspond to the transitions 0 → 0, 0 →
1, 1 → 0, and 1 → 1, respectively. While different CL
values can be used for the various registers in a design,
without loss of generality, all registers are assumed to
have identical CL values.

When an instruction is executed, there may be sev-
eral transitions for the bits of a register. Therefore,
an error may be manifested after the instruction is
executed. The CL for instruction Ii, Ci, is defined as
the probability that no error is produced when Ii is
executed.

Similarly, since a functional test sequence is com-
posed of several instructions, the CL for a functional
test sequence is defined to be the probability that no
error is observed when this functional test sequence
is executed. For example, suppose a functional test
sequence, labeled T1, is composed of instructions I1, I2,
..., IN , and let Ci be the CL for Ii, as defined above. The
CL value for T1, C(T1), is defined as:

C(T1) =
N∏

i=1

Ci. (1)

This corresponds to the probability that no error is
produced when T1 is executed. Finally, the deviation
for functional test sequence T1, �(T1), is defined as
1 − C(T1), i.e.,

�(T1) = 1 −
N∏

i=1

Ci. (2)

Based on these definitions, output deviations can be
calculated at RT-level for functional test sequences for
a given design. Three contributors are considered in the
calculation of deviations. The first is the TC of registers.
Higher the TC for a functional test sequences, the more

154 J Electron Test (2010) 26:151–164

likely is it that this functional test sequences will detect
defects.

The second contributor is the observability of a regis-
ter. The TC of a register will have little impact on defect
detection if its observability is so low that transitions
cannot be propagated to primary outputs. Therefore,
each output of registers is assigned an observability
value using a SCOAP-like measure [3]. (In SCOAP
testability measure, a higher value of the measure for
a signal indicates that it might be difficult to control
or observe, i.e., it has lower controllability or lower
observability.) The observability vector for a design,
composed of the observability values of all registers, is
used to model the observability of the the design.

We use the Parwan processor [29] as an example to
illustrate the calculation of observability vector. The
Parwan is an accumulator-based 8-bit processor with
a 12-bit address bus. Its architectural block diagram is
shown in Fig. 1a. Its dataflow diagram, representing all
its possible functional paths, is shown in Fig. 1b. Each
node represents a register. The IN and OUT nodes
represent memory. A directed edge between registers
represents a possible functional path between registers.
For example, there is an edge between the AC node
and the OUT node. This edge indicates that there exists
a possible functional path from register AC to memory.

From the dataflow diagram, we can calculate the
observability vector. First, we define the observability
value for the OUT node. The primary output OUT has
the highest observability since it is directly observable.
Using SCOAP-like measure for observability, we de-
fine the observability value of OUT to be 0, written as
OUT_obs = 0. For every other register node, we de-
fine its observability parameter as 1 plus the minimum
of the observability parameters of all its fanout nodes.
For example, the fanout nodes of register AC are OUT,
SR, and AC itself. Thus the observability parameter of
register AC is 1 plus the minimal observability para-
meter among OUT, SR, AC. That is, the observability
parameter of register AC is 1. In the same way, we can
obtain the observability parameters for MAR, PC, IR
and SR. We define the observability value of a register
as the reciprocal of its observability parameter. Fi-
nally, we obtain the observability vector for Parwan. It

is simply
(

1
AC_obs ,

1
I R_obs ,

1
PC_obs ,

1
MAR_obs ,

1
SR_obs

)
, i.e.,

(1, 0.5, 1, 1, 0.5).
The third contributor to RT-level output deviation is

the weight vector, which is used to model how much
combinational logic a register is connected to. Each
register is assigned a weight value, representing the rel-
ative sizes of its input cone and fanout cone. Obviously,
if a register has a large input cone and a large fanout

IR

CONTROLLER

AC

SR

MEMORY

SHU

PC

 MAR

ALU

DATABUS

A B

ADDBUS

(a)

(b)

Fig. 1 a Architecture of the Parwan processor; b Dataflow graph
of the Parwan processor (only the registers are shown)

cone, it will affect and be affected by many lines and
gates. Thus it is expected to contribute more to defect
detection. In order to accurately extract this informa-
tion, we need gate-level information to calculate the
weight vector. We only need to report the number of
stuck-at faults for each component based on the gate-
level netlist. This can be easily implemented without
gate-level logic simulation by a design analysis tool.
Consider each component in Parwan. There are 248
stuck-at faults in AC, 136 in IR, 936 in PC, 202 in MAR,
96 in SR, 14690 in ALU, and 464 in SHU. From this
information, we can easily calculate the weight vector
(Table 1).

Based on the RT-level description of the design, we
can determine the fanin cone and fanout cone of a
register. For example, the AC register is connected to
three components: AC, SHU and ALU. Given a set of

J Electron Test (2010) 26:151–164 155

Table 1 Weight vector for registers (Parwan)

AC IR PC MAR SR

No. of faults affecting 2172 338 936 202 2020
register

Weight value 1 0.1556 0.4309 0.093 0.930

registers {Ri}, i = 1, 2, .., n, let fi be the total number
of stuck-at faults in components connected to register
Ri. Let fmax = max{ f1, .., fn}. We define the weight of
register Ri as fi/ fmax to normalize the size of gate-level
logic. Table 1 shows the numbers of faults affecting
registers and weights of registers. We can see that
fmax = 2172 for Parwan processor, which is the number
of faults in AC. The weight of IR can be calculated as
338/2172, i.e., 0.1556. In this way, weights of other reg-
isters can also be obtained. Finally, we get the weight
vector (1, 0.1556, 0.4309, 0.093, 0.930).

