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Abstract The paper proposes a hierarchical untestable
stuck-at fault identification method for non-scan synchro-
nous sequential circuits. The method is based on deriving,
minimizing and solving test path constraints for modules
embedded into Register-Transfer Level (RTL) designs. First,
an RTL test pattern generator is applied in order to extract
the set of all possible test path constraints for a module
under test. Then, the constraints are minimized using an
SMT solver Z3 and a logic minimization tool ESPRESSO.
Finally, a constraint-driven deterministic test pattern gener-
ator is run providing hierarchical test generation and untest-
ability proof in sequential circuits. We show by experiments
that the method is capable of quickly proving a large num-
ber of untestable faults obtaining higher fault efficiency than
achievable by a state-of-the-art commercial ATPG. As a side
effect, our study shows that traditional bottom-up test

generation based on symbolic test environment generation
at RTL is too optimistic due to the fact that propagation
constraints are ignored.

Keywords Automated test pattern generation . Untestable
faults . Register-transfer level

1 Introduction

Test generation for sequential synchronous circuits is a time-
consuming task. Automated Test Pattern Generation
(ATPG) tools spend a lot of effort not only for deriving test
vectors for testable faults but also for proving that there exist
no tests for the untestable faults. Because of this reason, the
identification of untestable faults has been an important
aspect in speeding up the sequential ATPG. The percentage
of untestable faults in sequential circuits tends to be consid-
erably higher than in the combinational ones. For combina-
tional circuits, untestable faults occur due to the redundant
logic in the circuit, while for sequential circuits untestable
faults may also result due to unreachable states or due to
impossible state transitions.

A number of works have been proposed in order to tackle
the problem of identifying sequentially untestable faults.
The first methods [1] were fault-oriented and based on
applying combinational ATPG to the expanded time-frame
model of the sequential circuit. However, such approach
does not scale because of the size-explosion of the unrolled
sequential models. Thus, the fault independent method was
introduced by Iyer et al. in [10]. The new algorithm was
called FIRES and it implemented illegal state information to
complement redundancy analysis. This was followed by a
number of fault independent methods including MUST [16],
FUNI [14], FILL [14] and others. Liang [13] proposed a
simulation based approach for sequential untestable fault
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identification. However, it was shown in [14] that this
method may result in ‘false positives’, i.e. a fault may be
declared untestable when there actually exists a test for it.
The common limitation of the above methods is that they
operate at the logic-level representation of the design. Thus
a considerable amount of effort is put on the implication
process carried out at the level of logic netlists.

In their previous work [17], the authors introduced a spe-
cific subclass of sequentially untestable faults, called register
enable stuck-on faults and a method for proving them untest-
able using a model checker. In this paper we propose a
hierarchical untestability identification method. The new
method allows detecting sequential untestability in combina-
tional modules (functional units, multiplexers) embedded into
a hierarchical circuit and is based on path activation con-
straints extracted by a Register-Transfer Level (RTL) ATPG.

In hierarchical RTL test generation, top-down and
bottom-up strategies are known. In the bottom-up approach,
tests generated at the low-level will be later assembled at the
higher abstraction level. Such algorithms yield short run-
times but ignore the incompleteness problem: constraints
imposed by other modules and/or the network structure
may prevent test vectors from being assembled. In the top-
down approach, constraints are extracted at the higher level
as a goal to be considered when deriving tests for modules at
the lower level. This approach allows testing modules em-
bedded deep into the RTL structure. However, as modules
are often tested through highly complex constraints, their
fault coverage may be compromised.

Early methods on bottom-up RTL testing relied on the
assembly of module tests and were applicable of the simplest
systems only [15]. A more solid basis for the bottom-up
paradigm was laid by Ghosh et al. in [7]. In their work, test
environments are generated for each functional module of a
given functional RTL circuit described in an Assignment De-
cision Diagram (ADD) [3] using symbolic justification/propa-
gation rules using a nine-valued algebra. In this method, a test
sequence is then formed by substituting the corresponding test
patterns into the test environment. However, the proposed
nine-valued algebra cannot guarantee the generation of a test
environment, even if it exists. To overcome this drawback,
Zhang et al. upgraded the nine-valued algebra to a ten-valued
algebra by taking the variable line value range into consider-
ation. This algebra is able to generate much more test environ-
ments [23]. In [6], Zhang’s approach has been further
improved by introducing additional propagation rules.

