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Abstract The paper uses the concept of time expansion mod-
el to find the test generation for acyclic sequential circuits.
Any acyclic sequential circuit without hold registers can be
tested with combinational test generation complexity using
this model.We show that for acyclic sequential circuits having
hold registers, a subset of such circuits can also be tested with
this complexity.We define the max-testable class of sequential
circuits that includes both these groups. The paper also sug-
gests an algorithm to find such class of circuits.
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1 Introduction

Generally, it is believed that the cyclic structures of sequential
circuits are mainly responsible for making the test generation
of sequential circuits more complex. But even acyclic sequen-
tial circuits do not allow test generation with combinational
test generation complexity. Several attempts [1, 3–5, 7–9]
were reported earlier to find the classes of acyclic sequential
circuits that can provide combinational test generation com-
plexity. If the acyclic sequential circuit contains hold registers,
the situation becomes worse. Hold registers are sometimes
used in sequential circuits to hold values for later use to

implement the desired functioning and they are using the same
clock. In [7], the problem of hold registers was solved by
scanning these registers.

In this paper we explore the properties of TEG [2, 6, 7],
which lead us to identify a class of acyclic sequential circuits
called as max-testable class for which test generation can be
obtained by running a combinational test generator with capa-
bility of detecting multiple faults on a combinational kernel.
This class includes (i) all acyclic sequential circuits without
hold registers including strongly balanced [1], balanced [5],
internally balanced [9] circuits and (ii) a subset of sequential
circuits containing hold registers. We also present an algo-
rithm to search for such class of circuits.

2 Preliminaries

2.1 Time Expansion Graph (TEG)

Definition 1 [2] A topology graph (TG) is a directed graphG =
(V,A,r), where a vertex v ∈ V denotes a logic block and an arc
(u, v) ∈A denotes a connection from u to v and each arc has a
label r: A→ Z+ (non-negative integers) ∪ {h}. When two logic
blocks u and v are connected through one or more L-registers,
the label r(u,v) denotes the number of L-registers (i.e., r(u,v)→
Z+). When two logic blocks u,v are connected through one hold
register, the label r(u,v)=h.

Example 1 Consider a sequential circuit S shown in Fig. 1a,
in which 1,2,3 and 4 are logic blocks, b,c,d, and e are L-
registers, and a which is highlighted, is a Hold register. The
topology graph G1 of S is shown in Fig. 1b.

Definition 2 A vertex in a directed graph is called as a sink
vertex, if there is no outgoing edge from the vertex.
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Definition 3 The set of direct predecessors [successors]
of any vertex u in a directed graph is denoted as pre(u)
[suc(u)].

Definition 4 (Time-expansion graph (TEG)): Let S be an
acyclic sequential circuit and let G = (V,A,r) be the
topology graph of S. Let E = (VE, AE, t, l) be a directed
graph, where VE is a set of vertices, AE is a set of arcs,
t is a mapping from VE to a set of integers, and l is a
mapping from VE to the set of vertices in G. If graph E
satisfies the following five conditions, graph E is said to
be a time-expansion graph (TEG) of G.

C1(Logic Preservation): The mapping l is a surjective,
i.e., ∀v ∈V, ∃u ∈VE such that v=l(u)
C2(Input preservation): Let u be a vertex in E. For any
direct predecessor v (∈ pre(l(u)) of l(u) inG, there exists a
vertex u’ in E such that l(u’) = v and u’ ∈ pre(u).
C3(Time consistency): For any arc (u,v) (∈ AE), there
exists a corresponding arc (l(u),l(v)), and if r(l(u),l(v))
∈Z+, then r(l(u),l(v)) = t(v)-t(u), or else (r(l(u),l(v)) = h,
t(u) < t(v).
C4(time uniqueness): For any pair of vertices u,v (∈VE), if
t(u) = t(v) and l(u) = l(v), then the vertices u and v are
identical, i.e., u = v.
C5(Hold consistency): For any pair of arcs (u1,v1),
(u2,v2) (∈AE) such that (l(u1), l(v1)) = (l(u2), l(v2)) and
r(l(u1), l(v1)) = r(l(u2), l(v2)) = h, if t(v1) > t(v2), then either
t(u1) = t(u2) or t(u1) ≥ t(v2).

Example 2 Figure 2a is a TEGs E1 of the TGG (Fig. 1b). The
mappings t and l are shown in Fig. 2b and c respectively.

