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Fig. 4. Results of smoothing Fig. I(a), (b) using the maximal neighborhood of each
point as an averaging neighborhood.
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Fig. 5. Edges detected on Fig. 1(a), (b)
SPAN neighborhoods (a) (b), and usin

As the examnples show, there are real-world classes of pictures that
can be treated as piecewise constant for purposes of SPAN
construction. On the other hand, for a picture that contains a

significant gray level ramp, the SPAN method breaks down, since
it will attempt to approximate the ramp by a staircase.

It should be possible, in principle, to generalize the SPAN
approach to a wider class of pictures, e.g., pictures that are ap-

proximately piecewise linear, rather than piecewise constant, in

gray level. Here, for each neighborhood N,(x, y), we would test the

hypothesis that its gray level population is a good fit to a ramp,

say in the least squares sense. The largest r for which this fit is

sufficiently good would define the neighborhood N(x, y), and we

could then find the maximal N(x, y)'s as above. On region grow-

ing in piecewise linear pictures, see [7].
In conclusion, the SPAN approach is a useful generalization of

Blum's MAT concept to noisy, unsegmented pictures. Like the
MAT, it provides natural, concise approximations to such pic-
tures that can be used for purposes of encoding, recognition, and
description, while avoiding the commitment of segmentation.
Since it is a parallel method, it could be implemented quite
efficiently on a parallel array processor.

(C) (d)
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g the Roberts cross operator (cd (d)
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and Hakimi where each unit has a probability of failure. For this
model under both fault assumptions by Maheshwari-Hakimi and by
Barsi-Grandoni-Maestrini, some existence theorems are obtained
for probabilistically diagnosable systems. 1) Necessary and sufficient
conditions for the existence of testing links to form probabilistically
t-diagnosable systems with and without repair. 2) Necessary and
sufficient conditions for the existence of probabilities of failure of all
units to form probabilistically t-diagnosable systems with and with-
out repair which have no hardcore.

Index Terms-Automatic diagnosis, digital systems, graphs,
probabilistic fault diagnosis, probability of failure, self-diagnosable
systems, testing links.

I. INTRODUCTION
The demand for high availability in digital systems has created

an urgent need for the development of self-diagnosable systems.
Studies in self-diagnosable systems have appeared in the litera-
tures [1]-[11]. Preparata et al. [3] first introduced a graph-
theoretic model of digital systems for the purpose of diagnosis of
multiple faults, and presented methods of optimal connection
assignments for instantaneous and sequential diagnosis
procedures. Maheshwari and Hakimi [10] introduced a diagnos-
ability measure t based on the probability of occurrence of faults
and presented necessary and sufficient conditions for a system to
be probabilistically t-diagnosable in the graph-theoretic model.
For the class of failures, most of the previous works considered

the following fault assumption.
Fault Assumption A: Assume that unit ui tests unit uj. Then, the

test outcome is "0" if, under the hypothesis that ui is fault-free, uj is
also fault-free. The test outcome is "1" if, under the same hypoth-
esis, uj is faulty. In the case that ui is faulty, the test outcome is
unreliable and can assume either of the values 0, 1, regardless of
the status of uj.

Barsi et al. [11] considered the following fault assumption.
Fault Assumption B: Assume that unit ui tests unit uj. Then, the

test outcome is "0" if, under the hypothesis that ui is fault-free, uj is
also fault-free. The test outcome is "1,, if, under the same hypoth-
esis, uJ is faulty. If ui is faulty and uj is fault-free, both test out-
comes are possible. If ui and uj are faulty, the test outcome is
necessary "1."

In this correspondence, we consider the Maheshwari-Hakimi
model and four classes of probabilistically diagnosable systems as
follows.

1) A class of systems which are probabilistically t-diagnosable
with repair under fault assumption A.

2) A class of systems which are probabilistically t-diagnosable
without repair under fault assumption A.

3) A class of systems which are probabilistically t-diagnosable
with repair under fault assumption B.