Lee and Patel introduced top-down constraint-based test
pattern generation for microprocessors in [12]. Several
constraint-based top-down approaches followed, including
[19, 21]. [11] proposed a bottom-up approach based on a
High-Level Decision Diagram (HLDD) engine and on apply-
ing a commercial constraint solver SICStus. As experiments
show, the tool achieves lower fault coverage in comparison to

a commercial logic-level Automated Test Pattern Generator
(ATPG). In [22], a top-down approach including a constraint
solving package ECLiPSe [20] has been proposed.

None of the previous methods apply RTL constraints in
order to prove logic-level untestable faults. Thus, the fault
efficiency reported by the approaches [11, 12, 19, 21, 22] is
often low, which decreases the test engineer’s confidence in the
test. Here, by fault efficiency we refer to the ratio of the number
of tested faults to the number of testable faults. In addition, as
we will show in this paper, in many cases fault coverage
obtained for the modules in RTL test generation may consid-
erably decrease if test path constraints are being ignored.

The authors of this paper previously introduced an RTL
untestability identification method where a specific class of
untestable register control faults was proven untestable by
applying model-checking at the RTL [17]. In this paper, we
present a hierarchical untestability identification method for
the general case of sequentially untestable stuck-at faults
within RTL modules. First, an RTL test pattern generator is
applied in order to extract the set of all possible test path
activation constraints for a module under test within a cer-
tain clock cycle limit. Then, the constraints are minimized
and a constraint-driven deterministic test pattern generator is
run providing a time-limit-bounded hierarchical test gener-
ation and untestability proof for sequential circuits. This
general concept has been published in [18]. However, in
this paper we have formalized and implemented the test path
constraint minimization step. We have evaluated the mini-
mization method and studied the complexity of minimiza-
tion on several constraint sets.

We show by experiments that the tool is capable of
quickly proving a large number of untestable faults obtain-
ing higher fault efficiency than achievable by a state-of-the-
art commercial ATPG. As a side effect, our study shows that
traditional bottom-up test generation based on symbolic test
environment generation at RTL is too optimistic due to the
fact that propagation constraints are ignored.

Figure 1 presents the corresponding top-down test flow
for targeting a Module Under Test (MUT) in a hierarchical
RTL design. The flow contains three main phases. During
the first phase, the full set of constraints for setting up a test
path to test an RTL module are extracted on the RTL design
representation. We apply RTL ATPG Decider [22] in order
to extract the constraints for accessing the MUT. Decider
activates as many sets of constraints as there are test paths
for that module in a bounded limit of clock-cycles. In [22],
test constraints were utilized to propagate test patterns to
and from the MUT. However, in this paper the purpose is to
process the set of constraints in order to derive conditions
for a dedicated logic-level ATPG in proving untestability.

During the second phase this set of constraints is mini-
mized as presented in Section 3 resulting in a compact test
environment for accessing the MUT. The test environment
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is translated into VHDL and synthesized to logic-level using
Synopsys Design Compiler.

The third phase generates deterministic tests to the logic-
level module taking into account the minimized path con-
straints. Here, the constraint-driven logic-level ATPG is run
on the logic-level description of the MUT instantiated into
the synthesized test environment. As a result we obtain the
list of sequentially untestable faults in the MUT as well as
test patterns for the entire design.

An RTL design contains a large number of modules to be
tested. By far not all of them are affected by sequential
untestability issues. Therefore, the method requires a pre-
processing step that would identify the modules for which
untestability analysis should be carried out. This can be
done e.g. by selecting modules whose fault coverage is
below some threshold.

The rest of the paper is organized as follows. Section 2
presents the concept of test path constraints. Section 3 dis-
cusses minimization of the constraints. In Section 4 the
constraint based top-down hierarchical test generation for

proving untestable stuck-at faults is presented. In addition,
an example explaining the limitations of bottom-up hierar-
chical test generation approaches with respect to top-down
ones is presented. Section 5 provides experimental results.
Sections 6 provide the limitations and threats to validity.
The paper ends with Conclusions.

2 Test Path Constraints Extraction at the RTL

In this Section, we define the Register-Transfer Level (RTL)
representation of a digital system. We introduce the concept
of test path constraints for testing a module in the RTL
design and describe the procedure of extracting them by
the algorithm implemented in the hierarchical test pattern
generator DECIDER [22].