Definition 5 A path from a vertex u1 to uk in a TG G(V, A, r)
[TEG E(VE, AE, t, l)] is obtained by concatenation of several
arcs (u1,u2), (u2,u3),(u3,u4), (u4,u5),…….,(uk-1,uk) i, 1<i<(k-
1), where (ui, ui+1) ∈A [AE].

Definition 6 The length of an arc (vi, v2)∈ AE in a TEG E(VE,
AE, t, l), denoted as len(v1,v2) is given by t(v2) –t(v1).

Definition 7 The length of a path in a TEG is the summation
of the lengths of the different arcs in it.

Definition 8 Given a TG G(V,A,r) let E(VE,AE,t,l) be any TEG
of it, let p be a path from a vertex u1 to uk in E obtained by
concatenation of the arcs (u1,u2), (u2,u3), (u3,u4), (u4,u5),…….,
(uk-1,uk) i,1<i<(k-1), where (ui, ui+1) ∈A [AE]. The path p’ in TG
from the vertex v1 to vk in TG G passing through vertices (v1,v2,
v3,…….,vk), where each vi = l(ui) is called as the corresponding
path of p.

2.2 Time Expansion Model (TEM)

Definition 9 [6] Let S be an acyclic sequential circuit, let G =
(V,A,r) be the topology graph of S, and let E = (VE, AE,t, l) be a
TEG of G. The combinational circuit CE(S) obtained by the
following procedure is said to be the time expansion model
(TEM) of S based on E.
(1) For each vertex u ∈VE, let logic block l(u) (∈V) be the

logic block corresponding to u.
(2) For each arc (u,v)∈AE, connect the output of u to the input

of v with a bus in the same way as (l(u),l(v)) (∈A). Note
that the connection corresponding to (u,v) has no register
even if the connection corresponding to (l(u),l(v)) has a
register (i.e., r(l(u),l(v))≠0).

(3) In each logic block, lines and logics that are reachable to
neither other logic blocks nor primary outputs are
removed.

Example 3 Figure 3 is a TEM of the sequential circuit S
(Fig. 1a) based on TEG E1 (Fig. 2a). The integer mapping
t of E1 is also shown.
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Fig. 1 a The sequential circuit S b: The topology graph G1 of S
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to the vertices of TEG G of Fig. 1b
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Theorem 1 [6] Let S be an acylic sequential circuit, and let F
be the set of faults in S. Let G = (V,A,r) be the TG of S.

1) A fault f ∈ F is testable (or irredundant) in S if and only if
there exists a TEG E of G such that the fault fe ∈ Fe,
corresponding to f is testable in the TEMCE(S) based on E.

2) A test pattern for a fault fe (∈Fe) obtained using a TEM
CE(S) can be transformed into a test sequence for the fault
f (∈F) corresponding to fault fe.

From this theorem, we can see that test generation for an
acyclic sequential circuit can be performed by using several
different TEMs. Furthermore, since TEMs are fully combina-
tional, a combinational test generator can be used for the test
generation provided the test generator can deal with the mul-
tiple faults. Given an acyclic sequential circuit S, if we can
derive all TEMs obtained from it and find the tests for these
TEMs using combinational test generator for multiple faults,
then it is sufficient to obtain the set of test sequences to detect
the faults in S. However, this test generator has not to generate
the tests for all possible multiple faults in each TEM as it has
to find out tests for only those multiple faults which are oc-
curring in several identical blocks of the TEM.

3 Cover Relation

Definition 10 Let u is a vertex in TG G and let E(VE, AE, t, l)
be any TEG of G. The cone subgraph E’ (E, u) of E with
respect to u is defined as the maximal sub-graph of E in which
uE [l(uE) = u] is the only sink vertex, i.e., there is no other
vertex vE in E’, for which l(vE) = u.

Definition 11 [2] Let G = (V, A, r) be the TG of an acyclic
sequential circuit S, and let E1 (V1,A1,t1,l1) and E2 (V2,A2,t2,l2)
be arbitrary TEGs of G. Let s be any sink vertex in G. Let
E’1(E1,s) = (V’1,A’1) [E’2(E2,s) = (V’2, A’2)] be the cone sub-
graph of E1 [E2] with respect to s, where V’1 and A’1 [V’2 and
A’2] are respectively the set of vertices and arcs in E’1 [E’2].
TEG E1 is said to cover TEG E2 if there exists a mapping m
from V’1 to V’2, such that for every s, (i) m(s1)=s2, where
l1(s1)=l2(s2)=s (ii) if v2=m(v1), for v1 ∈V’1 and v2 ∈V’2, then
for any pair of vertices u1 ∈ pre(v1) and u2 ∈ pre(v2) if l1(u1)=
l2(u2), then u2=m(u1).