4) A class of systems which are probabilistically t-diagnosable
without repair under fault assumption B.
For the above classes of systems, we treat two fundamental

problems in this correspondence. Suppose a system S with units
U1, u2, ', u, and the probability p(ui) of ui being faulty for all ui,
then it seems to be an interesting problem to decide whether we
can design a probabilistically t-diagnosable system by adding
some testing links to S. This is Problem 1.

Problem 1: To find necessary and sufficient conditions for the
existence of testing links to form probabilistically t-diagnosable
systems.

Suppose a system with testing links, then it also seems to be an
interesting problem to decide whether we can design a probabilist-

ically t-diagnosable system without hardcore by giving suitable
reliability to each unit. This is Problem 2.

Problem 2: To find necessary and sufficient conditions for the
existence of probabilities of failure of all units to form probabilist-
ically t-diagnosable systems without hardcore.

II. DIAGNOSTIC MODEL
A system is supposed to be partitioned into n subsystems, or

units, not necessarily identical but powerful enough to test other
units of the system by applying stimuli and observing the ensuing
responses. Note that no unit tests itself. Let V = {u1, u2, ''', un4 be
the set of all units. The relation of testability can be represented by
a function F mapping V into V such that uj E F(uj) if and only if u
tests uj. It is also assumed that the faults are statistically indepen-
dent and the probability of failure of unit ui is denoted by p(ui),
that is, probability of failure can be represented by a function p
mapping V into R, where R is the set of positive real numbers less
than one. Hence, a system S will be represented by a triple S = (V,
F, p). When F or p is undefined, it is denoted by the dash, that is,
S = (V, -, p) or S = (V, F, -). Clearly, this diagnostic model
S = (V, F, p) can be also represented by a vertex-weighted digraph
G = (V, F) with weight function p, where the arc (ui, uj) is an
ordered pair of vertices in V such that uj E F(ui).
The outcomes of the test may be represented as binary weights

on the arcs of G. The weight of the arc (ui, uj), denoted by s(ui, uj),
is "0" if ui finds uj to be nonfaulty, and is "1" if ui finds uj to be
faulty. Thus a system S together with a set of test outcomes is
represented by an arc-weighted digraph, which we denote by G,.
We now define two types of consistent fault sets under fault
assumptions A and B. A subset F of V, which satisfies the follow-
ing two conditions, is called an A-consistent fault set of S with
respect to G,.

Condition 1: s(ui, uj) = 1, for all ui and uj such that uj E F(ui),
ui E F = V-F, and uj E F.

Condition 2: s(ui, Uj) = 0 for all ui, uj such that uj E F(uj) and ui,
uje F.
A subset F of V, which satisfies the above two conditions and

the following condition, is called a B-consistentfault set of S with
respect to G,.

Condition 3: s(ui, Uj) = 1 for all ui, uj such that uj E F(u1) and ui,
uje F.
Note that, when all arcs are labeled with "0," the empty set 0

can be a consistent fault set. This case means that all the units are
nonfaulty.

Since the faults are assumed to be statistically independent, a
priori probability that F c V is the set of faults in S is given by

P(F) = H (1 - p(ui)) f p(ui).
Ui6E uieF

Definition 1: A system S = (V, F, p) is said to be probabilist-
ically t-diagnosable without repair under fault assumption A
(fault assumption B) [shortly, p-t-diagnosable without repair
under A (B)] if for any arc-weighted digraph G, = (V, F) there
exists at most one A-consistent (B-consistent) fault set F c V such
that P(F) > t. Let A' (Bo) be the class of systems that are p-t-
diagnosable without repair under A (B).

It is easy to see that in a p-t-diagnosable system without repair,
any fault set whose a priori probability of occurrence greater than
t can be correctly identified.