2.1 RTL Representation

Figure 2 presents a structural RTL view of a digital system.
At the RTL, the design is assumed to be partitioned into a
control part and a datapath. An RTL digital system S0<F, X
>is regarded as a network of interconnected blocks, or
modules, where F is the set of modules in the network and
X is the set of variables connecting the modules. The control
part is represented by a Finite State Machine (FSM) con-
sisting of three modules: a state register fS∈F with an output
variable xS∈X, a next state logic module fT∈F with an output
variable xT∈X and an FSM output logic module fG∈F with
primary outputs XO⊂X and control variables XC⊂X as its
outputs, respectively. Input variables to the control part are
comprised of the primary inputs of the design (variables XI⊂
X), status bit variables originating from the datapath XN⊂X
and current value of the state variable xS. Outputs of the
control part consist of the primary outputs XO of the design,
control signal variables XC and the next value of the state
register variable XS.

Decider:
RTL test path 

activation
Synopsys DC:
Logic synthesis

RTL 
network
(VHDL)

Modules
library

(VHDL)

Test path
constraints Test 

environm.
(EDIF)
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Fig. 1 Constraint-based untestability proof flow
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Similarly, the datapath is regarded as a network consist-
ing of interconnected modules. The modules include regis-
ters FR⊂F with output variables XR⊂X, multiplexers FM⊂F
with outputs XM⊂X, Functional Units (FUs) for implement-
ing arithmetic operations FU⊂F with outputs XU⊂X and
comparison operator modules FN⊂F with outputs XN, re-
spectively. As inputs for the datapath are the primary inputs
XI and control signal variables XC. The latter are partitioned
into multiplexer addresses XA⊂XC and register enable vari-
ables XE⊂XC. Outputs are the primary outputs XO as well as
the status bit variables XN from comparison operator mod-
ules leading to the control part. The datapath of the RTL is
structured according to the so-called mux-FU-mux-register
architecture, where the first level of multiplexers select
operands for the operations implemented by the functional
units followed by another level of multiplexers for selecting
the operation results to be read by the next stage of registers.

2.2 Extraction of Test Path Constraints

For each datapath Module Under Test (MUT), we extract
control part FSM state sequences in order to propagate fault
effects from the output of the MUT to primary outputs and
to propagate the values from the primary inputs to the inputs
of the MUT. Such state sequences constitute test paths for
accessing MUT. We represent the test paths by sets of
constraints. All test paths within a certain cycle-limit are
activated and the corresponding constraints extracted by the
proposed algorithm. This cycle-limit is first set to 1 and then
gradually incremented until the obtained constraints will be
non-empty after the minimization. In order to extract the
RTL test path constraints in current paper, a test path acti-
vation tool DECIDER [22] is applied.

The concept of the constraints for a single test path for a
datapath MUT is visualized in Fig. 3. The test path constraints
are divided into three categories. These are the set of path

activation constraints CA, the transformation constraints CJ

and the propagation constraint cP, respectively. Path activa-
tion constraints correspond to the conditions in the FSM state
transitions that have to be satisfied in order to perform prop-
agation and value justification through the circuit. Transfor-
mation constraints, in turn, reflect the value changes along the
paths from the inputs of the high-level MUT to the primary
inputs of the whole circuit. These constraints are needed in
order to derive the local test patterns for the module under test.
The propagation constraints show how the value propagated
from the output of the MUT to a primary output is depending
on the values of the primary inputs. The main idea here is to
check whether the fault effect will be masked when propagat-
ed to a primary output. All the above categories of constraints
are represented by common data structures and manipulated
by common procedures for creation, update, modeling and
simulation. In the following, the data structure and update
operations of test path constraints are defined.

Definition 1: A condition c that is d0g(X′), where d is a
bitvector or Boolean constant or a variable
x∈X, and g(X′) is a logic, arithmetic or com-
parison expression on a subset of variables X
′⊂X, is referred to as a test path constraint.
From this point on, we refer to test path
constraints as constraints.

Definition 2: Constraint c: d0g(X′) is said to be justified iff
X′⊆XI, where XI is the set of primary inputs
of the system. Otherwise, c is said to be an
unjustified constraint.