In order to calculate output deviations, first the effec-
tive TCs for registers should be obtained. Suppose reg-
ister Reg makes N1 0 → 1 transitions for a functional
test sequence TS. Then its effective 0 → 1 TC equals
the product of N1, the observability value of register
Reg, and the weight of register Reg.

We use Parwan to illustrate how to calculate the
effective TCs. For a functional test sequence TS, the
TCs corresponding to TS are shown in Table 2. In
Table 2, each row shows the TC for one register, while
each column represents the transition type. For exam-
ple, the value of third row and second column is 206,
which implies that the 0 → 0 TC for I R is 206 when
functional test sequence TS is executed.

By considering the weight vector and the observabil-
ity vector, the TC of a register can be transformed to the
effective TC. Table 3 shows the effective TC values for
TS for the given observability vector and weight vector.

In Table 3, each row lists the effective TC for one
register. The last row shows the aggregated effective
TC for all registers. The columns indicate the various
types of transitions.

The following example illustrates how to calculate
the deviation for a functional test sequences TS. Sup-
pose TS is composed of 50 instructions I1, I2 ..., I50.

Table 2 TCs for TS

0 → 0 0 → 1 1 → 0 1 → 1

AC 67 61 60 44
IR 206 67 66 37
PC 708 90 85 205
MAR 913 251 246 246
SR 67 11 14 12

Table 3 Effective TCs for test sequence TS

Register Register 0 → 0 0 → 1 1 → 0 1 → 1
ID name

R1 AC 67 61 60 44
R2 IR 16.03 5.21 5.13 2.88
R3 PC 305.08 38.78 36.63 88.33
R4 MAR 84.91 23.34 22.88 22.88
R5 SR 31.16 5.115 6.51 5.58
Sum 504.18 133.45 131.19 163.67

For each instruction Ii, suppose the effective 0 → 0 TC
for register Rk (1 ≤ k ≤ 5) is Rki00, the effective 0 → 1
TC for register Rk is Rki01, the effective 1 → 0 TC for
register Rk is Rki10, and the effective 1 → 1 TC for reg-
ister Rk is Rki11. Given the CL vector (1, 0.98, 0.98, 1),
the CL value Ci for instruction Ii can be calculated
by considering all possible transitions and the different
registers:

Ci =
5∏

k=1

(
1Rki00 · 0.998Rki01 · 0.998Rki10 · 1Rki11

)
. (3)

Using the property of the exponents, whereby xa · xb =
xa+b , Eq. 3 can be rewritten as

Ci = 1
∑5

k=1 Rki00 · 0.998
∑5

k=1 Rki01

· 0.998
∑5

k=1 Rki10 · 1
∑5

k=1 Rki11 . (4)

Let Si00 = ∑5
k=1 Rki00, Si01 = ∑5

k=1 Rki01, Si10 = ∑5
k=1

Rki10, and Si11 = ∑5
k=1 Rki11. Equation 4 can now be

written as

Ci = 1Si00 · 0.998Si01 · 0.998Si10 · 1Si11 . (5)

Based on the deviation definition, the deviation for TS
can be calculated as �(TS) = 1 − ∏50

i=1 Ci, i.e.,

�(TS) = 1 −
50∏

i=1

(
1Si00 · 0.998Si01 · 0.998Si10 · 1Si11

)

= 1 − 1
∑50

i=1 Si00 · 0.998
∑50

i=1 Si01 · 0.998
∑50

i=1 Si10

· 1
∑50

i=1 Si11 (6)

Let S∗
00 = ∑50

i=1 Si00, S∗
01 = ∑50

i=1 Si01, S∗
10 = ∑50

i=1 Si10

and S∗
11 = ∑50

i=1 Si11, Eq. 6 can be rewritten as:

�(TS) = 1 − 1S∗
00 · 0.998S∗

01 · 0.998S∗
10 · 1S∗

11 . (7)

Note that S∗
00 is the aggregated effective 0 → 0 TC of all

registers for all the instructions in TS. The parameters
S∗

01, S∗
10, and S∗

11 are defined in a similar way.

156 J Electron Test (2010) 26:151–164

4 Observation-point Selection

In this section, we first define the new concept of
RT-level internal deviations. Next, we analyze the fac-
tors that determine observation-point selection. Then
we present the observation-point selection algorithm
based on RT-level deviations. Finally, we introduce
recent related work [25], which will be used in Section 5
for comparison.

4.1 RT-level Internal Deviations

The RT-level output deviation [8] is defined to be a
measure of the likelihood that error is manifested at a
primary output. Here we define the RT-level internal
deviation to be a measure of the likelihood of error
being manifested at an internal register node, which
means error being manifested at one or more bits of
register outputs. In the calculation of RT-level output
deviation, a transition in a register is meaningful only
when it is propagated to a primary output. On the other
hand, in the calculation of RT-level internal deviation,
we do not care whether a transition in a register is
propagated to a primary output. The method for calcu-
lating internal deviations for register can also be used to
calculate internal deviations for each bit of a register.

The calculation of RT-level internal deviation is sim-
ilar to that of RT-level output deviation. In order to
calculate RT-level internal deviations for a register,
first we need to define the internal effective TCs. Sup-
pose a register Reg makes N1 0 → 1 transitions for a
functional test sequence TS. Then its internal effective
0 → 1 TCs equals the product of N1 and the weight of
register Reg. The observability value of register Reg
does not contribute to its effective transition count.
Take I R in the Parwan processor as an example. It
has the observability value 0.5 and weight 0.1556. Since
it makes 67 0 → 1 transitions for functional test se-
quence TS, its internal effective 0 → 1 transition count
is 0.1556 × 67, i.e., 10.43. In the same way, we can
calculate the internal effective TCs of all registers for
TS, as shown in Table 4.