Definition 2: A system S = (V, r, p) is said to be probabilist-
ically t-diagnosable with repair under fault assumption A (fault
assumption B) [shortly, p-t-diagnosable with repair under A (B)] if
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for any arc-weighted digraph G, = (V, F) there exist no A-
consistent (B-consistent) fault sets F1, F2, , F1 (I 2 2) such that
n!= Fi = 0 and P(F1) > t for i = 1, 2,, 1. Let At1 (Bt1) be the
class of systems that are p-t-diagnosable with repair under A (B).

In a p-t-diagnosable system with repair, the intersection of all
consistent fault sets, whose a priori probability of occurrence is
greater than t, is not empty so that at least the units belonging to
the intersection are all faulty. Hence, there exists a sequence of
applications of tests and repairs of identified faults that allows all
faults originally present to be identified.
The following theorem easily follows from the above

definitions.
Theorem 1: For any O< t < 1, 1) Ao' At1, 2) Al ' Bo, 3)

At1 c Bt1, and 4) Bo ' B1.
Let

K(t) = -log t + E log (1 - p(ui))
ui E V

and
1-p(ui)W(uj) = log P()

for all ui E V. Then we can readily show that for any fault set
F c V, P(F) > t if and only if W(F) < K(t) where

W(F)= E W(uj).
z4 eF

Therefore, the problem of finding the faulty units in a p-t-
diagnosable system is reduced to that of determining the consist-
ent fault set for which the sum of the weights of the vertices
belonging to it is less than K(t). Hence, when referring to a system
S represented by S = (V, F, p) of its diagnostic model, the re-
presentation S = (V, F, W) will also be utilized. Also, we assume
that a unit is more likely to be nonfaulty than faulty, that is,
p(ui) < i for all ui E V. This implies W(uj) > 0 for all ui E V.
A hardcore of a system S = (V, F, W) is defined to be a unit ui

such that W(ui) . K(t), that is, P(ui) < t. Graph <Z>, called the
induced subgraph of G on Z, consists of vertex set Z c V and all
arcs in G incident at pairs of vertices in Z. It is convenient to
further extend the domain of F as follows. Let

F'(ui) = {ujIUiuE F(uj)}.
For X c V, let

r(x) = U (ui) - X

F-'(X)= U F-'(ui) - X.
uj e X

Using the preceding definitions and notations, we can rewrite
Problems 1 and 2 as follows.
Problem 1: Given a system S = (V, -, W); find necessary and

sufficient conditions for the existence of a function F to form
probabilistically t-diagnosable systems.

Problem 2: Given a system S = (V, F, -); find necessary and
sufficient conditions for the existence of a function W to form
probabilistically t-diagnosable systems without hardcore.

III. EXISTENCE THEOREMS FOR FUNCTION F
In this section, we consider Problem 1 for each class of p-t-

diagnosable systems. First, we shall show necessary and sufficient
conditions for the existence of a function F to form p-t-
diagnosable systems in A' and A1.

Lemma 1: If S = (V, F, W) is a system in A'1, then there exists no
partition {U,, U2} of V such that W(U1) < K(t) and
W(U2) < K(t).

Proof: Suppose for some partition {U1, U2} of V, W(U1) <
K(t) and W(U2) < K(t). We can easily find a weighted digraph G,
of S that has U1 and U2 as A-consistent fault sets. Thus, by
Definition 2, S would not be p-t-diagnosable with repair under
fault assumption A. Q.E.D.
Lemma 2: Given a system S = (V, , W), there exists a function

F, such that S = (V, F, W) is in Ao, if there exists no partition {U1,
U2} of V with W(U1), W(U2) < K(t).

Proof: Consider a maximally connected graph G = (V, F),
i.e., F(u,) = V for all ui E V. We shall prove that the system
s = (V, F, W) is in At. The proof is by contradiction. Assume the
existence of a weighted digraph G, for which there are two A-
consistent fault sets F1 and F2 with W(Fj), W(F2) < K(t). Let
X = V - (F1 u F2), Y = F1 r F2, Z1 =F1 - Y, and

Z2= F2 - Y.