Definition 3: If a constraint c: d0g(X′) is unjustified then
all the variables in the set X′ that are not
input variables XI are said to be unjustified
variables of the constraint. The input varia-
bles belonging to the constraint are called
justified variables.

cA,p

cA,1

cJ,1

cJ,2

xi,1(t)

xI,1(t m)

...

xO,1(t+n)

xO,2(t+n)

xO,j(t+n)

xO,l(t+n)

Module 
Under 
Test

fi

Propagation 
path

PIs: POs:

Path activation
constraints

Transformation constraints

Conditions in FSM
(status bits XN)

...

...

xi(t)

xS(t m)  ... xS(t 1) xS(t) xS(t 1) ... xS(t+n)
FSM state 
sequence:

Propagation constraint

xi,2(t)

xI,k(t m)

cP

Fig. 3 An unrolled RTL circuit
with test generation constraints
for a test path for a MUT
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Definition4: Let X′ be the set of justified variables and X″
be the set of unjustified variables of a con-
straint c: d0g(X′, X″). The process, where
each variable x″i ∈X″ is substituted by an
expression hi(X‴i) on model variables X‴i⊆
X, is referred to as updating the constraint c.

Consider the general case of test path constraints for a
MUT presented in Fig. 3. Such constraints are extracted as
follows. First, the value from the output variable xi of the
MUT fi is propagated to a primary output xO,j by activating a
state sequence xS(t)→xS(t+1)→…→xS(t+n) in the control
part. Here, by x(t) we denote the value of variable x at the
clock-cycle t. Thus, the propagation state sequence starts at a
time step t, which is referred to as themanifestation step, and it
ends at a clock-cycle t+n. During propagation, path activation
constraints cA,p∈CA are created at time steps where the next
state value of xS is depending on the status bits XN. When the
fault effect value propagates from xi to xO,j at the time step t+n
then the propagation constraint cP is created.

Subsequent to propagation, the constraint justification pro-
cess begins. Starting from the time step t+n, we move back-
ward in time until the manifestation step t is reached. At each
time step we update the propagation constraint cP and those
path activation constraints cA,p whose creation time step is later
than current time step. During the update, the unjustified
variables X″⊆XR of the constraint expressions g(X′, X″) for
all the constraints are substituted by expressions hi(X‴i) on
model variablesX‴i⊆XR ∪ XI, where hi(X‴i) are the expressions
implemented by functional units FU selected according to the
values of control signal variables XC at the current time step.

At the manifestation time step t, we create the transfor-
mation constraints for each input of the MUT. Without loss
of generality, Fig. 3 shows a MUT with two inputs xi,1 and
xi,2. Thus, in current case the transformation constraints
cJ,1∈CJ and cJ,2∈CJ are created, respectively. We continue
moving backwards in time until at some time step t–m all the
variables in the constraints are primary inputs XI. During

this process we update all the created constraints and create
new path activation constraints cA,p at time steps where the
previous state value of xS is depending on the status bits XN.

Note, that the extracted constraints contain expressions g
(X) on primary inputs XI and constants. (In the case of the
propagation constraint cP the expression also depends on the
MUT output xi). The expressions are determined by the func-
tions implemented by functional units FU and, in the case of
path activation constraints cA,p, also by comparison operations
FN. The exponential size complexity of the constraints ex-
pression g(X) is avoided by uniting multiple occurrences of
the same variable (i.e. the literals) in the constraints at each
time step into one single fanout variable. Because of this, the
size requirements for the constraints are linear with respect to
justification time-frames and they represent a subset of the
expanded time-frame model of the circuit.

Finally, consistency of test paths is verified by applying
constraint solving to the extracted path activation constraints
cA,p. We have selected the open source ECLiPSe constraint
solver (ECLiPSe5.10_41) [20] for this purpose. After one
consistent set of test path constraints are extracted by Decider,
a backtrack occurs and the tool attempts to use alternative
propagation and justification paths. The process ends when all

Fig. 4 Assignment Decision
Diagram (ADD)

A := IN1;
B := IN2;
while (A ≠  B)

if (A < B) then
B := B – A;

else
A := A – B;

end if;
end while;
OUT := A;

Fig. 5 HDL description of the GCD algorithm
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the consistent test paths within a certain time-step limit are
activated and respective test path constraints are extracted.

3 Minimization of Test Path Constraints

In this Section we explain minimization of the test path con-
straints for a MUT. The minimization step is required due to
the fact that the full set of test path constraints, may become
large considering representing them in VHDL and performing
logic synthesis on them. The latter is needed to handle the
constraints by the gate-level ATPG for proving untestable
faults. (See Fig. 1 for the untestability identification flow).