Table 4 Internal effective TCs for test sequence TS

Register Register 0 → 0 0 → 1 1 → 0 1 → 1
ID name

R1 AC 67 61 60 44
R2 IR 32.06 10.43 10.26 5.76
R3 PC 305.08 38.78 36.63 88.33
R4 MAR 84.91 23.34 22.88 22.88
R5 SR 62.32 10.23 13.02 11.16

After obtaining the internal effective transition
counts, we can calculate the RT-level internal
deviations. Suppose a functional test sequence TS
is composed of m instructions I1, I2 ..., Im. For
each instruction Ii, suppose the internal effective
0 → 0 TCs for register Rk (1 ≤ k ≤ t) is I_Rki00,
the internal effective 0 → 1 TCs for register Rk is
I_Rki01, the internal effective 1 → 0 TCs for register
Rk is I_Rki10, and the internal effective 1 → 1 TCs
for register Rk is I_Rki11. Let I_Sk00 = ∑m

i=1 I_Rki00,

I_Sk01 =∑m
i=1 I_Rki01, I_Sk10 =∑m

i=1 I_Rki10, I_Sk11 =∑m
i=1 I_Rki11. The internal deviation of register Rk

for TS can be calculated for a given CL vector
(cl00, cl01, cl10, cl11) as follows:

Idev(Rk) = 1 − cl00
I_Sk00 · cl01

I_Sk01 · cl10
I_Sk10 · cl11

I_Sk11 .

Note that I_Sk00 is the aggregated internal effective
0 → 0 TCs of register Rk for all the instructions in TS.
The parameters I_Sk01, I_Sk10, and I_Sk11 are defined
in a similar way. In this way, we can calculate the in-
ternal deviations of every register for TS. The method
for calculating internal deviations for register can also
be used to calculate internal deviations for each bit of a
register.

4.2 Analysis of Factors that Determine
Observation-point Selection

The selection of observation points is determined by
three factors: RT-level internal deviations of registers,
observability values of registers, and the topological
relationship between registers. In this work, we only
consider the insertion of observation points at outputs
of registers.

For a register Reg, we have the following attributes
attached with it: Idev(Reg), Odev(Reg), obs(Reg), to
represent its internal deviation, output deviation, and
observability value, separately.

For two registers Reg1 and Reg2, when two at-
tributes are close in value, we define the following
observation-point-selection rules based on the third
attribute:

Rule 1: If Idev(Reg1) > Idev(Reg2), select Reg1;
Rule 2: If obs(Reg1) < obs(Reg2), select Reg1;
Rule 3: If Reg1 is the logical predecessor of Reg2,

select Reg2.

For Rule 1, the motivation is that if we select a
register with higher Idev , its observability will become 1.
Thus, its Odev will also becomes higher. The higher Odev

of this register will contribute more to the cumulative
Odev for the circuit. Since we have shown that the cu-
mulative Odev is a good surrogate metric for gate-level

J Electron Test (2010) 26:151–164 157

fault coverage [8], we expect to obtain better gate-level
fault coverage when we select a register with higher
Idev .

For Rule 2, when two registers do not have a prede-
cessor/successor relationship with each other, obviously
we should select the register with lower observability.
For Rule 3, if we select Reg1, obs(Reg1) will become 1
but this will not contribute to the increase of observabil-
ity of Reg2; if we select Reg2, obs(Reg2) will become 1
and obs(Reg1) will also be increased due to the prede-
cessor relationship between Reg1 and Reg2. Therefore,
it is possible that the selection of Reg2 yields better
results than the selection of Reg1, i.e., the cumulative
observability after the insertion of observation point on
Reg2 is higher than for Reg1.

Rule 2 and Rule 3 are in conflict with each other on
the observability attribute. Rule 2 selects a register with
lower observability while Rule 3 selects a register with
higher observability. In this work, we assume that Rule
3 is given higher priority than Rule 2.

We use RT-level output deviations to guide the se-
lection of observation points. We have determined that
we should select a register with higher Idev . Since Odev

is proportional to Idev and obs, if Idev factor contributes
more to Odev , we should select the register with higher
Odev . Also, by selecting a register with higher Odev ,
we are implicitly satisfying the predecessor relationship
rule: for two registers Reg1 and Reg2 whose Idev values
are comparable, if Reg1 is the predecessor of Reg2,
we have obs(Reg1) < obs(Reg2) and Odev(Reg1) <

Odev(Reg2). Then we will not select Reg1, which is in
accordance with Rule 3.

4.3 RT-level Deviation Based Observation-point
Selection

Based on the RT-level output deviations, we have de-
veloped a method for selecting best set of n (where n
is a user-specified parameter) observation points for
a given RT-level design and a given functional test
sequence. In the selecting of observation-points, we
target the specific bits of a register. The calculation of
Idev , Odev , obs for a register is carried out for each bit
of a register. The selection procedure is as following:

– Step 0: Set the candidate list to be all bits of regis-
ters that do not directly drive a primary output.