Without loss of generality, we have Z1 7 0.
If X = 0, then {F2, Z1} is a partition of V such that W(F2) <

K(t) and W(Z1) < K(t). This contradicts the hypothesis. There-
fore, we have X * 0.

Since F(uj) = V for all ui E V, there exists an arc (ui, uj) such
that ui E X and uj E Z1. Since ui, uj E F, and F2 is an A-consistent
fault set, we have s(ui, Uj) = 0. But since F1 is also an A-consistent
fault set and ui E F1, uj E F1, we h-ave s(ui, uj) = 1. This is a
contradiction. Hence, our initial assumption was wrong. Q.E.D.

Theorem 2: Given a system S = (V,-, W), then there exists a
function F, such that S = (V, F, W) is in Ao, if and only if there
exists no partition {U1, U2} of V such that W(U1) < K(t) and
W(U2) < K(t).

Proof: The necessity of the theorem follows from 1) of
Theorem 1 and Lemma 1. The sufficiency follows from Lemma
2. Q.E.D.

Theorem 3: Given a system S = (V, -, W), then there exists a
function F, such that S = (V, F, W) is in At1, if and only if there
exists no partition JU1, U2} of V such that W(U1) < K(t) and
W(U2) < K(t).

Proof: The necessity of the theorem follows from Lemma 1.
The sufficiency follows from Lemma 2 and 1) of Theorem 1.
Q.E.D.
As an example, consider a system consisting of three units such

that p(u1) = , p(u2) = , p(U3) = , and t = . Then we have
W(ul) = log 4, W(u2) = log 3, W(u3) = log 2, and K(t) = log 8.
Let U1 = {uj} and U2 = {U2, U3}, then we have W(Uj) = log 4 <
K(t) and W(U2) = log 6 < K(t). Thus, from Theorems 2 and 3, it
can be seen that there exists no function F such that the system is
in A or At.
When the probability of failure of all units is the same, it can

easily be seen that the above condition means that the number of
faulty units present does not exceed L(n - 1)/2i where n = VI
and Lx] denotes the greatest integer not exceeding x. Therefore,
Theorems 2 and 3 contain Theorem 1 of Preparata et al. [3].

Next, we show the necessary and sufficient condition for the
existence of a function F to form a p-t-diagnosable system in BO.

Theorem 4: Given a system S = (V, -, W), then there exists a
function F, such that S = (V, F, W) is in B'O, if and only if there
exists no partition {U, {u1}, {u2}} of V such that W(U) +
W(ul) < K(t) and W(U) + W(U2) < K(t).

Proof-Necessity: The proof is by contradiction. Suppose
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that S = (V, F, W) is in Bb, and that for some partition {U, {u1},
{U2}} of V, W(U) + W(ul) < K(t) and W(U) + W(U2) < K(t). Let
G5 be an arc-weighted digraph such that s(u1, Uj) = 1 for all arcs
(u1, Uj). Let F1 = U u {u1} and F2 = U u {u2}, then F1 and F2 are
B-consistent fault sets with respect to G,. Thus, S is not p-t-
diagnosable without repair under assumption B. This contradicts
the hypothesis.

Sufficiency: Consider a maximally connected digraph
G = (V, F). We shall prove that the system S = (V, F, W) is in Bo.
The proof is by contradiction. Assume the existence of a weighted
digraph G, for which there are two B-consistent fault sets F1 and
F2 with W(F1), W(F2) < K(t). Let X = V - (F1 u F2),
Y = F1 n F2, Z1 = F1 - Y, and Z2 = F2 - Y. Without loss of
generality, we have Z1 # 0.

If X * 0, then there exists an arc (ui, uj) such that ui E X and
uj E ZI. Since ui, uj E F2 and F2 is a B-consistent fault set, we have
s(ui, uj) = 0. But since F1 is also a B-consistent fault set and
ueE F1, we have s(ui, Uj) = 1. This is a contradiction. Hence, we
have X= 0.