Example 4 Consider the TG G2 of Fig. 4a. Its two TEGs E2

and E3 are shown in Fig. 4b and c respectively. E2 covers E3

with the mapping shown in Fig. 4d and e.

Definition 12 Given a TG, if there exist two TEGs E1 and E2

for it such that E1 covers E2 and E2 covers E1, then E1 and E2

are said to be equivalent.

Lemma 1 If E1 and E2 be two TEGs of a TG G where E1

covers E2, then the test set generated for the TEM of E1 is
sufficient to detect any fault in TEM of E2 .

The above Lemma establishes the importance of finding the
cover relations between the different TEGs of a given TG.
Because, if we can find the set of minimum number of TEGs
of a TG, that cover all possible TEGs of TG, then the test set
generated from the TEMs corresponding to this set of TEGs is
sufficient to detect the faults of all possible TEMs. From
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Fig. 3 TEM of S based on E1 of Figs. 2a and b
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Theorem 1, this test set can be transformed to a set of test
sequence to detect all faults in the sequential circuit.

Given two TEGs E1 and E2 for a TG G, to determine that
whether E1 coversE2, we have to find the mappingm, if exists
as defined in Definition 11. The algorithm to find this cover
relation is given in [2].

3.1 Maximum TEG

Definition 13 [2] Given a TG G, a TEG E which cannot be
covered by any other TEG of G except by its equivalent TEG,
is called a maximal TEG of G. If number of maximal TEGs is
one, then that maximal TEG is called as the maximum.

Definition 14 If a sequential circuit has a maximum TEG,
then that circuit is max-testable.

If a sequential circuit S is max-testable, then by finding the test
set of the TEM of its maximum TEG, we can generate the test
sequence to detect all faults in S (Lemma 1 and Theorem 1). If
a sequential circuit has a maximum TEG, how can we find out
that? One method may be to draw all TEGs, and then find the
maximum TEG among them that covers any other TEG and
cannot be covered by anyone else. Obviously, this process is
time consuming and impractical. The best way to achieve this
is to draw it in such amanner such that it follows the properties
of the maximum TEGs. The question is- while we achieve a
TEG, is it easy to confirm whether this TEG is maximum or
not? In some special cases, the features in a TEG clearly indi-
cate whether it is maximum or not.

Lemma 2 [2] Given a TEG, if it has no re-convergent fanout,
then it is maximum TEG.

Lemma 3 [2] Consider a hold arc h (h1, h2) in a TG G(V,A,r).
Let E = (VE, AE, t, l) is a TEG of G. Consider two different
vertices v1 and v2 ∈VE, such that l(v1)=l(v2)=h2. If there exists
a vertex u ∈VE such that l(u)=h1 and u ∈pre(v1) and u
∈pre(v2), then E cannot be a maximum TEG.

Lemma 4 [2] Let a TEG E has re-convergent fan-outs. If for
every such re-convergent fan-out, no path in the re-convergent
loop contains an arc that corresponds to a hold arc in TG,
then E is maximum.

Definition 15 Two paths p1 and p2 in a TG G(V,A,r) [TEG
E(VE,AE,t,l)] are parallel to each other with respect to an arc
(v1,v2) ∈A [AE] if both head and tail vertices of the two paths
are same and the arc (v1, v2) is not common to both p1 and p2.

Theorem 2 Consider a TEG E(VE, AE, t, l) of a TG G(V, A, r).
The necessary condition for E not to be maximum TEG, is that
if there exists a pair of vertices u,v ∈VE, such that there are at

least two parallel paths p1 and p2 between u and v, with
respect to an arc (v1, v2), such that r(l(v1),l(v2)) = h.

After obtaing a TEG from a TG, we can easily confirm
whether that TEG is maximum or not. If it is found to be
maximum, we need not draw the other TEGs to compare them
with it. But suppose we fail, i.e., given a TG we get a TEG E
but find that it is not maximum. We then try to obtain another
TEG. For a simple structured TG, it may not be a hard task to
try for all other alternatives. But, for a complex structure with
several hold registers and paths this may not be so easy. More-
over, a TG may not have any maximum TEG. Thus, our ef-
forts may be futile after searching of the different possibilities.
The question is, by observing the TG can we confirm that
whether this TG has a maximum TEG or not and if it has
maximum TEG, how to obtain that in one chance.