Table 5 Value of k for each circuit

b09 b10 b12 b13 b14 b15

k 48 20 135 147 300 20

Table 6 Gate-level fault coverage (stuck-at and transition) of the
design before and after inserting all observation points

Circuit Original design Design with all observation
points

SFC% TFC% #OP SFC% TFC%

b09 59.18 47.93 27 82.8 67.86
b10 36.89 20.19 14 69.03 45.67
b12 50.25 26.67 115 55.23 31.92
b13 35.9 23.33 43 70.83 44.02
b14 83.95 74.6 161 92.34 83.32
b15 9.91 5.35 347 23.29 11.36

– Step 1: Derive the topology information for the
design and save this information in a look-up table.
Obtain the weight vector, observability vector, and
TCs for each register bit, and calculate RT-level
output deviations for each register bit.

– Step 2: Select a register bit with the highest output
deviations as an observation point. Remove this
selected register bit from the candidate list.

– Step 3: If the number of selected observation points
reaches n, terminate the selection procedure.

– Step 4: Update the observability vector using the
inserted observation point (selected in Step 2) and
the topology information. Re-calculate output de-
viations for each register bit using the updated
observability vector. Go to Step 2.

In Step 1, the topology information of the design can
be extracted using a design analysis tool, e.g., Design
Compiler from Synopsys. Topology information ex-
tracted here refers to information of the upstream reg-
isters for each register. It only needs to be determined
once and it can be saved in a look-up table for subse-
quent use. In Step 4, after selecting and inserting an
observation point, we need to update the observability
vector because the observability of its upstream nodes
will also be enhanced. There is no need to recompute
TCs since these depend only on the functional test

Table 7 Gate-level metrics (BCE+ and GE score) of the design
before and after inserting all observation points

Circuit Original design Design with all observation
points

BCE+% GE score #OP BCE+% GE score

b09 45.58 121 27 70.13 173
b10 28.04 132 14 55.07 330
b12 29.91 889 115 33.52 1005
b13 23.11 257 43 47.12 483
b14 74.52 8601 161 81.23 8934
b15 4.4 806 347 10.63 1987

158 J Electron Test (2010) 26:151–164

sequence, and they are not affected by the observation
points. There is also no need to re-calculate the weight
vector.

After the n observation points have been selected,
they are inserted in the original RT-level design. The
modified RTL design is synthesized to a gate-level
netlist. To insert an observation point, we simply need
to connect it directly to a new primary output. An
alternative method is to use only one additional pri-
mary output and connect all observation points to this
primary output through X OR gates (space compactor).
By doing so, we can reduce the number of extra primary

outputs to one. However, this method will lead to lower
fault coverage due to error masking.

4.4 Observation-point Selection Based on Probabilistic
Observability Analysis

An automatic method to select internal observation
signals for design verification was proposed in recent
work [25]. Since this method is also applicable for
observation-point selection in manufacturing test, we
take it as an example of recent related work and

Fig. 2 Results on gate-level
normalized stuck-at fault
coverage

69

74

79

84

89

94

99

 9 17 25
Number of observation points

Fa
ul

t c
ov

er
ag

e Original
Proposed
[25]
Toggle

37

42

47

52

57

62

67

72

77

82

87

92

 4 12 22
Number of observation points

Fa
ul

t c
ov

er
ag

e

Original
Proposed
[25]
Toggle

b09 b13

49

54

59

64

69

74

79

84

89

94

99

 7 9 10
Number of observation points

Fa
ul

t c
ov

er
ag

e l

e

89

90

91

92

93

94

 32 64 96
Number of observation points

Fa
ul

t c
ov

er
ag

e

Original
Proposed
[25]
Toggle

b10 b14

88

89

90

91

92

93

94

95

96

 10 30 50
Number of observation points

Fa
ul

t c
ov

er
ag

e

Original
Proposed
[25]
Toggle

30

35

40

45

50

55

60

65

 32 64 81
Number of observation points

Fa
ul

t c
ov

er
ag

e

Original
Proposed
[25]
Toggle

b12 b15

Original
Proposed
[25]
Toggle

J Electron Test (2010) 26:151–164 159

compare the results obtained by the proposed RT-level
deviation based method to this method in Section 5.

5 Experimental Results

We evaluated the efficiency of the proposed RT-level
observation-point selection method by performing ex-
periments on six ITC′99 [5] circuits. These circuits are
translated into Verilog format and are taken as the ex-
perimental vehicles. The functional test sequences are
generated using the RT-level test generation method

from [5]. Our goal is to show that the RT-level
deviation-based observation-point selection method
can provide higher defect coverage than other baseline
methods. Here, defect coverage is estimated in terms of
following gate level coverage metrics:

– stuck-at fault coverage;
– transition fault coverage;
– enhanced bridging fault coverage estimate

(BCE+);
– gate-exhaustive (GE) score (GE score is defined

as the number of observed input combinations of
gates) [4, 17].

Fig. 3 Results on gate-level
normalized transition fault
coverage

69

74

79

84

89

94

99

 9 17 25
Number of observation points

Fa
ul

t c
ov

er
ag

e

Original
Proposed
[25]
Toggle

36

41

46

51

56

61

66

71

76

81

86

91

 4 12 22
Number of observation points

Fa
ul

t c
ov

er
ag

e

Original
Proposed
[25]
Toggle

b09 b13

34

42

50

58

66

74

82

90

98

 7 9 10
Number of observation points

Fa
ul

t c
ov

er
ag

e

Original
Proposed
[25]
Toggle

89

90

91

92

93

94

95

 32 64 96
Number of observation points

Fa
ul

t c
ov

er
ag

e

Original
Proposed
[25]
Toggle

b10 b14

82

84

86

88

90

92

 10 30 50
Number of observation points

Fa
ul

t c
ov

er
ag

e

Original
Proposed
[25]
Toggle

32

37

42

47

52

57

62

67

72

 32 64 81
Number of observation points

Fa
ul

t c
ov

er
ag

e

Original
Proposed
[25]
Toggle

b12 b15

160 J Electron Test (2010) 26:151–164

Since functional test sequences are usually used to
target unmodeled defects that are not detected by
structural test, we considered metrics BCE+ and GE
score, which are more effective for defect coverage,
comparing to traditional stuck-at fault coverage and
transition fault coverage. The GE score is defined as
the number of the observed input combinations of
gates. Here, “observed” implies that the gate output
is sensitized to at least one of the primary outputs.
We first compare the gate-level fault coverage for the
original design to the design with all observation points

inserted. Next we show the gate-level fault coverage for
different observation-point selection methods.

