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computer system architecture and the programming language
requirements impose a wide range of auxiliary operations, not
closely related to the algorithm but necessary for its implemen-
tation. Even if it is impossible to eliminate Ta (or equivalently
to obtain Q = 1), a good knowledge of the machine structure leads
to an increase of Q by a clever choice of the auxiliary instructions.
This quality factor may turn very useful in the evaluation of the
efficiency of programs implementing image processing algorithms
where the computing time generally grows quadratically with
base n (CT a n2).
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Connection Assignments for Probabilistically
Diagnosable Systems

HIDEO FUJIWARA AND KOZO KINOSHITA

Abstract-This correspondence is concerned with probabilistic
fault diagnosis for digital systems. A graph-theoretic model of a
diagnosable system introduced by Preparata et aL [3] is considered
in which a system is made up of a number of units with the proba-
bility of failure. The necessary and sufficient conditions are ob-
tained for the existence of testing links (a connection) to form
probabilistically t-diagnosable systems with and without repair.
Methods for connection assignments are given for probabilistic
fault diagnosis procedures with and without repair. Maheshwari
and Hakimi [10] gave the necessary and sufficient condition for a
system to be probabilistically t-diagnosable Without repair. In this
correspondence, we show the necessary and sufficient condition
for a system to be probabilistically t-diagnosable with repair.
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digital systems, graphs, probabilistic fault diagnosis, self-diag-
nosable systems, testing links.

I. INTRODUCTION

Studies in self-diagnosable systems have appeared in the lit-
erature [1]-[10]. Preparata et al. [3] first introduced a graph-
theoretic model of digital systems for the purpose of diagnosis
of multiple faults, and presented methods of optimal connection
assignments for instantaneous and sequential diagnosis proce-
dure. Maheshwari and Hakimi [10] introduced a diagnosability
measure t based on the probability of occurrence of faults and
presented necessary and sufficient conditions for a system to be
probabilistically t-diagnosable in the graph-theoretic model.
The diagnostic model employed in this correspondence is the

model introduced by Maheshwari and Hakimi [10], and it is as-
sumed that the reader is familiar with the model, assumptions,
definitions, and notations given there. The concept of probabi-
listic diagnosability (without repair) was defined in [10]. Prob-
abilistic diagnosability with repair can be defined similarly.

Definition 1 [10]: A system S, represented by a digraph G =
(V,E), is said to be probabilistically t-diagnosable without repair
(p-t -diagnosable without repair) if for any weighted digraph G5,
representing S and some set of test outcomes, there exists at most
one consistent fault set F c V such that P(F) > t.

Definition 2: A system S, represented by a digraph G, is said
to be probabilistically t-diagnosable with repair (p-t-diagnosable
with repair) if for any weighted digraph G5, representing S and
some set of test outcomes, there exist no consistent fault sets
Fj,F2, - - *,F1 such that

n Fi=
i=l

andP(Fi) > t fori = 1,2,* ,l.
In a p-t-diagnosable system with repair, the intersection of all

consistent fault sets, whose a priori probability of occurrence is
greater than t, is not empty so that at least the units belonging
to the intersection are all faulty. Hence, there exists a sequence
of applications of tests and repairs of identified faults that allows
all faults originally present to be identified.

II. FUNDAMENTAL THEOREMS FOR CONNECTION
ASSIGMNENTS

Given a system S with units ub,u2, * ,Un and the probability
p(Ui) of ui being faulty for all ui E V = 1ui,U2, .*..* ,Unl, then we
consider the problems of finding a connection of S such that S
is p-t-diagnosable with and without repair.
We can state the following fundamental lemmas.
Lemma 1: If a system S, represented by digraph G = (V,E),

is p-t-diagnosable with repair, then there exists no 2-partition
IU1,U21 of V such that W(U1) < K(t) and W(U2) < K(t).

Proof: Suppose for some 2-partition IUl,U2} of V, W(U1)
< K(t) and W(U2) < K(t). We can easily find a weighted digraph
GC of S that has U1 and U2 as consistent fault sets. Thus, by
Definition 2, S would not be p-t- diagnosable with repair.

