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Abstract Partial scan and non-scan techniques allow test
generation of high fault coverage for sequential circuits with
less area overhead and less performance degradation than full
scan technique. In most of these techniques, extra logic (e.g. a
multiplexer introduced by partial scan) is added to permit a
data transfer from a flip-flop (or input) to another flip-flop (or
output), Such additional logic function is called thru function
in this paper, which plays an essential role in enhancing the
testability of a circuit. In this paper, we introduce a design-for-
testability (DFT) technique which modifies a given sequential
circuit 10 a thru-testable sequential circuit with acyclic test
generation complexity by adding new thru functions based on
the information of thru functions that may exist in the original
design and the dependency among these thru functions. Thus,
thru functions of a given sequential circuil should first be
extracted from its high-level description, If there is a thru
function that transfers data from a flip-flop to another flip-
flop, the latter is exempted from being considered in DFT
insertion. This reduces the additional logic to be added. Using
ITC'99 benchmark circuits, we show that the proposed DFT
method takes up less area overhead compared to the previous
scan methods in testing the difficuli-to-test circuits like b07,
b5 and bl 5. Besides, the test application time is shorter than
that of previous scan methods while the test data volume is
less too in difficult-to-test circuits.,
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1 Introduction

Owing to the high complexity of test generation for
sequential circuits, design-for-testability (DFT) methods
are essential in reducing test generation costs, For instance,
the popular full scan technigue is able to reduce the test
generation of a sequential circuit into the combinational test
generation. However, full scan technique requires all the
flip-flops of a circuit to be augmented into scan flip-flops,
which results in large area overhead. In addition, full scan
technique also has drawbacks of high test application time
and high test data volume. To alleviate the problems,
several partial scan techniques and alternative DFT meth-
ods have been introduced. The following text summanzes
the previous techniques.

1.1 Partial Scan at Gate-Level

The partial scan technique, which breaks the minimum
feedback loops [14], has the remaining kernel an acyelic
sequential circuil so it succeeds in reducing the number of
scan flip-flops. The scan flip-flop selection is based on the
concept of minimum feedback vertex set (MFVS) where
only minimum number of flip-flops is selected to be
scanned. Another partial scan technique whose flip-flop
selection is based on empirical testability was introduced in
[12] and the experiment showed that the resulting area
overhead was comparable to [14]. Cost-free scan [15]
identifies existing scan path composed by the existing logic
and thus further reduces the area overhead compared to [14]
and [12]. The scan technique also identifies the enabling
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vectors for the primary inputs that enable the free scan path.
The computation to identify the free scan path and the
cnabling vectors becomes expensive when the circuit is
large because the identification algorithm is based on
reduced ordered binary decision diagram (ROBDD).

Autoscan [18] is similar to conventional full scan but it
does not have external input for scan-in and external output
for scan-out. Thus, although the pin overhead is less, the
area overhead of the circuit augmented by autoscan is still
similar to that augmented by full scan technigue. On the
other hand, the experimental result with high fault coverage
has shown that autoscan can improve the testability of the
benchmark circuits. It has been shown to be effective when
there is a single scan source but it permits multiple scan
chains sourcing from the single scan source. However, the
comparison berween autoscan with multiple scan chains
starting from a single source and full scan with multiple
scan chains is not clear

The above mentioned scan techniques limit the implemen-
tation of DFT to the end of design phase though they
successfully reduce area overhead, delay overhead and pin
overhead (in antoscan). When the use of high-level descrip-
tion to design large VLSI circuits has become popular, it has
led to the new paradigm testing, that is DFT insertion at high-
level. Improving testability during the early stages of the
design flow is getting more concem because it can signifi-
cantly improve the fault coverage, reduce the hardware and
delay overhead and shorten the test application time, Among
the previous works which are the main motivation to our work
include research detailed in [2,10,11]. [2,10,11] introduced a
systematic synthesis-for-testability procedure to embed test
functions into a finite state machine, which is a high level
modeling of a digital system, such that the synthesized pate-
level implementation has improved testability This works
inspired us that testability analysis at high-level is much
faster than that at gate-level.

1.2 Knowledge-Based DFT Method for Datapath

Knowledge-based design-for-testability methods select the
flip-flops to be scanned based on the knowledge of the
circuit description at high-level. The first knowledge-based
partial scan was introduced in 1985 by Abadir and Breuer
[1]. In this DFT method, a given register-transfer level
(RTL) description is modeled by a graph where each vertex
represents an RTL structure like muliiplexer, register or
combinational kemel while each arc represents an inter-
connect between two RTL structures. An RTL structure is
said to have an identity mode ([-mode) if the structure can
transfer the data from its input port to its output port. A
time tag ¢ and an activation condition tag C are associated
to each I-mode where f is the time needed for data-transfer
while C 15 the mput value on the other input port required
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for data-transfer. If there is no I-path (a series of RTL
structure with T-mode), then a scan register is used to
compose the I-path. Still, scan flip-flops are used to replace
the normal flip-flops accordingly and thus the test applica-
tion time is still large since the test vectors have to be
shifted through the scan chain.

F-path was defined in [7] as a combinational logic that
permits one-to-one transformation from the input to the
output of the combinational logic. The definition is more
general compared to I-path because the output data is not
necessary equal to the input It could be a logical or
arithmetic function of the input. H-scan [3,4] is one of the
first non-scan DFT methods that have been introduced. It
utilizes the existing paths between registers, which consist
of a series of multiplexers, to build parallel scan paths.
Some extra gates are added 1o the logic of the existing path
so that signals transfer between the registers is enabled by a
new input independent on the signals from the controller.
Ordering the scan flip-flops orthogonally to the registers in
the datapath, another non-scan technique called orthogonal
scan [16] allows the use of datapath components like adder
or multiplier with slight modification to implement the scan
path besides allowing the parallel scan paths. Both of these
two non-scan technigues did not consider the test genera-
tion complexity. Fujiwara et. al [8] introduced a non-scan
DFT method based on cyele-unrollability concept which
bound the test generation time by a linear function of the
number of flip-flops in the RTL circuit. In [8], a test
controller is added into the circuit to provide the control
signal to activate the justification and propagation paths
that send test patterns (resp. test response) to (resp. from)
the module-under-test. In other words, the test controller
is to isolate the datapath from the controller unit of the
RTL circuit.