Every test path pi∈P, with P being the set of all the
test paths for a MUT within a given time-frame, may be
represented as a triple ‹ cP,i, CJ,i, CA,i ›, where cP,i is the
propagation constraint, CJ,i is the set of justification con-
straints and CA,i is the set of path activation constraints
extracted for the test path pi, respectively. We can repre-
sent the full set of test paths P by a formula Φ in
Disjunctive Normal Form (DNF), where terms correspond to
the test paths pi and literals are the constraints ci,j belonging to
the test paths and represented as quantifier-free bitvector

(QFBV) predicates. The three groups of constraints cP,i, CJ,i

and CA,i are each minimized separately.
Minimization of the DNF formulaΦ takes place as follows.

First of all, some constraints in the test paths can be redundant.
In order to remove such redundancies we apply a method
presented in [5] and briefly described here. Consider a first-
order logic formula Φ given in a negation normal form. First,
we build a tree where intermediate nodes represent either ∨ or
∧ operations and leafs represent QFBV predicates. The idea is
to test each leaf L against a special formula αL, called the
critical constraint. If αL⇒L then L can be replaced by true,
and if αL⇒¬L then L can be replaced by false. Assume, for
example, that Φ is presented in DNF:

Φ ¼ _n
i¼1

^mi

j¼1
Lij

Then, for a leaf Lkl, 1≤k≤n, 1≤ l≤mk,

aLkl ¼ ^n
i ¼ 1
i 6¼ k

_mi

j¼1
:Lij

0
BBB@

1
CCCA ^ ^mk

i ¼ 1
i 6¼ l

Lki

0
BBB@

1
CCCA

To test whether αL implies L or ¬L we use an SMT solver
Z3 [4].

Example 1: Consider the DNF formula x ¼ 1ð Þ ^ x > 0
_xþ y ¼ 3 ^ y > 4 ^ x > 0 . Let us test the
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the GCD circuit
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leaf L210x+y03. The critical constraint for
that leaf would be aL21 ¼ y > 4 ^ x > 0 ^
x 6¼ 1 _ x � 0ð Þ. It appears that aL21 ) xþ y
6¼ 3, so we can replace x+y03 by false and
remove the second conjunct. The remaining
formula can be simplified a bit more, because
(x01)⇒x>0 and we can replace x>0 by true.
Thus, it appears that ((x01) ∧ x>0 ∨ x+y03 ∧
y>4 ∧ x>0)0(x01).

Second, we minimize the propositional skeleton of the
remaining formula (a Boolean expression where all predi-
cates are replaced by propositional variables) using a state-
of-the-art algorithm ESPRESSO [2].

4 Constraint-Driven ATPG for Proving Untestability

4.1 Assignment Decision Diagrams

The minimized set of test paths P obtained by the constraints
extraction defined in Section 2 and constraint minimization
presented in Section 3 forms the test environment for the
constraint-driven ATPG. In the following examples, we use
the assignment decision diagram data structures in order to
illustrate the test path constraints.

Assignment decision diagram (ADD) [3] is an acyclic
graph that consists of a set of nodes that can be categorized
into four types: read node, write node, operation node and
assignment decision node (ADN), and a set of edges which
contain the connectivity information between two nodes
(Fig. 4). A read node represents a primary input port, a storage
unit or a constant while a write node represents a primary
output port or a storage unit. An operation node expresses an
arithmetic operation unit or a logic operation unit while an
ADN selects a value from a set of values that are provided to it
based on the conditions computed by the logic operation units.
If one of the condition inputs becomes true, the value of the
corresponding data input will be selected.

4.2 Constraint-Driven ATPG Example

Figure 5 presents a VHDL code fragment of the Euclidean
algorithm for calculating the Greatest Common Divisor
(GCD) of two unsigned variables IN1 and IN2. An RTL
architecture implementing this algorithm is shown in Fig. 6,
with Fig. 6a presenting the datapath and Fig. 6b presenting
the state table of the control part.

Without entering into further details, consider Fig. 7, which
gives the ADD for the full set of constraints P extracted for the
GCD example. In other words, the MUT can only be tested
using one of the two test paths presented in Fig. 7a and b. The
two test paths contain only path activation constraints and the
paths are identical except for the fact that the primary inputs
IN1, IN2 are swapped in them.