Q.E.D.
Lemma 2: Let V be a set of units of a system S. If there exists

no 2-partition MU1,U21 of V such that W(U1) < K(t) and W(U2)
< K(t), then there exists a digraph G = (V,E) such that a system
represented by G is p-t- diagnosable without repair.

Proof: Consider a complete digraph G = (VE) such that
(ui,uj) E E for all ui,uj E V. We shall prove that a system S
represented by G is p-t- diagnosable without repair.
The proof is by contradiction. Assume the existence of a
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CORRESPONDENCE

weighted digraph G, for which there are two consistent fault sets
F1 and F2 with W(F1), W(F2) < K(t). Let X = V - (F1 U F2),
Y = F1 n F2, Z = F1 - Y, and Z2 = F2 - Y. Without loss of gen-
erality, we have Zi sg*

IfX = X, then {F2,Z11 is a 2-partition of V such that W(F2) <
K(t) and W(Z1) < K(t). By hypothesis, there exists no 2-parti-
tion fU1,U21 of V such that W(U1) < K(t) and W(U2) < K(t).
This is a contradiction. Therefore, we have X s 0.

Because G is complete, there exists an arc (ui,uj) E E such that
ui E X and uj E Z1. Since ui,uj E F2 and F2 is a consistent fault
set, we have s(ui,uj) = 0. But since F1 is also a consistent fault
set and ui E F1, uj E F1, we have s(ui,uj) = 1. This is a contra-
diction. Hence, our initial assumption was wrong. Q.E.D.

Given a system S with unlts u1,u2, ... ,un and the weight W(ui)
for each ui E V = Iu1,u2, .,Un. , then we have the following
theorems.
Theorem 1: Given a system S with a set of units V and the

weight W(ui) for all ui E V, then there exists a digraph G = (V,E)
such that S represented by G is p-t- diagnosable without repair
if and only if there exists no.2-partition IU1,U21 of V such that
W(U1) < K(t) and W(U2) < K(t).

Proof-Necessity: It is obvious that every system that is p-
t-diagnosable without repair is also p-t-diagnosable with repair.
Hence, the necessity of the theorem follows from Lemma 1.

Sufficiency: Follows from Lemma 2. Q.E.D.
It can be easily verified that Theorem 1 is valid for p-t-diag-

nosability with repair also.
Example: Consider a system consisting of three units such that

p(Ul) = Y5, p(U2) = ¼, p(U3) = i, and t = Y20. Then we have
W(u1) = log 4, W(u2) = log 3, W(U3) = log 2, and K(t) = log 8.
Let U1 = luil and U2 = 1u2,u31, then we have W(U1) = log 4 >
K(t) and W(U2) = log 6 > K(t). Thus, from Theorems 1 and 2,
it can be seen that there exists no digraph G such that the system
represented by G is p-t-diagnosable with repair or without re-
pair.

IlL CONNECTION ASSIGNMENTS FOR DIAGNOSABILITY

It has been shown in the last section that for a system S which
is p-t-diagnosable, the set of units V must satisfy the condition
of Theorem 1, i.e., there exists no 2-partition MUP,U21 of V such
that W(U1) < K(t) and W(U2) < K(t). In this section we con-
sider the design of p-t-diagnosable systems provided that the
above condition holds.

Given a system S with a set of units V and weight W(ui) for
all ui E V, a subset U of V satisfying the following condition is
called a base set of S.

Condition: There exists no 2-partition IU1, U2} of U such that
W(U1) < K(t) and W(U2) < K(t).

Definition 3: A system S with digraph G = (V,E) is said to
belong to a design Do if for some base set U of S, 1) (U) is a
complete digraph, and 2) r-l(ui) c U and W(F-l(ui)) > K(t)
for all ui e V - U.