If .Z 2, then there exists an arc (ui, uj) with ui, uj E Z1 since
G is a maximally connected digraph. Since ui, uj E F2 and F2 is a
B-consistent fault set, we have s(ui, Uj) = 0. But since F1 is also a
B-consistent fault set and uj c F1, we have s(ui, uj) = 1. This is
a contradiction. Hence, we have .Z< 1. Similarly, we have
IZ21 <1.SinceZ1 #0and IZ1 <.1,wehave JZJ =1,and
can let Z1 = {u1}.

If Z2 + 0, then 1Z21 = 1 and we can let Z2 = {U2}. Then we
'have

W(Y) + W(u1) = W(F1) < K(t),
W(Y) + W(u2) = W(F2) < K(t),

and { Y, {u 1}, {u2}} is a partition of V since X = 0. This contradicts
the hypothesis of the theorem.

If Z2 = 0, then Y = F2. Let U = Y -{u2} for some u2 E Y.
Then we have

W(U) + W(ul) < W(Fj) < K(t),
W(U) + W(u2) = W(F2) c K(t),

and {Y, {tU1}, {u2}} is a partition of V since X = 0. This contradicts
the hypothesis of the theorem. Hence, our initial assumption was
wrong, which implies S = (V, F, W) is in Bo. Q.E.D.
When the probability of failure of all units is the same, we can

also show that the condition of Theorem 4 means that the number
of faulty units present does not exceed n - 2. This coincides with
Theorem 1 of Barsi et al. [11], which is a special case of Theorem
4.

Lastly, we show the necessary and sufficient condition for the
existence of a function F to form a p-t-diagnosable system in Bt'.

Theorem 5: Given a system S = (V, -, W), then there exists a
function F, such that S = (V, F, W) is in Bt', if and only if there
exists a subset U of V such that Ut = lvi -1 and
W(U) > K(t).

Proof-Necessity: The proof is by contradiction. Assume
that there exists no subset U of V such that U = VI1 and
W(U) . K(t). Let V = {ul, u2, , un4, and Fi = V -{ul for all
ui E V. Then 1F11 = lV -1 and thus W(F1) < K(t) for all i = 1,
2, , n. Clearly,

n n

nFi = 0 and U Fi= V.
i=l i=l

Consider an arc-weighted digraph G, for which s(ui, uj) = 1 for
all arcs (ui, uj). Then, Fi is a B-consistent fault set with respect to
G, for all i = 1, 2, , n. Hence, S = (V, F, W) is not p-t-
diagnosable with repair under assumption B. This contradicts the
hypothesis.

Sufficiency: Consider a maximally connected digraph
G = (V, F), that is, F(ui) = V for all u1i E V. We shall prove that
S (V, F, W) is in Bt1. The proof is by contradiction. Assume the
existence of a weighted digraph G, for which there exist B-
consistent fault sets Fl, F2, , F, such that

n Fi= 0 and W(F1) < K(t), for all i = 1, 2,, 1.

If U5i Fi * V, then there exists an arc (ui, uj) such that ui E
(> Fi and Uj E Fj r) Fk for some Fj, Fk, E {F1, F2, , F}. Since
ui, uj E Fk and Fk is a B-consistent fault set, we have s(ui, uj) = 0.
But since Fj is also a B-consistent fault set and uj E Fj, we have
s(ui, uj) = 1. This is a contradiction. Hence, we have

U Fi = V.