5.1 Experimental Setup

All experiments were performed on a 64-bit Linux
server with 4 GB memory. Synopsys Verilog Compiler
(VCS) was used to run Verilog simulation and compute
the deviations. The Flextest tool was used to run gate-
level fault simulation. Design Compiler (DC) from Syn-
opsys was used to synthesize the RT-level descriptions

Fig. 4 Results on the
gate-level normalized BCE+
metric

58

63

68

73

78

83

88

93

98

 9 17 25
Number of observation points

Fa
ul

t c
ov

er
ag

e

Original
Proposed
[25]
Toggle

37

42

47

52

57

62

67

72

77

82

87

92

 4 12 22
Number of observation points

Fa
ul

t c
ov

er
ag

e

Original
Proposed
[25]
Toggle

b09 b13

49

54

59

64

69

74

79

84

89

94

99

 7 9 10
Number of observation points

Fa
ul

t c
ov

er
ag

e

Original
Proposed
[25]
Toggle

90

91

92

93

94

95

 32 64 96
Number of observation points

Fa
ul

t c
ov

er
ag

e

Original
Proposed
[25]
Toggle

b10 b14

88

89

90

91

92

93

94

95

 10 30 50
Number of observation points

Fa
ul

t c
ov

er
ag

e

Original
Proposed
[25]
Toggle

34

39

44

49

54

59

64

69

74

 32 64 81
Number of observation points

Fa
ul

t c
ov

er
ag

e

Original
Proposed
[25]
Toggle

b12 b15

J Electron Test (2010) 26:151–164 161

as gate-level netlists and extract the gate-level informa-
tion for calculating the weight vector. For synthesis, we
used the library for Cadence 180 nm technology. All
other programs were implemented in C++ and Perl
scripts.

5.2 k-toggle Coverage Based Observation-point
Selection

RTL toggle coverage has been used as an approxima-
tion of gate-level fault coverage [7], and has been used
for functional test selection [10]. Since RTL toggle cov-
erage only checks whether the value of a wire/register

toggles from 0 to 1 or toggles form 1 to 0, it often
saturates too early during simulation. Therefore, we
define a k-toggle coverage metric as follows.

k-toggle coverage: Suppose a wire/register bit
toggles m times from 0 to 1 and toggles n times from
1 to 0 during simulation. If m ≥ k and n ≥ k, the
k-toggle coverage for this wire/register bit is defined
to be 100%; If either m ≥ k or n ≥ k, the k-toggle
coverage for this wire/register bit is defined to be 50%;
otherwise, the k-toggle coverage for this wire/register
bit is defined to be 0.

For a register, its k-toggle coverage is defined to be
the average k-toggle coverage of all bits. For example,

Fig. 5 Results on gate-level
normalized GE score

39
44
49
54
59
64
69
74
79
84
89
94

 9 17 25
Number of observation points

N
or

m
al

iz
ed

 G
E

 s
co

re

Original
Proposed
[25]
Toggle

38

43

48

53

58

63

68

73

78

83

88

93

 4 12 22
Number of observation points

N
or

m
al

iz
ed

 G
E

 s
co

re

Original
Proposed
[25]
Toggle

b09 b13

34
39
44
49
54
59
64
69
74
79
84
89
94
99

 7 9 10
Number of observation points

N
or

m
al

iz
ed

 G
E

 s
co

re

Original
Proposed
[25]
Toggle

94

95

96

97

98

99

100

 32 64 96
Number of observation points

N
or

m
al

iz
ed

 G
E

 s
co

re

Original
Proposed
[25]
Toggle

b10 b14

88

89

90

91

92

93

94

95

96

97

98

99

 10 30 50
Number of observation points

N
or

m
al

iz
ed

 G
E

 s
co

re

Original
Proposed
[25]
Toggle

39

44

49

54

59

64

69

74

79

84

 32 64 81
Number of observation points

N
or

m
al

iz
ed

 G
E

 s
co

re

Original
Proposed
[25]
Toggle

b12 b15

162 J Electron Test (2010) 26:151–164

suppose a register has three bits and the k-toggle
coverage for each bit is 50%, 50%, 100%. Then, the
k-toggle coverage for this register is calculated as
(50% + 50% + 100%)/3, i.e., 66.67%.

In order to evaluate the efficiency of the proposed
method, we consider the observation-point selection
based on the k-toggle coverage metric as a baseline.
First, we obtain the k-toggle coverage for all the regis-
ters that are not directly connected to primary outputs
(POs). Next, we select the registers with the highest
k-toggle coverage as the observation points. In this
work, k is set to be the average toggle counts for all
register bits under the given functional test sequences.
For example, if there are 3 register bits in a design and
their toggles are recorded as follows: reg0 (0-to-1): 50
times; reg0 (1-to-0): 100 times; reg1 (0-to-1): 40 times;
reg1 (1-to-0): 80 times; reg2 (0-to-1): 70 times; reg2 (1-
to-0): 60 times. The average toggle count is calculated
as: (50 + 100 + 40 + 80 + 70 + 60)/(2 × 3), i.e., 66.67.
In this case, we set k to be 67 for this circuit. Table 5
lists the values of k for circuits used in the experiments.