All the previous works [3,8,16] highlighted the reduction
in area overhead. Besides, since they are non-scan DFT
methods which allow at-speed testing, their test application
time is shorter than the partial scan technigques. However,
these knowledge-based DFT methods treat controller and
datapath separately. In fact, the methods are well applied on
the datapath part. DFT methods at RTL insert additional
hardware like test controller or multiplexer to control the
data transfer along the justification and observation paths,
Instead of additional test controller, state registers in the
controller could be manipulated to enable/disable the data
trensfer along the paths. In this paper, we introduce a new
DFT method that extracts the following information from
the high-level description of a given RTL circuit:

4. thru function—a logic that allows data transfer from a
register to another register;

b. state register {resp. primary input) and the state values
(resp. input values) that activate the thru functions.
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Besides the knowledge of the circuit testability extracted at
high level, the structure of the remaining circuit excluding
scan flip-flops is also another factor in determining how a scan
technique is to be applied. [13] identified a hierarchy of
circuit structures with varying degrees of test generation
complexity There are five subclasses defined, including
combinational circuits, strongly balanced sequential circuits,
balanced sequential circuits [9], internally balanced sequen-
tial circuits and acyclic sequential circuits. The class of
acyelic sequential circuits is the superset of internally
balanced sequential circuits and so on. Afier scan technique
is applied to a given general sequential circuits, the
remaining circuits excluding scan flip-flops (called circuit
kernel) can belong to one of the subclasses. The bigger the
class to which the circuit kemel belongs to, the fewer flip-
flops need to be scanned. Therefore, our work attempts to
identify a subclass of the acyclic sequential circuits which
can benefit from lower number of flip-flops to be scanned.

The paper is outlined as follows. In Section 2, we briefly
review Assignment Decision Diagram (ADD), which is used
w0 model a given high-level description. Then, a circuit
property called thru fimetion will be described. We will show
how a thru funcrion is extracted from an ADD. We also
define R-graph as a representation of a sequential circuit and
introduce a new concept of testability called thru-testabilin:
We depict a method of identifying the thru-testability of a
sequential circuit when it is represented by R-graph. In
Section 3, we discuss the implementation of our DFT
method. The details include an algorithm that augments a
given sequential circuit into a thru-testable circuit by adding
new thru functions. Experimental setup and result are
presented in Section 4 and Section 5 concludes our work.

2 Preliminaries
2.1 Assignment Decision Diagram (ADD)

ADD is a modeling that has been proposed previously for high-
level synthesis [5] to model a behavioral description. The
unigue feature of ADD is its capability to represent conditions
and computations in a consistent data flow fashion. Therefore,
operations in ADD are ordered by data dependencies, which
is free of control dependency that is introduced in the
description. With this capability, ADD can represent the most
parallel representation of a given description.

The ADD representation consists of read nodes, opera-
tion nodes, write nodes and assignment decision nodes
(ADN). Read node represents a storage element or an input;
write node represents a storage element or an output;
operation node can be a logical or arithmetic unit; ADN is
an assignment decision part which selects a value from a set
of values that are provided at its value inputs. If one of the

conditions to the ADN evaluates to true, then the
corresponding input value is selected. The assignment target
is represented by a write node. The write node is associated
with the selected value from the corresponding ADN. Avalue
will be assigned to the write node only if one of the condition
inputs to the ADN ¢valuates to true and only one value can be
assigned to a target at a time. For instance, the ADD for ex]
circuit of the VHDL code in Fig. | is as illustrated in Fig. 2.
The control flow of the design can be captured by tracing its
ps values while the data flow of the design is represented by
the logical and arithmetic operation nodes.

2.2 Thru Function

ADD can represent a non-separable RTL circuit. Thus, the
data transformation in the original design that is useful in
justification and fault propagation and the variables that
activate the data transformation can be more clearly
illustrated using ADD. In the following text, we denote
the logic that allows the data transformation under certain
assignment of some variables as thru function.

Definition 1. A thru function type £ X = ¥'—Z is a partial
function from X and ¥ to Z with ¥' © ¥ which is injective
where every (x,p) is mapped to a unique zeZ, and ye¥",

Definition 2. A thru function type J, f2X x ¥'—Z is a partial
function from X and ¥ to Z with ¥ € ¥ which is surjective
where for every zeZ, there exists a pair of {x,3) such that
z = fix,y) and ye}’,

x is called input data variable; z is called output data
variable; v is called an activating variable or activator
Activator is the set of inputs that enables the transformation
from X to Z.

Definition 3 An ultimate thru function is a thru function
that can function as both thru function type P and thru
function type J.

Based on the ADD description of a design, a condition
can be defined for the value assignment that, when assigned
to the activating variable, establishes onto or one-to-one
transformation from the input data variable to the output
data wariable. This condition is called activation condition.
It can normally be described in Boolean expression.