Definition 4: A system S with digraph G = (V,E) is said to
belong to a design D1 if for some base set U of S,

1) (ui,ui+1) e E for 1 < i < n -1,
2) (un,ul) E E,

and
3) (ui,us) E E for 1 < i < s - 1,

where U = (ul,u2, .- - ,u,} and V = Wu1,u2, Un.
To illustrate the designs Do and D1, we consider a system S,

which consists of five units U1,U2, ... ,U5. Suppose p(u1) = ,
p(U2) = '/6p(u3) = /5,p(U4) = g,p(u5) = 1/s,andt = %As, then
we have W(ul) = log 6, W(u2) = log 5, W(U3) = log 4, W(u4) =
log 3, W(U5) = log 2, and K(t) =-log %A5 + log % + log % + log
% + log 4 + log % = log 10. Let U = Wub,u2,u3A. Since W(U) = log
120 > 2K(t), there exists no 2-partition IU1,U2j of U such that
W(U1) < K(t) and W(U2) < K(t). Therefore U is a base set of
Si.

In Fig. 1 two designs are illustrated for system S1. Do is shown
in Fig. 1(a) and D1 is shown in Fig. 1(b). In Fig. 1(a), (U) is a
complete digraph, r-1(u4) = r-'(u5) = fu1,u21 = U, and
W(1-1(u4)) = W(r-l(u5)) = log 30 > K(t). Therefore, system
Si represented by a digraph shown in Fig. 1(a) belongs to design
Do. It can easily be shown that system Si represented by a di-
graph shown in Fig. l(b) belongs to design D1.
We shall prove that a system is p-t-diagnosable without repair

if it employs design Do and that a system is p-t-diagnosable with
repair if it employs design D1.
Theorem 2: If a system S employs design Do, then S is p-t-

diagnosable without repair.
Proof: The proof is by contradiction. Assume the existence

of a weighted digraph GC for which there are two consistent fault
sets F1 and F2 with W(F1), W(F2) < K(t). LetX = U - (F1 U
F2), Y=F1 n F2, z = F1 - Y, and Z2 = F2-Y, where U is a
base set of S in design Do. Without loss of generality, assume Z
# 0. The following cases are possible.
Casel: Z nl U # O and F2 U 5 qk. IfX = X, then Z1 n

U,F2 n Ul is a 2-partition of U such that

w(z nl u) < W(Z1) < W(F1) < K(t)
and

W(F2 n u) < W(F2) < K(t).

This contradicts the hypothesis that U is a base set of S. There-
fore, we have X -q0. Because (U) is complete, there exists an
arc (ui,uj) E E such that ui E X and uj E Zi. Since ui,uj E F2
and F2 is a consistent fault set, we have s (ui,uj) = 0. But since F,
is also a consistent fault set and ui & F1, uj E F1, we have s(ui,uj)
= 1. This is a contradiction.
Case 2: Z1 n U = b, i.e., Z1 = V - U. Let uj e Z1. If r-1(uj)

C F2, then we have W(r-'(uj)) < W(F2) < K(t), but this con-
tradicts the hypothesis that S belongs to design Do. Therefore,
there exists ui & F2 n r-'(uj). Since r-'(uj) C U, we have ui e
Zi and thus ui & F1P F2. Since ui,uj E F2 and F2 is a consistent
fault set, we have s(ui,uj) = 0. But since F1 is also a consistent
fault set and ui E F1, uj E F1, we have s(ui,u1) = 1. This is a
contradiction.

Case 3: F2 n U = 4, i.e., F2 a V - U. Let uj E Z1. Since
r-P(uj) a U, we have r-F(uj) n F2 = 0. If F-1(uj) c Z1, then
we have W(-l(uj)) < W(Z1) < W(F1) < K(t), but this contra-
dicts the hypothesis. Therefore r-l(u) n #, 40. Hence, there
exists ui E r-F(uj) n F1 n F2. Since ui,uj & F2 and F2 is a
consistent fault set, we have s (ui,uj) = 0. But since F1 is also a
consistent fault set and ui e F1, uj & F1, we have s(ui,uj) = 1.
This is a contradiction. Hence, our initial assumption was wrong.