5.3 Comparison of Gate-level Fault Coverage
for the Original Design to the Design
with all Observation Points Inserted

Tables 6 and 7 compare the gate-level metrics (stuck-
at fault coverage, transition fault coverage, BCE+ and
GE score) for the original design to the design will
all observation points inserted. The parameters SFC%,
TFC%, BCE+% indicate the gate-level fault coverage
for stuck-at faults, transition delay faults and bridging
fault estimate, respectively. #OP lists the number of
observation points.

From these two tables, we can see that the gate-level
fault coverage is not very high even when all observa-
tion points are inserted. There are two possible reasons
for this: one reason is that the design suffers form low
controllability. The other reason is that the quality of
the given functional test sequences is not so effective
for modeled fault. We can increase the gate-level fault
coverage by improving the quality of functional test
sequences or by inserting control points to the design.
However, we focus here only on selection of observa-
tion points so that the given functional test sequences
can be made more useful for manufacturing test.
Therefore, it is of interest to determine the maximum
gate-level fault coverage when all possible observation
points are inserted, and to normalize the fault coverage
to this maximum value when we evaluate the impact of
inserting a subset of all possible observation points.

5.4 Comparison of Normalized Gate-level Fault
Coverage for Different Observation-point
Selection Methods

By considering the fault coverage of a design with all
observation points inserted to be 100%, we normalize
the fault coverage of designs with a smaller number
of observation points. Similarly, the normalized GE
score is obtained by taking the GE score of a design
with all observation points inserted as the reference.
In this section, we compare the normalized gate-level
fault coverage and normalized GE score for different
observation-point selection methods.

For each circuit, we select the same number of n (for
various values of n) observation points using different
methods. Results for normalized gate-level fault cover-
age and normalized GE score are shown in the Figs. 2,
3, 4 and 5. We compared the proposed method to [25] as
well as the k-toggle coverage based observation-point
insertion method. “Toggle” denotes the observation-
point selection method based on k-toggle coverage in
all the figures.

The results show that the proposed method outper-
forms the two baseline methods for all six circuits in
terms of defect coverage. Since it is difficult to assess
the real defect coverage, we estimated the gate-level
fault coverage on stuck-at fault, transition fault, BCE+
and GE score metric. Let’s see the result for b15 in
Fig. 2. The x-axis represents the number of observation
points. The y-axis represents the normalized gate-level
stuck-at fault coverage. We can see that the proposed
method can provide higher normalized stuck-at fault
coverage than that provided by the method in [25]
and the k-toggle coverage based method for the same
number of observation points. This trend can be ob-
served for all the circuits in all the figures. Also, by
inserting a small fraction of all possible observation
points using the proposed method, significant increase
in fault coverage and GE score are obtained in all cases.
For example, from the result for b15 in Fig. 2, we
can see that by selecting and inserting 64 observation
points using our method, the normalized stuck-at fault
coverage can be increased from 47% to 67%. Recall
that the number of all possible observation points for
b15 is 417. Therefore, it means that we can obtain 20%
increase in the normalized stuck-at fault coverage by
only inserting about 15% observation points. For each
circuit, it only takes a few seconds to calculate RT-level
deviations and select observation points. These results
highlight the effectiveness of the RT-level, deviation-
based observation-point selection method.

J Electron Test (2010) 26:151–164 163

6 Conclusion

We have presented an RT-level output deviations met-
ric and shown how it can used to select and insert
the observation points for a given RT-level design
and a functional test sequence. This DFT approach
allows us to increase the effectiveness of functional test
sequences (derived for pre-silicon validation) for man-
ufacturing testing. Experiments on six ITC′99 bench-
mark circuits show that the proposed RT-level DFT
method outperforms two baseline methods for enhanc-
ing defect coverage. We have also shown that the RT-
level deviations metric allows us to select a small set of
the most effective observation points. As part of future
work, we are extending this approach to the selection
of control points.

References

1. Ahmed N, Tehranipoor M, Jayaram V (2006) Timing-based
delay test for screening small delay defects. In: Design au-
tomation conference, pp 320–325

2. Aktouf C, Fleury H, Robach C (2000) Inserting scan at the
behavioral level. IEEE Des Test Comput 17:34–42

3. Bushnell ML, Agrawal VD (2000) Essentials of electronic
testing. Kluwer Academic, Norwell

4. Cho KY, Mitra S, McCluskey EJ (2005) Gate exhaustive
testing. In: International test conference, pp 771–777

5. Corno F, Reorda MS, Squillero G (2000) RT-level ITC’99
benchmarks and first ATPG result. IEEE Des Test Comput
17:44–53

6. Dey S, Potkonjak M (1994) Non-scan design-for-testability
of RT- level data paths. In: International conference on
computer-aided design, pp 640–645

7. Drako D, Cohen P (1998) HDL verification coverage. In:
Integrated system design

8. Fang H, Chakrabarty K, Jas A, Patil S, Trimurti C (2009) RT-
level deviation-based grading of functional test sequences. In:
VLSI test symposium, pp 264–269