Example 1: Referring to ADN M/ in Fig, 3, data from read
node 4 will transfer 1o write node rega when the present
state is s0. Therefore, the ultimate thru function can be
written as {4 ps)=rega with activation condition (ps=s0),

Example 2: In Fig. 3, there exists a direct connection from

read node rego 1o write node . This implies the direct data
transfer from rego to @ which is represented by ffrego, {j=0

4 springer
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Fig. 1 VHDL listing for ex/ library IEEE;

use |[EEE.std_logic_1 164.all:
use |EEEstd_logic_arith.all;
use |EEE.std_logic_unsigned.all;

antity ex] is
port|

clk : in std_logic:

rst 2 in std_Jogic:

A in std_logic_vector(? downilo 0);

B :in std_logic_vechor|7 downto Q);

C :in std_logic_vector(7 downto 0):

D : in std_logic_vector(7 downto 0);
E:in std_logic:

O : out std_logic_vector(? downto 0));

end ex];

architecture RTL of ex] is
type state_type is (s0.51.52,53);
signal ps : state_type;
signaol rega : std_logic_vector(7 downto 0);
signal regb : std_logic_vector|7 downto 0);
signal rege : std_logic_veclor(7 downto 0);
signal regd : std_logic_vector(7 downto 0);
signal rege : std_logic;
signol regf : std_logic_vector(7 downto 0):
signal regg : std_logic_vectorn[7 dewnta 0);
signal rego ; std_logic_vector[7 downto 0);

begin —RTL

process|clk, rst]
begin
if st="1' then
ps == s0;

without any activation condition needed. This thru function
is also called direct thru funciion,

Example 3: ADN M2 connecits two arithmetic operation
nodes, i.e. addition and subtraction. When all the paths
starting from read nodes rega and regh to write node regf’
are examined carefully, two thru functions are identified.
They are

i fivega, (ps.regh repe.regd)) = regf with activation condi-
tion (ps = sDin(regh = any value);
ii. firegh.{ps rega,regcregd)) = regl with activation condi-
tion (ps = sa(rega= any value).
In this example, the activating variable is decomposed into
a concatenation of few variables, such as (ps.regh rege regd)
in thru function i

2.3 R-Graph

Although thru function extraction is done at high-level as a
pre-processing in our DFT approach, the circuit augmenta-
tion is still done after design synthesis. This is because all
the feedback loops formed by flip-flops can only be
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elsif clikevent and clk = "1" then
COse ps i
when s0 =>
rega <= A;
ragh <= B;
regec <=C;
regd <= [
rege <=E
regg <= "DOD00D00":
ps==5|;
when sl ==
if rege <regd then
regf == rego + regh;
ps == 52
else
regl <= rega - regh;
ps <=353;
end if;
when 52 =»
regg <= regf + regg + regf;
if rege =0 then
ps<=5l;
alse
ps <=53:
end if;
when 53 =>
rego <=regg - 3
ps <= 50;
when others => null;
end case;
end if;
end process;

O == rego;
and RTL:

identified completely at gate-level. Thus, the flip-flop
selection method we use in our method is based on MFVS
concept. To analyze the testability of the circuit, we
intfroduce a circuit representation called R-graph, which
contains the information of connectivity between combina-
tional components and flip-flops, and thru functions. R-
graph is defined such that it can be used to represent a gate-
level circuit as well as a RTL circuit.

Definition 4: A circuit representation called R-graph is a
directed graph = {§A,f,a.h} that has the following properties.

a. velis a primary input, a primary output or a register;

b. ({u,v)ed denotes an arc if there exists a combinational path
from the primary input or register corresponding to u to
the primary output or register commesponding to v,

c. rA—Tufl.&} (T is a set of Boolean expressions)
defines activation condition that establish the thru
functions along arc (u,vjed where veriex u represenis
an input data variable while v represents the output
data variable. ffu,v) = & if there is no thru function for
fu,wied. If tfu,vi=1, the signal values are transferred
from & to v through a wire logic (not a gate logic)
directly via a direct thru function.
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Fig. 2 Assignment decision diagram of ex/

d. ad— {10 £} defines the Boolean value of the input/ means the combinational path ¢w,v) is not a logic
regisier u that activates the thru function whose output that activates the thru function with output data
data variable is represented by vertex w a{uv) = & variable v

Fig. 3 Thru function extraction
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e. h:¥—={1.0} indicates the register represented by a
vertex vel is a hold register when ffv)= 1. Otherwise,
it is a normal register with hiv)= 1

Example 4: The R-graph of the example circuit in Fig. 4 is
as depicted in Fig. 5. firegg. 1) = n6 is a direct thru function
because the combinational path is merely a wire that connects
to the primary output. ffiC, frstps)) = regd with activation
condition rst A (ps == 00) (resp. firegf (rstps) = rege with
activation condition rsf A (ps == 00)) implies that there
exists a thru function from C to regd (resp. regf to regg)
under assignments of rst=0, psf0f= 0 and ps[1]=0. rst, psf0]
and psfl] are activating signals and thus arcs (rst,regd),
(ps{0],regd) and (ps{1].regd) (resp. (rst.regg), (ps[0].regg)
and (psfi].regg)) are labeled with the activating values.

2.4 Classification of Non-Scan Techniques

Several non-scan techniques have been introduced [1,3,7].
These include H-path (called H-scan in the original paper),
I-path and F-path. They are redefined again here based on
the thru functions to describe their relations,

Definition 5: I-path is a combinational path that contains an
ultimate thru function with activating value yel” is fixed
and z = x for all xeX.

Definition 6: H-path is a combinational path that contains
an ultimate thru function that

1. has a fixed activating value ye}' and z = x for all xe.X;
and

2. is either a multiplexing function, or a direct data
transfer without an activating function (¥"= &),

Definition 7: F-path is a combinational path that contains a
thru funetion type P

Fig. 4 An example circuit rst

Definition &: S-path is a combinational path that contains a
thru function type I.