4 The Properties of a Circuit toHaveMaximumTEG

If any arc (v1, v2) ∈ AE in a TEGE(VE, AE, t, l) of a TGG(V,A,r)
is a non-hold arc, len(v1, v2) is always fixed and given by r(u1,
u2), where u1=l(v1) and u2=l(v2). But if (v1, v2) corresponds to
a hold arc what can be the value for len(v1,v2)? As a hold
register can hold a value for arbitrary amount of time, this
len(v1,v2) can be any value between 1 and infinity. But there
are some restrictions as this length depends on the length of
other paths, as evident from the following Lemma.

Lemma 5 Consider a TEG E(VE, AE, t, l) of TG G(V,A,r). Let
there be two arcs (v1, v2) and (v’1, v’2) ∈ AE in the TEG, such
that r(l(v1),l(v2))=r((l(v’1),l(v’2))=h, where h is a hold arc in
G. For t(v2)<t (v’2), with d=t(v’2) - t(v2),
(i) If len(v’1, v’2) is chosen as any value k such that k > d,

then len(v1, v2)=k-d,
(ii) If len (v1, v2) is chosen as any value k>0, then len(v’1,

v’2) is either (a) between 1 and d or (b) k + d.

Given a TG, to have its maximal or maximum (if it exists)
TEG, we have to draw the TEG in such a manner such that no
hold-start vertex can lie in the predecessor of two hold-end
vertices. If the TEG is maximal or maximum then the length
of hold-arc cannot be always any arbitrary value.

Definition 16 Let u and v are two vertices in a TG, and there
is a path p between them which does not contain any hold arc,
then there exists a fixed length between u and v along the path
p, which is given by the summation of the lengths of the
different arcs along the path.

Definition 17 Consider a TG G(V,A,r) where (h1,h2) ∈A is a
hold arc and u ∈V is a vertex reachable from h2. Let there be at
least two paths from h2 to u. Let in each TEG E(VE,AE, t,l) ofG,
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v1, v2 and w ∈VE, are three vertices such that (i) l(v1)=l(v2)=h2
(ii) l(w)=u and (iii) t(v1)<t(v2). Let p1* [p2*] is the path from v1
[v2] to w in E and p1 [p2] is the corresponding path inG. Let the
path p3 [p4] in TG is obtained by concatenation of hold arc (h1,
h2) with p1 [p2], then p3 is unboundedwith respect to the path p4.

Example 5 Consider the TG of Fig. 4a. The arc (1,2) is a hold
arc. There are two paths from 2 to 4. In each TEG E(VE,AE, t,l)
wemay get three vertices v1, v2 andw ∈ VE, such that (i) l(v1)=
l(v2)=2 (ii) l(w)=4 and (iii) t(v1)<t(v2). Thus in the TG, the
path 1-2-3-4 is unbounded with respect to path 1-2-4.

Definition 18 In a TG, if an unbounded path exists with re-
spect to a path p, then the path p is a bounded path in TG.

Lemma 6 Consider a TG G(V,A,r) where (h1,h2) ∈A is a hold
arc and w ∈V is a vertex reachable from h2. Let there be at
least two non-hold paths from h2 to u having two different
lengths. Then there exist
(i) one TEGs E1(VE1,AE1, t1,l1) having three different verti-

ces u1, u2 and u3 in E1 with l1(u1)=h1, l1(u2)=l1(u3)=h2,
and pre(u1)=pre(u2)=u1,

(ii) one TEGs E2(VE2,AE2, t2,l2) having four different verti-
ces v1, v’1, v2, v3 in E2 with l2(v1)=l2(v’1)=h1, l2(v2)=
l2(v3)=h2, and pre(v1)≠pre(v2).

Definition 19 Suppose in a TG, p1 is unbounded path with
respect to bounded path p2. Then p2 has a bounded range
given by a pair of positive integers (n1,n2) where n1≤n2. The
values of n1 and n2 are obtained in such a manner such that in
any TEG E(VE,AE, t,l) of TG G, for the pair of paths p1* and
p2* in E with p1 and p2 respectively be the corresponding
paths in G, if the length of the path p2* in E is any value
between n1 and n2 (both inclusive) with the condition that
p1* and p2* has no common vertex v for which l(v)=h1.