9. Fujiwara H, Iwata H, Yoneda T, Ooi Y (2008) A nonscan
design-for- testability method for register-transfer-level cir-
cuits to guarantee linear- depth time expansion models. IEEE
Trans Comput-aided Des Integr Circuits Syst 27:1535–1544

10. Gangaram V, Bhan D, Caldwell JK (2006) Functional test se-
lection using dynamic untestability analysis. In: Internaltional
workshop on microprocessor test and verification

11. Gatej J et al (2002) Evaluating ATE features in terms of test
escape rates and other cost of test culprits. In: International
test conference, pp 1040–1049

12. Ghosh I, Fujita M (1999) Automatic test pattern generation
for functional RTL circuits using assignment decision dia-
grams. In: Design automation conference, pp 43–48

13. Ghosh I, Raghunathan A, Jha NK (1995) Design for hier-
archical testability of RTL circuits obtained by behavioral
synthesis. In: IEEE international conference on computer
design, pp 173–179

14. Ghosh I, Raghunathan A, Jha NK (1998) A design for testa-
bility technique for RTL circuits using control/dataflow ex-
traction. IEEE Trans Comput-aided Des Integr Circuits Syst
17:706–723

15. Goloubeva O, Jervan G, Peng Z, Reorda MS, Violante M
(2002) High-level and hierarchical test sequence generation.
In: HLDVT, pp 169–174

16. Grossman JP, Salmon JK, Ho CR, Ierardi DJ, Towles B,
Batson B, Spengler J, Wang SC, Mueller R, Theobald M,
Young C, Gagliardo J, Deneroff MM, Dror RO, Shaw DE
(2008) Hierarchical simulation-based verification of Anton,
a special-purpose parallel machine. In: IEEE international
conference on computer design, pp 340–347

17. Guo R, Mitra S, Amyeen E, Lee J, Sivaraj S, Venkataraman
S (2006) Evaluation of test metrics: Stuck-at, bridge coverage
estimate and gate exhaustive. In: VLSI test symposium, pp
66–71

18. Guzey O, Wang L-C (2007) Coverage-directed test genera-
tion through automatic constraint extraction. In: HLDVT, pp
151–158

19. Hosokawa T, Inoue R, Fujiwara H (2007) Fault-
dependent/independent test generation methods for state
observable FSMs. In: Asian test symposium, pp 275–280

20. Huang Y, Tsai C-C, Mukherjee N, Samman O, Cheng W-T,
Reddy SM (2002) Synthesis of scan chains for netlist descrip-
tions at RT-level. Journal of Electronic Testing: Theory and
Applications (JETTA) 18:189–201

21. Inoue R, Hosokawa T, Fujiwara H (2008) A test generation
method for state-observable FSMs to increase defect cover-
age under the test length constraint. In: Asian test sympo-
sium, pp 27–34

22. Kang J, Seth SC, Gangaram V (2007) Efficient RTL coverage
metric for functional test selection. In: VLSI test symposium,
pp 318–324

23. Kim H, Hayes JP (1998) High-coverage ATPG for datapath
circuits with unimplemented blocks. In: International test
conference, pp 577–586

24. Lin X et al (2006) Timing-aware atpg for high quality at-speed
testing of small delay defects. In: Asian test symposium, pp
139–146

25. Lv T, Li H, Li X (2009) Automatic selection of internal ob-
servation signals for design verification. In: VLSI test sympo-
sium, pp 203–208

26. Mao W, Gulati RK (1996) Improving gate level fault cover-
age by RTL fault grading. In: International test conference,
pp 150–159

27. Mathaikutty DA, Ahuja S, Dingankar A, Shukla S (2007)
Model-driven test generation for system level validation. In:
HLDVT, pp 83–90

28. Maxwell PC, Hartanto I, Bentz L (2000) Comparing func-
tional and structural tests. In: International test conference,
pp 400–407

29. Navabi Z (1997) VHDL: analysis and modeling of digital
systems. McGraw-Hill, Hightstown

30. Norwood RB, McCluskey EJ (1996) Orthogonal scan: low
overhead scan for data paths. In: International test confer-
ence, pp 659–668

31. Ravi S, Jha NK (2001) Fast test generation for circuits with
RTL and gate-level views. In: International test conference,
pp 1068–1077

32. Rearick J, Rodgers R (2005) Calibrating clock stretch during
AC scan testing. In: International test conference, pp 266–273

33. Santos MB, Goncalves FM, Teixeira IC, Teixeira JP (2001)
RTL-based functional test generation for high defects

164 J Electron Test (2010) 26:151–164

coverage in digital systems. Journal of Electronic Testing:
Theory and Applications (JETTA) 17:311–319

34. Thaker PA, Agrawal VD, Zaghloul ME (1999) Validation
vector grade (VVG): a new coverage metric for validation
and test. In: VLSI test symposium, pp 182–188

35. Thaker PA, Agrawal VD, Zaghloul ME (2000) Register-
transfer level fault modeling and test evaluationtechniques
for VLSI circuits. In: International test conference, pp 940–
949

36. Vij AK (2002) Good scan=good quality level? well, it de-
pends.... In: International test conference, p 1195

37. Wada H, Masuzawa T, Saluja KK, Fujiwara H (2000) Design
for strong testability of RTL data paths to provide complete
fault efficiency. In: IEEE international conference on VLSI
design, pp 300–305

38. Wang Z, Chakrabarty K (2008) Test-quality/cost optimiza-
tion using output-deviation-based reordering of test patterns.
IEEE Trans Comput-aided Des Integr Circuits Syst 27:352–
365