A cascade of these paths are said to be established if
all the corresponding activating values are satisfied
simultanepusly. This was mentioned in [7]. This paper
introduced a new concept of path dependency to describe
necessary and sufficient conditions to satisfy the activating
values simultaneocusly. Figure 6 shows the relation
between H-path, I-path, S-path and F-path. H-path is the
subset of I-path because its thru function is limited to
multiplexer or a direct connection. I-path is the subset of
both F-path and S-path because I-path requires both onto-
and one-to-one transformation, which 1s more stringent
conditions. Therefore, F-path and S-path could offer a
DFT with lower area overhead based on the classification
of the paths.

2.5 Thru Testability

A class of sequential circuits is said to be acyclically
testable if the test generation complexity for the class is
equivalent to that of acyclic sequential circuits [8]. We
identified a class of sequential circuits whose test
generation is equivalent to the acyclically testable class
and we named the class as thru-testable sequential
circuits. 1t is a subclass of the acyclically testable
sequential circuits since thru-testable sequential circuits
are only some of the cyclic sequential circuits which have
acyclic testability, The class of thru-testable circuits was
introduced based on the thru functions available in the
circuit and their path dependency [17]. One of the findings
is that thru paths are useful in justifying or propagating a
signal in the circuit.

Definition ¥. Let R-graph & = {¥4.r.a.h/ represent a given
sequential circuit 5. A thru path is a simple path of the R-
graph such that

From —
ps(1] U4z
from ns |
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a, it starts from a vertex which is corresponding to a
primary input or register and ends at a vertex which s
comesponding (o & register or primary output,

b. it consists of either the following:

i. a cascade of S-paths;
ii. a cascade of F-paths;

c. cach arc a; is labeled with a thru function .

In examining the testability of a thru path shown in
Fig. 7, each register on the path is justifiable from the
source of the path and is observable at the sink through thru
functions type J and type P Figure 7 shows that regd signal
can be set to | (resp. 0) by setting C to 1 (resp. 0) when
rit = 0, psfO] = psf1] = 0 while signal data at regy can be
observed at a6 directly through the direct thru function. A
thru path can be dependent on another thru path to activate a
thru function along the former thru path. Thus, the relation/
dependency between two paths affects the testability.

Definition 10, If Vy; 1s a set of vertices that represent the
activator of a thru function ¢, in a thru path P,,, P, is said to
be dependent on Fy;. Furthermore, if F; contains a vertex in
a thru path P, P, is said to be dependent on P,

For instance in Fig. 7, ¥V = [rst. psf0], psfi]} is the
variables of activator for the ultimate thru function firegd,
freepsi) = regf. When an input (or a register) in a given
circuit is used to justify two registers through a thru function

S-path

Fig. & Relation of F-path, S-path, I-path, and H-path

and through a combinational path which is not a thru function,
respectively and simultaneously in test generation, the
justification is not possible if the input value (register value)
needed 1o justify the first register is different from that to justify
the second register. This simation is called pach dependency
This issue is important because the testability of a circuit
might be exacerbated when path dependency occurs during
test generation. Therefore, it is crucial to identify the
charactenistics of a circuit that cause path dependency.

Definition 1i. Let [u,v] be a set of all simple paths starting
from u and ending at v Let (w,vy) and (m,v;;) be the first
arcs of p; and p,, respectively where vy # vyo. Two distinct
convergent paths p,pye[u,v] arc said to have a path
dependency hazard if C1 and C3 or C2 and C3 are satisfied.

Cl. alu,vy) of p; is different from a(u, v,5) of the first arc
of pa;

C2. #uwvy) of py is different from v, ) of the first arc
of px

C3. p;and p» have the same length,

C1 implies that the signal value required at u to activate
the thru function whose output is v, is different from that to
activate the thru function whose output is v,y C2 means
that at least one of the combinational paths (u,vy;) and
{w,v;;) is a thru function. According to C3, p; and p» are
two convergent paths, When C1 and C3 are satisfied, it's
likely that i is needed simultancously to activate two different
thru functions during test generation. If a pair of paths is
identified to have path dependency hazard, it can be resolved
by adding hold function to vy or v,;. Hold function will
delay one of the events (e.g. activation of a thru function)
such that u is not needed at the same time.

There are four types of path dependency:

a. thru-active dependency — this occurs when a register or
input is an input for an active thru function and is
activating another thru function, simultaneously.

b. active-active dependency — this happens when a register
or input is activating two thru functions with different
activating functions.

&) Springer
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Fig. 7 A thru path from the
circuit m Fig. 4

c. normal-gctive dependency — this type of dependency
takes place when two different values are needed at a
register or an input in justification and in activating a
thru function, simultaneously.

d. normal-thru dependency — this is a state where two
different values are needed at a register or an input in
justification and as an input data of a thra function,
simultaneously.

Une example of path dependency occurring in the circuit of
Fig. 4 is illustrated in the time expansion model in Fig. &. In
Fig. &, let the output of regf be the fault location of a stuck-
at-0 fault. We need to assign [ to regf to excite the fault and
then we need to propagate the fault effect I to output n6. To
do s0, psf 1] at time frame CCO is used to justify psf0] at the
next time frame CC/J and to activate the thru function that
transfers [ from regd at CCO to regf at CCI to activate the
fault, simultaneously. The problem in this case is that psfi]
needs to be assigned / and 0 at the same time in order to
accomplish the above-mentioned justification and thru
function activation. Therefore, any path dependencies have
o be resolved o improve the testability. Based on several
aspects discussed above, we define a class of circuits which
is thru-testable and thus casily testable.

Definition 12. A circuit is said to be thru-testable if the R-
graph of the circuit contains a minimum set of thru paths
such that the following conditions are satisfied.

Cl. The thru paths cover all the vertices of the minimum
vertex feedback set (MFVS).