If Fj .2 2 for some Fj, then there exists an arc (ui, uj) with ui,
uj E Fj since F(ui) = V. UL=J1 Fi = V implies uj E F,, for some
Fk # Fj. Since ui, uj E Fj and Fj is a B-consistent fault set, we
have s(ui, Uj) = 0. But since Fk is also a B-consistenit fault set and
Uj E Fk, we have s(ui, Uj) = 1. This is a contradiction. Hence, we
have IFi <1, i.e., IFi1 . lVI -1 for all i= 1,2,, 1. From
this and n(=1 Fi = 0, we have Fi ¢ V for all Fi. Thus IF11 =

iV| -1, i.e., FiF = 1 for all F1. (l=t F1 = 0 implies
U5=! Fi= V. Hence, U!= F1= V and FiF = 1 imply that
1= Vi, i.e., all the subsets U ofVwith Ug = lV I-1 are F1,
F2, , F,. Moreover, W(F1) < K(t). This contradicts the hypoth-
esis that for some U c V with Ul = VI - 1, W(U) . K(t).
Hence, our initial assumption was wrong, which implies S = (V,
F, W) is in BQ. Q.E.D.
Theorems 2 and 3 have shown that the existence theorem for Ao

and At' is the same. The same result cannot be obtained for B' and
Bt1. That is, the condition of Theorem 4 is not equivalent to that of
Theorem 5. However, when the probability of fault of all units is
the same, the condition of Theorem 4 coincides with that of
Theorem 5. That is, the condition for Bo and Bt1 can be restated
that the number of faulty units present does not exceed n - 2
when all the faults are equiprobable. This is an interesting result.
To illustrate Theorems 4 and 5, consider a system S = (V,

W), which consists of five units Ul, U2, , U5. Suppose p(ul) = 4,
p(U2) = 4, p(U3) = 4, p(U4) = X, and p(U5)= a, then we have
W(ul) = log 6, W(u2) = log 5, W(U3) = log 4, W(U4) = log 3, and
W(Ui5) = log 2.
Suppose that t = ± then we have K(t) = log 100.

min {W(U) IU c V, I U I = l VI -i}

= W(U2) + W(U3) + W(U4) + W(U5) = log 120 . K(t).
This implies that for t = , S = (V, -, W) satisfies the condition
of Theorems 4 and 5. Thus there exists a function F such that
s = (V, F, W) is in B' and Bt'.

Suppose that t = 4 , then we have K(t) = log 200. Let
U = {U3, U4, u5}, then W(U) + W(u1) = log 144 < K(t) and
W(U) + W(U2) = log 120 < K(t). This implies that for t = 70,
S = (V, , W) does not satisfy the condition of Theorem 4. Thus
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there exists no function r such that S= (V, F, W) is in BtO.
However, we can see that S = (V, -, W) satisfies the condition of
Theorem 5 as follows: Let U = {u1, U2, U3, U4}, then we have
W(U) = log 360 . K(t). Hence, for t = , there exists a function
F such that S = (V, F, W) is in B',.

IV. EXISTENCE THEOREMS FOR FUNCTION W

In the last section, we have considered Problem 1 for each class
of p-t-diagnosable systems, and have obtained different results for
At, At,, Bt, and B' . However, for Problem 2, we can show that the
results for At, 4t, Bt, and B' are all the same.

First we need the following lemma.
Lemma 3: If S = (V, F, W) is a system in B'l and has no hard-

core, then 1) IF '(ui) * 0 for all ui E V, and 2) for any U c V
with I U I = 2, we have IF `(U)# 0.

Proof: To see that 1) is necessary, suppose otherwise. Then
there exists a vertex Uk C V such that F '((u,) = 0. Let G, be an
arc-weighted digraph such that s(ui, uj) = 0 for all arcs (ui, uj) and
let F1 = {uk} and F2 = 0. Then it can easily be seen that both F,
and F2 are B-consistent fault sets with respect to GC. Moreover,
since S has no hardcore, W(F1) and W(F2) < K(t). This implies
that S is not p-t-diagnosable with repair under B. This contradicts
the hypothesis of the theorem.
To see that 2) is necessary, suppose otherwise. Then there exists

a subset U of V such that jU = 2 and r- l(U) = 0. Let U = {ul,
u2}, F1 = {u1} and F2 = {u2}. Consider an arc-weighted digraph G,
such that for all uj E F(uj), s(ui, uj) = 1 if uj = ui or U2, and s(ui,
Uj) = 0 otherwise. Then, clearly F, and F2 are B-consistent fault
sets with respect to GC. Moreover, W(F1) and W(F2) < K(t) since
S has no hardcore. This implies that S is not in B',, which contra-
dicts the hypothesis of the theorem. Q.E.D.