Q.E.D.
Theorem 3: If a system S employs design D1, then S is p-t-

diagnosable with repair.
Proof: The proof is by contradiction. Assume the existence

of a weighted digraph GC for which there are consistent fault sets
Fj,F2, - - *,F1 such that

n~Fi =
i=1

and W(F1) < K(t) for all Fi E IF1,F2, - - ,F1J. Let U = IU1,U2,
... ,usj be a base set of S in design D1 and let V = $u1,u2, *n*.,unj.
The following cases are possible.

Case 1: us E Fi for all Fi E jF1,F2, - - *,F1j. In the weighted
digraph GC, there exists a vertex Uk such that s(ui-1,ui) = 0 for
all i = s + 1, s + 2, * *.,k - 1, s(Uks1,Uk) = 1, anduk E Fk for
some Fk E 1F1,F2, * ,F1l. Then, we have Us+l,Us+2, "' ,Uk-1 &
Fi for all Fi E fF1,F2, ..* ,F1I}.

If Uk E Fj for some Fj, then we have Uk1 F1nP Fk and Uk
E F1 Q Fk. Since Uk6_,Uk E FJ and FJ is a consistent fault set,
we have S(Uk-1,Uk) = 0. But since Fk is also a consistent fault set
and Uk-1 E Fk, Uk E Fk, we have S(Uk-1,Uk) = 1. This is a con-
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(a)
Fig. 1. Designs (a) Do and (b) D1.

tradiction. Therefore, uk & Fj for all F1. However, this contradicts
that

fl Fi =4).
i=1

Case 2: us E Fj for some Fj E fF1,F2, * ,Ft1. If F1 n u =u ,
then FJ - U and thus W(F1) 2 W(U). Since W(Fj) < K(t), we
have W(U) < K(t). But t-his contradicts that U is a base set.
Therefore F1 n U # 4.

Since

r Fi = 4),
i=l

we have us E Fk for some Fk E IF1,F2, -*,F I. Now, we shall show
that F1 n U a Fk. Assume that there exists a vertex u,a Fj n
Fk Uu. Since Fk is a consistent fault set and ua,us E Fk, we have
s (ua,us) = 0. But since Fj is also a consistent fault set and uta E
Fj, us E Fj, we have s(ua,us) = 1. This is a contradiction.
Therefore, we have Fj n u _Fk.

Let U1 = Fj n U and U2 = F1 n u. Clearly, U1 #4), U2 #4),
Ul U U2= UandUl nU2=4.Since Ul a Fj and U2 c Fk, we
have W(U1) < W(F1) < K(t) and W(U2) < W(Fk) < K(t).
Hence, there exists a 2-partition IU1,U2j of U such that W(U1)
< K(t) and W(U2) < K(t). This contradicts that U is a base set.

Q.E.D.
Theorems 2 and 3 show that if one can find a base set U of a

system, then one can easily construct p-t- diagnosable systems
with and without repair using designs D1 and Do, respectively.
Hence, we shall show a method for finding a base set of a given
system.

Given a system S with a set of units V = IUL,u2, * * *,un I and
weight W(ui) for all ui E V, then without loss of generality as-
sume W(uj) 2 W(U2) 2 ... > W(Un). If the system S satisfies
the necessary and sufficient condition ofTheorem 1, we can find
a base set U of S as follows.

1) If.W(V) > 2K(t), then let U = Iu1,u2, * *,u,j such that
s-1

L W(uj) < 2K(t)
il1

and
S

Z W(uj) > 2K(t).
i=l1

2) If W(V) < 2K(t), then let U = V.
Example: Consider the system S, with W(u1) = log 6, W(u2)

= log 5, W(U3) = log 4, W(U4) = log 3, W(U5) = log 2, and K(t) =
log 10.