C2. For any thru path P;, P; is not dependent on itself,

®I=E""-[P-’=mjfr:EA(F=G:@E=EA[W=T@ t=1 .®

C3. For any pair £, P, of the thru paths, if 7 (resp. ) is
dependent on P (resp. F;), P; (resp. P) is not
dependent on F; (resp. F)).

C4. For each pair of reconvergent paths p, and p;, if p,
and p; pose a path dependency hazard, it must be
resolvable.

Circuit in Fig. 4 is not thru-testable because it does not
satisty all the four conditions defined in Definition 12,
From the R-graph of the circuit, MFVS includes
vertices psf0f, regd, regl and regg. regd, regf and regg
are on the thru path in the E-graph but ps/0] does not belong
to any thru path. This violates Cl. In addition, C4 is not
satisfied too because there is a pair of paths which poses the
hazard of path dependency. Figure 9 shows the paths and its
dependency. In the next section, the circuit in Fig. 4 is used
to exemplify how a given circuit can be augmented into a
thru testable circuit.

3 Design-for-Testability Method Based
on Thru-Testability

We introduce a new DFT approach based on thru-testability,
Figure 10 illustrates our DFT methodology. The input to our
DFT insertion methodology includes RTL description which
can consist of a non-separable datapath and controller.
Firstly, an RTL description is transformed into a ADD
deseription for thru function extraction. A thru function
whose activating signals are the same as the thru function
output or input is not selected. This is to prevent the

; | b {
5 e ! i
ot o - i Hm
L] | 7l |
; SRR e S i s |
T I W i B :
: i il _l_,_ US| usie
N pefi] 0and 1 are nesded '“ [
ps{1] -
' [ I ]
| LAt
ragg
regt o
sa0

CCh

Fig. 8 Path dependency
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Fig. 9 Path dependency
berween path ps/ff—ps
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violation of C2 in Definition 12. The extracted thru
functions are kept in a file named design_name.thru. On
the other hand, the RTL description is synthesized into a
gate-level netlist, Sometimes, a read node or wrile node of
the ADD maybe synthesized away and no register is found
to be comesponding to the node. If such node that is also
the input or output of an extracted thru function exists, the
extracted thru function cannot be considered. Prior 1o DFT
insertion, the gate-level netlist is transformed into its R-
graph. Then, during DFT insertion, the connectivity of the
R-graph will be analyzed based on a set of existing thru
functions in design_name.thru to add minimum number of
new thru functions and new hold functions to make the
circuit thru-testable. There are three tasks under DFT
insertion (Fig. 11):

a. identifying vertices belonging to MFVS (Line 3);
b. adding new thru functions (Lines 8—9); and
¢. adding new hold functions (Line I0).

a im;\ll:=;h(ps=m;|@

After DFT insertion, the R-graph become thru-testable
since it has satisfied the definition of thru-testability. It
is then converted to its corresponding gate-level netlist.
The newly generated gate-level netlist is different from
the original one because the new netlist has additional
gates to realize the mew thru functions and some flip-
flops are changed to the flip-flop with hold function. We
elaborate the algorithms for DFT insertion in the following
sub-sections.

3.1 Minimum Feedback Vertex Set

We are using the exact algorithm introduced in [6] to
wdentify the flip-flops that belong to mimmum feedback
vertex set (MFVS). This algorithm involves graph trans-
formations, a partitioning scheme used in the branch and
bound procedure and pruning techniques based on an
integer linear programming. The author has shown the
effectiveness of the algorithm through a reasonable com-

Fig. 10 Thru-testable designfor-

testability methodology Register-transfer-level description

L
+ T v
Synthesis using Design Vision RTL description to ADD I
i’ e —

L]

Gate-level netlist Assignment Decision Diagram

MNetl R-Graph +
etlist to R-Graph conversion : 2
L : P s ] | Thru functions extraction
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Fig. 11 Psendocode for DFT
insertion

i U T

b
=

putation time when this algorithm is applied on ISCAS'89
benchmark circuits, Applying this algorithm on the R-graph
in Fig. 5, vertices ps[00], regd, regf and regg are identified as
MFVS vertices.

3.2 New Thru Functions Insertion

After recognizing the vertices belonging to MFVS, we
divide the MFVS vertices into two groups; those activate a

Fig. 12 Pscudocode for
add_ghra_function(TF)

© NS A N~

R I N N A N N e e e e e e e e Rl
- T P P e N

DFT _insertion()
create R-graph of the netlist;
fabel R-graph arcs based on existing thru_functions and activating function;.
MFFS=a set of the vertices belonging to MFVS;
Jfor each veriex ueMFVS

ifiu is the variable that activates a thru function)

include w in thru path TPI;

else include u in thru path TPZ;
add_thru_functionfTP2);
add _thru_function(TP1);
add_hold_functionsf);

thru function and the others. For instance, ps/0] is a MFVS
vertex that activates thru functions so it is included in TP/,
The rest of the MFVS vertices are included in TP2.
Therefore, TP = [psf0]} and TP2 = fregd. regf regg).
TF! and TP2 contain a sct of vertices that has a potential
to form a set of thru paths, respectively. For each TP/
and TP2, new thru functions are added based on the
existing thru function. Figure 12 shows the detailed
procedure.

add_thru_function (TP)
o_list=potential vertices 1o be the sink of the thru path TF;
iffo_list is empty)

add one new vertex into o_lisi;
i_list=potential vertices to be the source of the thru path TP,
iff i_list is empty)

add one new vertex into [ _list;
remove some vertices in o_list or i_list until their size are equal,
head list=i_list;
tail list=vertices of TP which are not thru function outpuls;
while(tail_list is not empty)