Example 6 Consider the TG of Fig. 4a. The arc (1,2) is a hold
arc. The path 1-2-3-4 is unbounded with respect to path 1-2-4.
The path 1-2-4 is bounded by a range {2,2}.

Example 7 The topology graphG3 is shown in Fig. 5. The arc
(1,2) is a hold arc. The path 1-2-3-4 is unbounded with respect
to path 1-2-4. The path 1-2-4 is bounded by a range {2,4}.

Lemma 7 Consider a hold arc (v1, v2) in a TG G(V,A,r), where
r(v1, v2)=h. Let v is a vertex reachable from v2 by two non-hold
paths p1 and p2 with fixed lengths d1 and d2 respectively where

d1<d2, (let there is no other path from v2 to v). Let is p’1 [p’2] is
the path from v1 to v that includes p1[p2].Then the following holds

(i) the path p’1 is a bounded path in G with a bounded range
{(d1+1), d2}

(ii) the path p’2 is unbounded with respect to p’1.

Definition 20 If between two vertices u and v in a TG, there
exists a bounded path p, bounded by a range {l,l’}, then there
exists a bounded length lbound of pwhich equals to any integer
value in the bounded range {l,l’} i.e., l≤lbound≤l’.

Example 8 The lbound of bounded path 1-2-4 of Fig. 5 is any
value in the range {2,4}, i.e., 2≤lbound≤4.

If there are several bounded paths between u and v, there
exist several bounded lengths between u and v, whose values
depend on how we ass ign them in appropr ia t e
bounded ranges.

Theorem 3 A TG G, has no maximum TEG iff u being the
hold-start vertex, and between two vertices u and v in G, there
exists one or more bounded paths, and whatever be the as-
signment, the bounded length of a bounded path p becomes
always equal to bounded or fixed distance of any other path p’
between u and v, where p and p’ are parallel to each other
with respect to an arc (h1,h2) where r(h1,h2)=h.

Lemma 8 If a TG has no maximum TEG, then there exist two
vertices u and v in TG, such that there are two paths between u
and v, where one of them is bounded and the other is either
bounded or fixed.

Lemma 9 If a TG has no maximum TEG, then there exist two
vertices u and v in TG, such that there are at least three paths
between u and v.

Example 9 The circuit of Fig. 1a is max-testable as there are
only two paths (Lemma 9).

Theorem 4 A TG G(V,A,r) is having a maximum TEG, iff
(i) it has no bounded path, or
(ii) if for each bounded path p between two vertices, there

exists a bounded length which is not equal to bounded or
fixed length of any other path p’ between u and v, where
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Fig. 6 TEM of the max-testable circuit of Fig. 5 on which combinational
test generation algorithm is to be run
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p and p’ are parallel to each other with respect to an arc
(v1,v2) where r(v1,v2)=h.

Example 10 The circuit corresponding to TG of Fig. 4a is not
max-testable, because the bounded length of the path 1-2-4 is
equal to the fixed length of the path 1-3-4.

Example 11 Consider the TG of Fig. 5. Its path 1-2-4 has the
bounded range {2,4}. There is another path 1-3-4 parallel to

1-2-4 with respect to hold arc (1,2). This path has a fixed
length 3. Thus, we may assign the bounded length of 1-2-4
as 2 or 4 to satisfy the condition (ii) of Theorem 4. Hence the
circuit corresponding to TG of Fig. 5 is max-testable. The
corresponding TEM is shown in Fig. 6 with integer mapping
t of the maximum TEG.

The question is, even if a TG has a maximum TEG,
how we can find out that. The following algorithm is
given for that.

Algorithm to find maxtestability
for each sink vertex s in a TG G(V,A,r)
(i) Find the set H of hold-start vertices, s.t. for all uZH,

there exists at least 3 paths to s and only two of
which contain a common hold arc,

(ii) for each u ZH
(a) find all the bounded ranges and fixed distances

from u to s
(b) assign the bounded distances
(c) if bounded distance of a path p becomes equal to

bounded or fixed distance of another path p’,
where p and p’ has at least one uncommon hold
arc, then try for another assignment in (b),
if no other assignment exists, then report ‘not
maximum’ and return

(d) Draw TEG with the assignment, it is maximum.
Return.