5
W(V) = E W(uj) = log 720 > 2K(t) = log 100.

i=1
W(uD) + W(u2) = log 30 < 2K(t) and W(ul) + W(U2) + W(U3)
= log 120 > 2K(t). Hence, we have U = 1u1,u2,u3j, which is a base
set of Sl.

IV. NECESSARY AND SUFFICIENT CONDITION FOR
DIAGNOSABILITY

So far we have discussed connection assignment problem for
probabilistically diagnosable systems. In this section we present
the necessary and sufficient condition for a system represented
by a digraph to be probabilistically diagnosable. Maheshwari and
Hakimi [10] gave the necessary and sufficient condition for a
system to be p-t-diagnosable without repair. We can state the
necessary and sufficient condition for a system to be p-t-diag-
nosable with repair in the following.
Theorem 4: A system S with digraph G = (V,E) is p-t-diag-

nosable with repair if and only if for all U = V with r-F(U) = 0,
whenever there exist subsets of U,F1,F2, - - ,F- such that U = 1Fi
= u, nQ=1Fi = 4 and W(Fi) < K(t) for all Fi & IF1,F2, .. .,Fill
then r-1(Fa nFn ) Fn nF)P 0 for some Fa,F, e F1,F2,
* * *,FI3-

Proof-Necessity: Suppose the condition of the theorem does
not hold. Then, for some U a V with r-(U) = 4, there exist
subsets of U,F1,F2, * * ,F1 such that U . 1F1 = U, n 1Fi = 4),
W(Fi) < K(t) for all Fi, and r-'(Fa n F3) n Fan, Fo = 0 for
all Fa,F3 E tF1,F2, * - - ,FI .

Construct a weighted digraph G, as follows. For each arc (ui,uj)
E E,

- , if ui & Fk,uj E Fk for some Fk
s ui,,UJ - 10, otherwise.

For any Fi E $F1,F2, - * ,FA 3, we shall show that Fi is a consis-
tent fault set for the above weighted digraph G,.

1) For any arc (ui,uj) E E such that ui & Fi, uj E Fi, we have
s (ui,uj) = 1 by the definition of G,.

2) For any arc (ui,uj) E E such that ui,uj & Fi, we can show
that s(ui,uj) = 0 as follows. Suppose that s(ui,uj) = 1, then from
the definition of G8, ui E Fk, uj E Fk for some Fk. This implies
ui E r-l(Fk n Fi) nl Fk n Fi. But, this contradicts the hy-
pothesis. Therefore s (ui,uj) = 0.

Hence, F1,F2, - --,Fl are all consistent fault sets for G,
Moreover, nl=1Fi = 4, W(Fi) < K(t) for all Fi. Therefore, the
system is not p-t- diagnosable with repair.

Sufficiency: The proof is by contradiction. Assume the ex-
istence of a weighted digraph G, for which there are consistent
fault sets F1,F2, - - ,F- such that n =,F1 = 4 and W(Fi) < K(t)
for all Fi.

Let U = U LLFi. If F-'(U) # 4, then there exists an arc (ui,uj)
& E with ui E U and uj E U. Moreover, since n(=1F1 = 4, we
have uj E Fj n Fk for some Fj,Fk. Since ui,uj E Fk and Fk is a
consistent fault set, we have s(ui,u1) = 0. But since Fj is also a
consistent fault set and ui E F1, uj E Fj, we have s(ui,u1) = 1.
This is a contradiction. Therefore, we have P-1(U) = 4.

Thus, by hypothesis, F-1(Fa n FP) n Fa n FP $ 4) for some
Fa,Fgj, i.e., there exists an arc (ui,uj) E E with ui E F. n FP, and
Uj E Fa n FP. Since ui E Fa, u;j Fa, and Fa is a consistent fault
set, we have s(ui,uj) = 1. But since F, is also a consistent fault
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set and ui,uj E F, we have s(ui,uj.) = 0. This is a contradiction.
Hence, our initial assumption was wrong. Q.E.D.