{for each uchead izt

{ iffu is an input of a thru function)

include the output of the thru function v in candidate_tail_list;

else fv=the first element in tail_list;

add new thru function t={activator==1) to arc (u,v);
remove v from tail_list;}

ifitail_list is empty)

include w in candidate_tail list;

head list=candidate_tail _list;}
Jor each uchead_list
iffthere is no direct thru function connecting u to an oulput vertex)

{o=select an output vertex from o_list;

iffo is an existing output)

build a direct thru function t=(activator==1} to {u0);
else & o is a newly added output

build a direct thru function t=1 to (u,0);
include o in TP}
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add_hold_function()

I for each u eMFFS Couipurl_vertices

2 {for each v edirect_predecessar(i)

kS {include I tn level Jist of are fvu);

4 J=2

& traverse_and_levelizefv,).}

. Sfor eack veMFFF

7 Jor each pair w.x edirect _successoriv)

& T (Tevel_list of arc (v.w)r level_list of are (vx}tg)
) iff afvwigaix) || ife witfex) )

i {add_holdfw);

I add_koldix);}

12 clear levelization(); )

traverse_and_levelizefvj)

i Jor each uedirect_predecessorv)

2 iffiu eMFVS &d { afuvird|| W vid)) || veMFVS)
3 fimclude j in level_list of arciuv);

4 JH+

5 traverse_and_levelizefu ;)

Fig. 13 Pseudocode for add fold funciion(]

The procedure might generate a set of thru paths
{not only a single thru path) from the vertices in TP
The number of thru paths to be generated is determined
by the size of i_flist or o_fist, which is less (Lines 1-T).
head lisr initially take the input vertices as its members
while tail_list includes the MFV'S vertices which are not
outputs for any thru functions in design_name.thru
(Lines 8-9). Lines 10-19 link each wvertex in head fisr
with a vertex in fail_lis¢ through a thru function. New
thru function is introduced if necessary (Lines 15). A new
activator (an activating signal) is introduced to activate
all the new thru functions for T8 After the outputs of thru
functions with input vertices from head /st are identified,
these vertices will be treated as members in head [ist and the
process to link the wvertices in head list through thru
functions is repeated until the tafl list is empty. When the
taif_fist is empty, it means all the vertices in TP have become
thru function outputs, At this stage, head list contains the
vertices of TP which are thru function outputs but not an

Fig. 14 An example of thru-
testable R-graph

input of any thru functions. Each of these vertices is made an
input of a thru function whose output is an output vertex
from o_list (Lines 20—26). Finally, all the vertices in TP are
accessible from its source (resp. reachable to its sink)
through a series of thru functions.

This procedure modifies an R-graph to fulfill C1 in
Definition 12. Besides, since the new activators for TP/
and TP2 are different, this makes sure that any two paths
are not mutually dependent as stated in C3 of Definition 12.
The following sub-section describes another task to
guarantee C4 of Definition 12,

3.3 New Hold Functions Insertion

To resolve any potential path dependencies, it is sufficient
to add hold functions (also called self thru functions) to the
vertices which are direct successors to the source vertex of
any two paths which have path dependency hazards.
Figure 13 shows the pseudocode to select vertices for new
hold function insertion,

To identify which registers to be augmented with
hold function, we first levelize R-graph starting from a
MFVS vertex or an output vertex. Then, the second
vertices of two paths with path dependency hazard are
aupgmented with hold functions or self thru functions.
The activating signals for these two hold functions are
different. MFVS in Line ! is a set that contains all the
MFVS vertices while owtput_vertices in Ling [ contains
all the output vertices. fevel list of arc(ywi) is the set that
keeps level 1 if the arc represent the combinational path
corresponding to the sub-circuit under test (Lines 1-3)
and levels § of the arc resulting from fraverse and level-
ize(vf). Level j is increased before traverse and levelize
fwji). traverse and levelizefvj) is to levelize the combi-
national parts to indicate the different clock cycles when
that combinational parts are involved in the test
generation. If a path dependency is identified (Lines
6-11), add holdfw) (resp. add _hold{x}) creates a new self
thru function and its activating signal to w (resp. x). This is

a=0
B rmal

4) Springer
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Fig. 15 Thru-testable circuil af-

ter applying TT DFT methodol-
ogy on circuit in Fig. 4

equivalent to adding a hold function to register w (resp.
register x). Then, the levels kept in each arc is removed
before the procedure of add hold function() is executed for
other fault excitation graphs.

Example 5: Figure 14 shows the thru-testable R-graph
obtained from the augmentation of R-graph in Fig. 5
based on thru-testable DFT. New thru functions finl k) =
psf0] and fipsf0].1) = p are added to form a new thru
path nf—ps/0]—p to cover the only MFVS vertex not
covered by the thru path in Fig. 6. A self thru-function or
hold function is added to psf0) to resolve the path
dependency hazard. Based on the thru-testable, the circuit
in Fig. 4 can be augmented into thru-testable as shown in
Fig. 15.

Tor show the effectiveness of our DFT method, we have
set up an experiment and augmented some benchmark
circuits of ITC'99. The following section explains our
experiment setup and result.

4 Experiment Setup and Resuli
4.1 Experiment Sctup

Figure 16 shows the planning and flow of our experiment
in order to show the effectiveness of thru-testable DFT
methodology. For a circuit that has path dependency hazard,
the path dependency may or may not happen depending on
the test generation model used in an ATPG. Therefore,

Fig. 16 Experiment flow
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adding hold functions is just a sufficient condition to
resolve any path dependency that might happen in a
sequential circuil.