Note, that from the point of view of accessing the MUT
these two environments are equivalent. It is irrelevant which
primary input is used in applying the test patterns when
representing the constraint-based test environment for prov-
ing untestability. Therefore, we denote the value justified
from the k-th input of the MUT by xk and the value propa-
gated from the MUT output by y.

The test paths p1 and p2 both consist of two path
activation constraints cA1,1, cA1,2 and cA2,1, cA2,2,

Table 1 Number of leaves in the DNF as a function of the cycle limit k

k Number of leaves in the DNF

b04 (AVERAGE1) b04 (AVERAGE2) gcd (SUBTR)

1 0 0 0

2 20 10 2

3 1216 610 14

4 50867 25408 54

8 N/A N/A 444

1

10

100

1000

10000

100000

2 4 8

b04 (AVERAGE1)

b04 (AVERAGE2)

gcd (SUBTR)

cycle limit, k

# DNF leavesFig. 9 Number of leaves in the
DNF as a function of the cycle
limit k
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respectively. cA1,1 (which is equivalent to cA2,1) states that x1
must not be equal to x2. cA1,2 (equivalent to cA2,2) states that x1
must be greater than x2. Since all the path activation con-
straints ci,j within a test path should hold simultaneously they
are combined using the conjunction operator. In turn, all the
test paths pi are combined using the disjunction operation
because any one of them may be applied for accessing the
MUT. Therefore, we can combine the constraints into a Dis-
junctive Normal Form (DNF) as follows: _

i ĵ
ci;j.

Subsequent to combining the test path constraints the con-
straint minimization is performed. Using the method pre-
sented in previous Section we obtain for the example in Fig. 7:

x1 6¼ x2ð Þ ^ x1 > x2ð Þ _ x1 6¼ x2ð Þ ^ x1 > x2ð Þ ¼ x1 > x2:

Figure 8 shows the ADD for the minimized test environ-
ment resulting for testing the MUT of the non-minimized
constraints example presented in Fig. 7. The constraint shows
that the MUT (a subtractor) may only be accessed when the
first input of it, i.e. x1 is greater than the second one, x2.

The obtained test environment, excluding the MUT, is
automatically translated into VHDL and synthesized to
logic-level using Synopsys Design Compiler. MUT is linked
by instantiating its logic level description into the VHDL of
the test environment. Subsequently, the constraint-driven
logic-level ATPG is run. As a result we obtain the list of
sequentially untestable faults in the MUT as well as test
patterns for testing the MUT.

4.3 Discussion on the Effect of the Top-Down Proof

As a side-effect, the test environment allows us to evaluate
the accuracy of bottom-up hierarchical ATPG. In particular,
the strict interpretation of Ghosh’s algebra [7] leads to
overly pessimistic results because tests for some MUTs are
aborted due to justification conflicts. On the other hand, the

weak interpretation is too optimistic and can also lead to loss
of fault coverage because some of the test patterns that are
expected to cover faults in the MUT do not propagate.

Consider the case where in a bottom-up scenario we have
a deterministic test Tq generated for the MUT in a stand-
alone mode reaching the maximum fault coverage Wq for
the module under test. Then, we generate the test environ-
ment for the module and substitute Tq into this test environ-
ment. Due to the test path constraints the actual fault
coverage that can be achieved for the MUT embedded inside
the network is Wa, which is generally lower than the stand-
alone fault coverage Wq. However, when we fault simulate
Tq substituted into the test environment we obtain a fault
coverage Wr, where Wr≤Wa≤Wq.

In other words, the bottom-up approach may lose some
fault coverage with respect to the top-down one because the
set of the tests to choose from is restricted to Tq. If the bottom-
up test generation algorithm for the MUT had had some
knowledge about the test path constraints it would have gen-
erated a different test Ta, whose fault coverage would have
been equal to Wa. Thus, a deterministic ATPG taking into
account the test path constraints is necessary in order to
achieve maximum fault coverage and also to prove untest-
ability within sequential circuits. Experiments with the
constraint-driven deterministic ATPG presented in Section 5
show that the difference between the coverages Wr and Wa

may be even as high as 8–14 % of stuck-at coverage.

5 Limitations and Threats to Validity

One of the main limitations of the current implementation of
the hierarchical untestability identification tool is the fact
that the RTL circuits considered are strictly divided into a
control and datapath parts. Vast majority of real-world RTL
designs are not restricted to the single control part concept.