V. CONCLUSIONS
In this correspondence we have presented the necessary and

sufficient conditions for the existence of a connection to form
probabilistically t-diagnosable systems with and without repair,
and also presented the designs D1 and Do for p-t-diagnosable
systems with and without repair, respectively. However, these
designs are not optimal, and hence the investigation of optimal
connection assignments for probabilistically diagnosable systems
with and without repair is an open research problem.
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Semi-Fast Fourier Transforms over GF( 2m).

DILIP V. SARWATE

Abstract-An algorithm which computes the Fourier transform
of a sequence of length n over GF(2m) using approximately 2nm
multiplications and n2 + nm additions is developed. The number
of multiplications is thus considerably smaller than the n2 multi-
plications required for a direct evaluation, though the number of
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additions is slightly larger. Unlike the fast Fourier transform, this
method does not depend on the factors of n and can be used when
n is not highly composite or is a prime.

Index Terms-Analysis of algorithms, computational complexity,
error-correcting codes, finite fields, Fourier transforms.

I. INTRODUCTION

The discrete Fourier transform (DFT) of a sequence of n ele-
ments of a finite field can be computed by means of the fast
Fourier transform (FFT) algorithm over the finite field [1]. This
algorithm is just the well-known complex field FFT algorithm
(e.g., [2]) with the primitive nth root of unity exp (j27r/n) in the
-complex field being replaced by a primitive nth root of unity in
the finite field. When n is composite, with factorsnl,n2 * * , n,
the finite field FFT is essentially what is called a mixed-radix
FFT and requiresn(ni + n2 +* + n8) multiplications and n(n1
+ n2+* + n,) additions as compared to the n2 multiplications
and n2 additions required to evaluate the DFT in the most ob-
vious way. If n is not highly composite, (or if n is a prime), the
saving in computation is quite small (or nonexistent). In such
cases, the DFT can be computed from the cyclic convolution of
two appropriately defined sequences of length approximately 2n
or more [3]-[5]. This convolution itself can be computed by
computing the forward transforms of the two sequences, a
pointwise multiplication of the transforms, and an inverse
transform. If the length of the sequence is chosen to be highly
composite, the FFT algorithm can be used to compute the three
transforms and significant savings in computation can be
achieved.
The problem that arises in using the convolution method is

that the fmite field may not contain an appropriate primitive root
of unity, and computations may have to be done in a much larger
field [6]. In such a case, one can transform the problem of com-
puting a finite field convolution into one of computing a convo-
lution of arrays of integers. If the array convolution is computed
by means of a two-dimensional complex fieldFFT algorithm,
then the DFT over gf)pm) can be computed [6] using 0(nm log
nmM(q)) bit operations where M(q) is the number of bit oper-
ations required to multiply two q-bit numbers and q 5 2log2 n
+4log2m +4log2 p. However, this method is not very efficient
for small values of n.

The algorithm proposed in this correspondence requires 2(n
- 1)(m - 1) multiplications and (n - 1)(n + m - 1) additions in
GF(2m) to compute a transform of length n, n a prime, over
GF(2m). Ifn is not a prime, the number of multiplications is
somewhat less and the number of additions is somewhat more.
Since multiplications require more time than additions, the al-
gorithm is somewhat faster than the direct method, though both
require 0(n2) arithmetic operations. However, the proposed al-
gorithm requires 0(n2 log n) bit operations only, which is better
by a factor of log n over the direct method. For small values of
n, the proposed method is superior to the cyclic convolution
technique and to the usual FFT algorithm based on the factors
of n. Asymptotically, of course, the cyclic-convolution technique
requires 0(nlog4 n) bit operations only, and is vastly superior.
For these reasons, the proposed algorithm is dubbed a semi-fast
Fourier transform (SFFT) algorithm.

II. THE SFFT ALGORITHM

Let n be an odd integer, m the multiplicative order of 2 mod
n, a a primitive nth root of unity in GF(2m), and: an element
of degree m in GF(2m). It is convenient, but not necessary, to take
fi to be a primitive element. Let A(x) =Ao +Alx + A2x2 +* * -
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