We used Synopsys TerraMax to run ATPG on ITC'09
benchmark circuits. Since it is difficult to determine
whether a path dependency will happen or not, we have
also conducted experiment on the partially thru-testable
circuits which is a thru-testable circuit without hold
functions to show that the partally thru-testable DFT is
good enough if path dependency does not occur much
during test generation. Partial thru-testable DFT methodol-
ogy can be simply developed based on thru-testable DFT
methodology by removing Limel@t in DFT insertion()
procedure. We have also conducted experiment on the
benchmark circuits that have been modified by partial
scan DFT methodology for comparison purpose. The
partial scan selection is based on minimum feedback
vertex set (MFVS), Our method is not compared with
other non-scan techniques [1,3,7,8] because those DFT
techniques are implemented on the structural RTL
circuits which have separate datapath and control units.
ITC*99 benchmark circuits are only available at func-
tional RTL whereby its datapath and control units are
non-separable,

Table | presents the characteristics of the benchmark
circuits and ex/ used as an example for this paper The
benchmark consists of small circuits like b03 and also
large circuits like b14 and bl5. Column #FF shows the
number of flip-flops in the circuit while Column Area
indicates the size of the circuit in unit of the size of an
inverter. Column [0 pins shows the number of primary

Tahle 1 Characteristics of the benchmark circuits

Circuit #FFS Area 10 pins # Thru functions
Pl P
exl 59 450.5 35 b u
T3 30 21 6 4 17
4 ] 589.5 i3 B 40
7 45 3975 3 B &
& 21 175 I 4 B
Il 28 198 3 l L
b0 17 172 13 6 iy
bli L]} 394 9 i L]
bi2 121 1054.5 7 6 E
b13 5 3BR.5 12 10 12
k14 215 53255 M - 31
bl5 417 6405 38 69 6o
bi7? 1317 19811.5 39 97 100

ane unit area = the size of a NAND gate

inputs (Pf) and primary outputs (P while the last
column shows the number of thru functions exists in the
original benchmark circuits before any modification.
These thru functions are extracted from the high level
descriptions using the method mentioned in our thru-
testable DFT methodology. Notice that some circuits
like b04 has many thru functions available in their
original design.

4.2 Experimental Result

Table 2 shows the area overhead resulted from partial scan
DFT, partially thru-testable DFT (PTT DFT) and thru-
testable DFT (T DFT). For all these three DFT methods,
arca overhead is caused by the new thru functions added to
the circuit during DFT insertion. In addition, the area
overhead for IT DFT also comes from the newly added
hold functions. For all the benchmark circuits, the area
overhead in PTT DFT method is less compared to partial
scan DFT. This is the advantage of considering and utilizing
the existing thru functions during DFT insertion. However,
it is not so for TT DFT in the cases of exi, 509, bil, bi2
and b/4 because of the area overhead of newly added hold
functions. This can probably be improved since adding hold
functions is a sufficient condition. Figure 17 shows the
area overhead caused by the hold functions denoted by TT
DFT (HF) and the new thru functions TT DFT (TF)
explicitly. If we can reduce hold functions, it's possible
that the area overhead for these cases become less than the
area overhead in partial scan DFT (PS5 DFT) which is
contributed by thru functions only. Overall, the area
overhead incurred in TT DFT is less than that in partial
scan DFT.

Table 3 shows the pin overhead of these three DFT
methods. Partial scan DFT needs one extra pin as a select
pin to switch a circuit from test mode 10 normal and vice
versa, The proposed PTT DFT has more pins because the
activator for thru paths from TP/ is different from the
activator for thru paths from TP2. TT DFT needs even more
extra pins due to additional hold functions that need a new
input to put the register in hold mode or normal load mode.
Alternatively, a separate test controller could be designed to
enable the hold functions augmented to the registers to
reduce the pin overhead. This can be done without any
modification needed to the original control unit. However,
similar 1o the discussion for area overhead, the pin
overhead can be reduced if necessary and sufficient
conditions can be defined for resolving path dependency
hazard using TetraMax.

Table 4 shows the fault efficiency of the three DFT
methods, Der denotes the number of detected faults; Red
represents the number of redundant faults; Bie/ indicates
the total number of faults; FE denotes fault efficiency; Imp

4€) Springer
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Tahle 2 Arca overhead

comparison Circuit  Area Partial scan PTT DFT TT DFT
HTF  Area AN%) ATF  Arca AO%)  H¥TF  Area AON5)
exl 4305 59 657 4584 52 629 3062 52 687 52.50
b3 21 30 ile 49.76 I3 256.5" 112156043 2715 2B.67
bl 589.5 66 8105 39.0% . 26 6E0.5 1544 I8 7135 2103
b7 3975 44 3515 3874 36 527 3158 3 5495 3824
bO& 175 21 2485 4200 3 2205  26.00 13 231 3200,
L 198 21 ET1.S fuiBT 1B 20 268 3535 . 20 2785 4066
b1t 172 17 2315 | 34590 7 196.5 1424 7 205 19.19
bil 394 3 502 2741 25 488 2386 25 5035 2T.T9
b12 10545 17 1464 38.83 109 1443 3684 109 15015 4239
bi3 3885 S0 5635 4505 39 3215 34213 3 5465 40467
b4 53255 AN¥ 60N 14.00 184 5964.5 1209 184 60765 14,10
bl5 6405 414 THS4 2262 348 7623 19.02 348 78315 2.
one unit area = the size of a Average 16,26 250 1163

WNANI gate

tabulates the fault efficiency improvement in percentage
compared to partial scan technique. The last row of Table 4
shows the average fault efficiency. For PTT DFT and TT
DFT;, the last row also displays the average improvement of
fault efficiency compared to partial scan technique. All the
fault efficiency of thru-testable sequential circuit are
comparable or less than fault efficiency in partial scan
designed circuits. For the cases including ex], b03, b,
b9, bl0, bil, b12, bI3 and bi4 which show the
comparable results, this maybe because only little path
dependency has occurred during test generation using
TetraMax. Thus, adding new hold functions to resolve path
dependency cannot improve further the fault efficiency of
these circuits. The point to be emphasized here is that TT