Table 2 Benchmark
characteristics Circuit #faults PI bits PO bits # reg. (|FR|) # Mux (|FM|) # FU (|FU|) Time limit

gcd 472 33 16 3 4 3 5

mult8x8 2356 17 16 7 4 9 8

diffeq 10326 81 48 7 9 5 7

Table 3 Untestability identifi-
cation run-times Circuit gcd mult8x8 diffeq

Module SUBTR ADD2 ADD3 SUBTR2 MUX3 MUX4

Constraint extraction, s 2.90 47.86 9.18

Constraint minimization, s 0.05 4710 < 0.01 52 14 82

Synthesis, s 5.38 5.33 9.52 5.25 5.10 5.10

ATPG, s 0.01 0.01 < 0.01 0.02 < 0.01 < 0.01
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However, this limitation is related to the path activation engine
applied [22] and it is not a principal one for the presented
method. For example the steps of minimization of constraints
and the constraint-driven gate-level ATPG are completely in-
dependent of this restriction. Furthermore, it is possible to
extend [22] into an RTL path activation tool that would support
a network of control part FSMs as opposed to a single one.

Another limitation is the requirement that the modules se-
lected for untestability analysis from the RTL design must be
combinational. Themethod could be easily extended to support
pipelined modules. In addition, there exists an efficient top-
down method for proving untestable faults in register modules
based on bounded model-checking [17]. However, the method
cannot be currently applied to arbitrary sequential modules.

Finally, the complexity of the DNF of the constraints in the
minimization step of the method grows exponentially with the
increase of the cycle-limit k of the path activation. Table 1 shows
the dependency between the number of leaves in the constraints
DNF as a function of the cycle-limit k. Three modules have
been included to the analysis: a subtraction function from the
gcd benchmark and two additional modules from the b04 circuit
from the ITC99 benchmark family [9]. Figure 9 visualizes that
dependency on a logarithmic scale. The benchmarks gcd and
b04 were selected to analyze the complexity because the curve
cannot be explored on diffeq andmult8x8 examples tested in the
experimental results section. This is due to the fact that for both
the DNF is empty until a certain cycle limit is reached.

6 Experimental Results

In order to evaluate the hierarchical untestability identification
and test generation method, experiments on HLSynth92 [8]

and HLSynth95 [18] benchmarks were run. In addition, to
compare the solution with the traditional bottom-up approach
(e.g. [23]) and assess its fault efficiency, a comparative study
was carried out.

Table 2 presents the characteristics of the example circuits
used in test pattern generation experiments in this paper. The
following benchmarks were included to the test experiment: a
Greatest CommonDivisor (gcd), an 8-bit sequential multiplier
(mult8x8), and a Differential Equation (diffeq). In the Table,
the number of single stuck-at faults, the number of primary
input and primary output bits, and the number of registers FR,
multiplexers FM and functional units FU in the RTL code are
reported, respectively. The final column presents the upper
limit for control part FSM cycles (i.e. the maximum times the
same control state is traversed) as a time-step bound for the
untestability proof. This bound is dependent on the design
functionality and can be set by the test engineer.

Table 3 shows experiments reporting the time spent by dif-
ferent stages of the constraint-driven untestability identification
flow developed in this paper. As explained in the Introduc-
tion, not all the modules (multiplexers FM and functional
units FU) in the RTL designs are affected by sequential
untestability. Our method identified one module from gcd,
three modules from mult8x8 and two modules from diffeq
that had testability problems. Thus, only the above-
mentioned six modules were considered in the hierarchical
untestability proof by the constraint-driven logic-level ATPG.

As it can be seen from the Table, the extraction of test path
constraints required up to 1 min of run time. As discussed in
Section 5 the constraint minimization step is very much de-
pendent on the time-step bound. In the case of ADD2 the time-
step bound k is 7 and the time for minimizing the constraints is
accordingly more than 4,000 s. The test environment synthesis

Table 4 Constraint-driven top-
down ATPG versus BOTTOM-
UP ATPG results for circuit
modules