5 Conclusion

We used time expansion model (TEM) to have the test
sequences for acyclic sequential circuits. To obtain the
TEMs of a sequential circuit, we used time expansion
graphs (TEG). We identify a class of acyclic sequential
circuits, called as max-testable class for which the test
sequences can be easily achieved by running a combi-
national test generation tool on a TEM of the circuit,
obtained by finding a particular TEG called as maxi-
mum TEG. The combinational test generator should
have the capability of detecting multiple faults. We pre-
sented an algorithm to find max-testable class of cir-
cuits. Any acyclic sequential circuit with no hold regis-
ter belongs to the max-testable class. A subset of the
acyclic sequential circuits which have hold registers be-
long to max-testable class. Given an acyclic sequential
circuit, we presented an algorithm to determine whether
it belongs to max-testable class or not and if it belongs
to max-testable class we also find the TEM on which
the test generator tool is to be run.

References

1. Balakrishnan A, Chakradhar ST (1996) BSequential circuits with
combinational test generation complexity,^ Proc. of IEEE Int.
Conf. on VLSI Design, 111–117

2. Das DK, Innoue T, Chakraborty S, Fujiwara H (2004) BMax-testable
class of sequential circuits having combinational test generation
complexity.^ Proc.of IEEE Asian Test Symposium, Taiwan, 342–
347

3. Fujiwara H (2000) A new class of sequential circuits with combina-
tional test generational complexity. IEEE Transon Comput 49(9):
895–905

4. Fujiwara H, Iwata H, Yoneda T, Ooi CY (2008) A Non-scan design-
for-testability for register-transfer level circuits to guarantee linear-
depth time expansion models. IEEE Trans Comput Aided Des Integr
Circ Syst 27(9):1535–1544

5. Gupta R, Gupta R, Breuer MA (1990) The BALLASTmethodology
for structured partial scan design. IEEE Transon Comput 39(4):538–
544

6. Innoue T, Das DK, Sano C, Mihara T, Fujiwara H (2000) BTest
generation of acyclic sequential circuits with hold registers.^
Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design, 550–556

7. Inoue T, Hosokawa T, Mihara T, Fujiwara H (1998) "An optimal
time expansion model based on combinational test generation for

J Electron Test



RT level circuits." Proceedings of IEEE Asian Test Symposium,
190–197

8. Kim YC, Agrawal VD, Saluja KK (2005) Combinational automatic
test pattern generation for acyclic sequential circuits. IEEE Trans
Comput Aided Des Integr Circ Syst 24(6):948–956

9. Takasaki T, Innoue T, Fujiwara H (1998) BPartial scan design
methods on internally balanced structure,^ Proceedings of the
IEEE Asia and South Pacific Design Automation Conference,
211–216

Debesh Kumar Das received the B.E. and M.E. degrees in Electronics
and Tele-communication Engineering from Jadavpur University, India, in
1982 and 1984 respectively. He did his PhD in Engineering from same
University in 1997. He is presently Professor in Computer Science and
Engineering Department of Jadavpur University. Previously, he also
taught in Birla Institute of Technology, Mesra and University of Calcutta.
His research interests include VLSI testing, logic synthesis, design for
testability, built-in self-test and quantum computing. He is a member of
the IEEE. He published more than 80 papers in International Journals and
reputed conferences.

Hideo Fujiwara received the B.E., M.E., and Ph.D. degrees in electronic
engineering from Osaka University, Osaka, Japan, in 1969, 1971, and
1974, respectively. He was with Osaka University from 1974 to 1985
and Meiji University from 1985 to 1993, Nara Institute of Science and
Technology (NAIST) from 1993 to 2011, and retired from NAIST in
2011. Presently he is Professor Emeritus of NAIST and Professor at
Faculty of Informatics, Osaka Gakuin University, Japan. His research
interests are logic design, digital systems design and test, VLSI CAD
and fault tolerant computing, including high-level/logic synthesis for test-
ability, test synthesis, design for testability, built-in self-test, test pattern
generation, parallel processing, and computational complexity. He has
published over 390 papers in refereed journals and conferences, and nine
books including the book from the MIT Press (1985) entitled BLogic
Testing and Design for Testability.^ He received many awards including
IEEE Computer Society Meritorious Service Awards in 1996 and 2005,
IEEE Computer Society Continuing Service Award in 2005, and IEEE
Computer Society Outstanding Contribution Awards in 2001 and 2009.
Prof. Fujiwara is a life fellow of the IEEE, a Golden Core member of the
IEEE Computer Society, a fellow of the IEICE (the Institute of Electron-
ics, Information and Communication Engineers of Japan) and a fellow of
the IPSJ (the Information Processing Society of Japan).

J Electron Test