PS5 DFT [TF)
=TT DFT [HF)
BTTDFT (TF)

Area Overhead (%)

bl bi2
benchmark cireuits

Fig. 17 Comparison berween area overhead of PS5 DFT and area
overhead of TT DFT

bg

DFT can improve the testability of difficult-to-test circuits
effectively. Morcover, the average fault efficiency is the
highest among all the DFT methods. This is proved by the
experimental result of fault efficiency for circuits of bi7,
b0& and b!5 This can further be supported by the
experimental result of test generation time shown in Table 5
where test generation time for the thru-testable circuits of
b7, b8 and b15 is much shorter than the test generation
time for the partial scan designed b07, 508 and 575, The
test peneration time is also shorter even for the other
circuits like &/ and b/3 whose thru-testable version has
fault coverage comparable to its partial scan designed
counterparts. Table 6 shows the test application time in

Tahle 3 Pin overhead comparison

Circuit  Partial Scan PTT DFT TT DFT
PI PO total PI PO rtotal PI PO total

exl g e v | 3 3 1 6
bO3 =g |1 R 4 5 1 [
bo4 =0 | Ta—1 3 s(3) 1 &
b7 1 o 1 4 5 1 8
b8 e il 1 3 6l4) 1 7
b9 I o [ AR 4 52 1 [
bl L o 1 v B 3 75 1 5
bil I o 1 Al B 3 LT 6
b2 T s 35§ 4 T4 | 8
bl3 L 0 1 &1 1 3 N 1 ]
bld i1 30 3 63 0 6
bls I 0 1 A 7 T4 4 1
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Table 4 Fault efficiency (in percentage %)

Ckt.  Oni. Partial Scan PTT DFT TT DFT

Diet Red Total FE Dhet Red Total FE Imp Diet Red  Total FE Tmp

exl 6935 4220 0 4228 9983 4048 0 4060 99 78 =005 4117 I} 4302 97.78 =2.05
b03 6958 1703 0 1704 9904 1016 3 1340 7569 -23095 1450 3 1468 R {0,946
b4 339 4742 £l 5040 9476 AT10 36 4168 8079 =407 4121 36 4446 03145 =1.31
bOT 411 2303 4 3300 699 2590 4 3136 82.77 12,87  2B&6 4 3318 86,56 16.66
BOE 9262 1352 1] 1528 BE48 1277 0 1360 93.97 549 1441 ] 1452 99.24 10.76
b 8818 1417 0 1421 9051 1344 i} 1412 G518 -4.33 149 1502 99.27 —1.24
bl 9432 1485 0 1486 9903 1268 & 1274 0053 =04 1350 2 1352 99 85 =08
bll 301 3393 15 3432 993 1269 15 3308 9927 -0,03 3395 15 3438 9018 —{.12
bl2 13.75  T968 2 Boal #3895 7705 5 HT5%6 B7.66 -1.29 8135 3 927 37.8 =115
bl3 3423 3081 a7 3170 9929 2B3 67 2914 04954 0.25 3051 67 3124 99.8 0.51
bl4 6308 47104 359 48024 9882 46253 362 4TI00 9K =047 47191 362 48252 9854 ={.28
bls 454 42307 234 S9BER 7097 31026 120 SR446 5320 17.77 54039 200 60146 D015 19.18
Ave.  SEI9 92 .47 50,59 -2.58 95.88 3.41

clock cycles for original circuits, partial scan designed
circuit, partially thru-testable circuits and thru-testable
circuits where thru-testable circuits has longer test
application time.

The advantages of using thru testable DFT methodology
is expected to become more obvious if larger and more
complicated circuits with more path dependency hazards
are used i the experiment. However, the experiment in the
current work is limited to the benchmark circuits up to 513
because the cumrent version of script cannot support
hierarchical design of the benchmark such as bI7, bi8,
B19, 622 and 50 on. In this paper, thru testable DFT method
is performed at gate level, which is a complicated process.
If the method is extended to be applied for RTL circuits,

Table 5 Test generation time comparision (in seconds)

larger circuits can be used to show the effectiveness of
the method.

5 Conclusion

A new design-for-testability method called thru-testable
DFT method has been introduced in this paper based on
thru-testability. For all the benchmark circuits, the fault
efficiency of the thru-testable circuits is comparable 1o that
of the partial scan designed circuit. In addition, our method
has also shown higher fault efficiency, less hardware area
overhead, and shorter test generation time compared to
partial scan technique in difficult-to-test circuits.

Table & Test application application (in clock cycles)

Circuits Original Partial Scan PTT DFT TT DFT Circuits Original Partial Scan PTT DFT TT DFT
exl 9263.78 10893 G045 1658.54 exl kv | 1467 970 1533
b3 2339325 4810 35468 23614 hil3 340 1649 617 2633
b4 134199 22748 922,45 456,55 b4 1448 1784 2136 2682
b7 16821.17 11385.35 G220.63 4608.07 b7 B 2606 2663 5564
bid 326.18 B78.09 245.88 69.61 bild 1284 463 121 2186
b9 516,66 4280 68931 920.43 b9 2652 5958 4456 6773
bl 514.10 BE.O5 85.54 51.45 bl10 1013 S98 1478 166
bil 499926 64,58 98.54 243.25 b1l 122 2039 2412 2815
bl 2372542 13360.27 3247166 17217.38 bl2 132 6204 11482 15904
h13 184861 113,88 Q55D 06 18 bh13 465 1751 3866 5226
bld 6540.87 31890.99 4698.42 527906 bi4 1335 15518 21539 21623
bl3 104084,22 80521.65 BO16E.35 T2405.00 bl5 30 3535 2094 15978
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