Circuit gcd mult8x8 diffeq

Module SUBTR ADD2 ADD3 SUBTR2 MUX3 MUX4

Wq, % 100 100 100 100 100 100

Wa, % 95.74 86.64 55.88 85.33 75.00 75.00

Wr, % 85.11 72.49 47.06 74.07 64.71 64.71

Table 5 Distribution of faults

gcd mult8x8 diffeq

# total faults 472 2356 10326

# tested faults [22] 439 1737 9867

# unobs./uncontr. faults 28 195 252

# untestable register faults [17] 0 130 130

# sequentially untestable faults 4 156 68

# remaining faults 1 138 9

Table 6 Comparison of fault efficiency

Circuit Fault efficiency, %

Commercial ATPG Constraint-based + register
untestability [17]

gcd 76.55 % 99.79 %

mult8×8 89.06 % 89.90 %

diffeq 97.25 % 99.91 %
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from VHDL to logic-level using Synopsys Design Compiler
remained almost constant and was around 5 to 10 s per module
while the deterministic constraint-based ATPG spent less than
0.02 s per module under test.

Constraint extraction was performed on a 2.5 GHz, Intel
Core2 Duo T9300 PC with 4 GB of RAM, constraint
minimization on a 2 GHz, Intel Core 2 Duo P7350, 3 GB
RAM on Windows 7 Pro OS and the synthesis and test
experiments were carried out on a Sun-Fire-V250 station
with 1.28 GHz sparcv9 processor on Solaris 2.9 OS.

The experiments in Table 4 present comparison of the
proposed method to the bottom-up paradigm [23]. For creating
the test library for the bottom-up approach, the modules were
first tested by the ATPG in a stand-alone mode. As a result a
test sequence Tq yielding 100 % stuck-at fault coverage Wq

was obtained. The proposed top-down constraint-drivenATPG
reached fault coverage Wa which was less than Wq because of
the constraints when accessing the module under test that was
embedded into the network. However, the fault efficiency of
the proposed approach was always 100 % for all the modules.

When test Tq was substituted to the test environment in a
bottom-up manner then fault coverage Wr was reached,
which was always lower than Wa because some of the tests
were invalidated by sequential dependencies. In fact,Wr was
considerably lower (by 8–14 %) for all the four modules
analyzed. Thus, the proposed top-down method was capable
of reaching maximum fault coverage for the analyzed mod-
ules with respect to the test path constraints and proving all
of the sequentially untestable faults in them.

Table 5 presents detailed statistics of the circuits ana-
lyzed. The Table lists the total number of stuck-at faults in
the whole circuit, the number of tested faults, number of
unobservable/uncontrollable faults, untestable register faults
from [17], the number of faults proven sequentially untest-
able by the proposed constraint-based approach and finally
the number of all the remaining faults. The experiments
show the efficiency of the constraint-driven engine in
untestability identification. Though the method quickly clas-
sifies untestable faults caused by sequential untestability in
the considered modules with 100 % efficiency, there
remains a number of faults in other modules, including in
the control part, which are still neither tested nor proven
untestable. Some of these remaining faults can be tested or
proven untestable by ATPG approaches at the logic-level.

In order to evaluate the fault efficiency (i.e. the ratio of the
number of tested faults to the number of testable faults) of the
proposed approach we compared it to a commercial ATPG
from a major CAD vendor. The commercial ATPG is based on
a deterministic gate-level algorithm. The results of the experi-
ments are shown in Table 6. As it can be seen, the gate-level
tool obtained comparable fault efficiency only in the case of
themult8x8 example. In the case of gcd and diffeq benchmarks
there was a large percentage of faults aborted by the tool.

7 Conclusion

The paper presents a method for hierarchical untestable
stuck-at fault analysis of non-scan sequential circuits. The
method is based on extracting and minimizing RTL test path
activation constraints that drive a dedicated logic-level de-
terministic ATPG. In this paper we propose a formal method
for minimizing test path constraints and evaluate it on se-
quential benchmarks Experiments show that it is capable of
generating tests yielding maximum fault efficiency for mod-
ules embedded into the RTL. The fault efficiency achieved
by the method is higher than the one obtained by a com-
mercial sequential ATPG.

In addition, our study shows that traditional test genera-
tion at RTL based on symbolic test environment generation
is too optimistic due to the fact that constraints in accessing
the modules under test have been ignored. Experiments
presented in this paper showed that bottom-up strategies
caused a decrease of stuck-at fault coverage up to the range
of 8–14 % in the modules tested when compared to the
proposed approach. This short-coming is overcome by the
proposed top-down constraint-based method which obtains
100 % stuck-at fault efficiency with respect to the sequential
testability constraints for all the modules considered.
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