39. Wang Z, Fang H, Chakrabarty K, Bienek M (2009)
Deviation-based LFSR reseeding for test-data compression.
IEEE Trans Comput-aided Des Integr Circuits Syst 29:259–
271

40. Yogi N, Agrawal VD (2006) Spectral RTL test generation for
gate-level stuck-at faults. In: Asian test symposium, pp 83–88

Hongxia Fang received the B.S. degree in mathematics from
Nankai University, Tianjin, China, in 2002 and the M.S. degree in
computer science from the Institute of Computing Technology,
Chinese Academy of Sciences, Beijing, China, in 2005. She is
currently working toward the Ph.D. degree in electrical and
computer engineering in the Department Electrical and Com-
puter Engineering, Duke University, Durham, NC. Her current
research is focused on design-for-testability (DFT), testing and
diagnosis to target unmodeled defects in integrated circuits and
multi-chip boards.

Krishnendu Chakrabarty received the B. Tech. degree from
the Indian Institute of Technology, Kharagpur, in 1990, and
the M.S.E. and Ph.D. degrees from the University of Michigan,
Ann Arbor, in 1992 and 1995, respectively. He is now Professor
of Electrical and Computer Engineering at Duke University.
He is also a member of the Chair Professor Group (honorary
position) in Software Theory at the School of Software, Tsinghua
University, Beijing, China. Prof. Chakrabarty is a recipient of
the National Science Foundation Early Faculty (CAREER)
award, the Office of Naval Research Young Investigator award,
the Humboldt Research Fellowship from the Alexander von
Humboldt Foundation, Germany, and several best papers awards
at IEEE conferences. His current research projects include:
testing and design-for-testability of integrated circuits; digital
microfluidics and biochips, circuits and systems based on DNA
self-assembly, and wireless sensor networks. He has authored

nine books on these topics (including two in press), published
over 320 papers in journals and refereed conference proceedings,
and given over 130 invited, keynote, and plenary talks.

Prof. Chakrabarty is a Fellow of IEEE, a Golden Core Mem-
ber of the IEEE Computer Society, and a Distinguished Engineer
of ACM. He is a 2009 Invitational Fellow of the Japan Society
for the Promotion of Science (JSPS). He is recipient of the 2008
Duke University Graduate School Dean’s Award for excellence
in mentoring. He served as a Distinguished Visitor of the IEEE
Computer Society during 2005–2007, and as a Distinguished
Lecturer of the IEEE Circuits and Systems Society during 2006–
2007. Currently he serves as an ACM Distinguished Speaker. He
is an Associate Editor of IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on
VLSI Systems, and IEEE Transactions on Biomedical Circuits
and Systems. He also serves as an Editor of the Journal of
Electronic Testing: Theory and Applications (JETTA). He is the
Editor-in-Chief for IEEE Design & Test of Computers, and the
Editor-in-Chief for ACM Journal on Emerging Technologies in
Computing Systems.

Hideo Fujiwara received the B.E., M.E., and Ph.D. degrees in
electronic engineering from Osaka University, Osaka, Japan, in
1969, 1971, and 1974, respectively. He was with Osaka University
from 1974 to 1985 and Meiji University from 1985 to 1993,
and joined Nara Institute of Science and Technology in 1993.
Presently he is a Professor at the Graduate School of Information
Science, Nara Institute of Science and Technology, Nara, Japan.
His research interests are logic design, digital systems design
and test, VLSI CAD and fault tolerant computing, including
high-level/logic synthesis for testability, test synthesis, design
for testability, built-in self-test, test pattern generation, parallel
processing, and computational complexity. He has published
over 350 papers in refereed journals and conferences, and nine
books including the book from the MIT Press (1985) entitled
“Logic Testing and Design for Testability.” He received the
IECE Young Engineer Award in 1977, IEEE Computer Society
Certificate of Appreciation Awards in 1991, 2000 and 2001,
Okawa Prize for Publication in 1994, IEEE Computer Society
Meritorious Service Awards in 1996 and 2005, IEEE Computer
Society Continuing Service Award in 2005, and IEEE Computer
Society Outstanding Contribution Award in 2001 and 2009.

He served as an Editor of the IEEE Trans. on Computers
(1998–2002), Journal of Electronic Testing: Theory and Appli-
cation (1989–2004), Journal of Circuits, Systems and Computers
(1989–2004), VLSI Design: An Application Journal of Custom-
Chip Design, Simulation, and Testing (1992–2005), and several
guest editors of special issues of IEICE Transactions of Informa-
tion and Systems. He is currently an advisory member of IEICE
Trans. on Information and Systems. Dr. Fujiwara is a fellow of the
IEEE, a Golden Core member of the IEEE Computer Society,
a fellow of the IEICE (the Institute of Electronics, Information
and Communication Engineers of Japan) and a fellow of the IPSJ
(the Information Processing Society of Japan).

	RTL DFT Techniques to Enhance Defect Coverage for Functional Test Sequences
	Abstract
	Introduction
	Problem Formulation
	Output Deviations at RT-level: Preliminaries
	Observation-point Selection
	RT-level Internal Deviations
	Analysis of Factors that Determine Observation-point Selection
	RT-level Deviation Based Observation-point Selection
	Observation-point Selection Based on Probabilistic Observability Analysis

	Experimental Results
	Experimental Setup
	k-toggle Coverage Based Observation-point Selection
	Comparison of Gate-level Fault Coverage for the Original Design to the Design with all Observation Points Inserted
	Comparison of Normalized Gate-level Fault Coverage for Dif ferent Observation-point Selection Methods

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