Suppose that all the faults are equiprobable, that is, p(u,)= p
for all ui E V. One can show that

max{p(1-P` 10< p < n IV.2 3}= (n -

Hence, if

(n-1f"'
t 2

n

ni

then P(ui) = p(1 - p)- . t for any 0 < p <4, that is, each unit ui
is a hardcore for any probability of failure. As a matter of fact, this
case is not realistic. So, from now on, we assume that

0 < (n-l)n-
nn

For any

(n-1'
n

it can easily be seen that there exists a solution p to the following
inequalities:

p2(1 _ pf-2 < t < p(1 - p)n- and 0 < p <

This implies that

log log (1 <2 logp tp
If we let W = log [(1 - p)/p], then the above inequalities imply

W < K(t) < 2W.

Therefore, for any

0<t< (n - I

there exists a function W such that W(ui) < K(t) < 2W(ui) for all
Ui c V.

Lemma 4: Given a system S = (V, F, -) and

O<t< (n-_1r-'

then there exists a function W, such that S = (V, F, W) has no
hardcore and is in At, if 1) F-'(ui)½ 0 for all uie V and 2)
F-'(U) 0 for any U c V with U =2.

Proof: Since

< t< (n I)n-
nn

there exists a function W such that W(ui) < K(t) < 2W(ui) for all
ui E V. This implies that W(uj) + W(uj) > K(t) for all ui, Uj E V.

Let S = (V, r, W) be a system satisfying the conditions of the
theorem. We shall show that S is in At. Assume that S is not in At,
then there exists an arc-weighted digraph G, for which there are
two A-consistent fault sets F, and F2 with W(F1) and W(F2) <
K(t). Since W(tu) + W(uj) . K(t) for all ui, uj E V, we have
IF,! <land IF21 <.1

If F1 = 0, then F2 ½ 0 and we let F2 {u$. From 1) we have
F- '(i) ½ 0, thus there exists a vertex v E F- (u). Since u E F2
and F2 is an A-consistent fault set, we have s(v, u) = 1. But since
F1 = 0 is also an A-consistent fault set and u, v E F1, we have s(v,
u) = 0. This is a contradiction. Therefore we have F1 ½ 0, and
similarly F2 ½ 0.

Let F, = {u1},' F2 = {u2} and U = {uI, u2}. From 2) we have
F '(U) ½ 0, thus without loss of generality we have U3 ECU and
U, E F(u3). Since it, U3 E F2 and F2 is an A-consistent fault set, we
have S(U3, u,) = 0. But since F, is also an A-consistent fault set
and U3 E F1, ui E F1, we have S(U3, U1)= 1. This is a contradic-
tion. Hence, our initial assumption was wrong, which implies that
S is in At. Q.E.D.

Condition 4: 1) F '(ui) ½ 0 for all ui E V and 2) F- l(U) ½ 0
for any U cV with U I= 2.
Given a system S = (V, F, -) and

n0n<
then we have the following theorem for At, A', BO, and B', from
Theorem 1 and Lemmas 3 and 4.

Theorem 6: There exists a function W, such that S = (V, F, W)
is in At (A',, Bgo, and B',) and has no hardcore if and only if S
satisfies Condition 4.

Proof: In case of A,-the necessity follows from 2) and 4) of
Theorem 1 and Lemma 3. The sufficiency follows from Lemma 4.

In case of A', the necessity follows from 3) of Theorem 1 and
Lemma 3. The sufficiency follows from 1) of Theorem 1 and
Lemma 4.

In case of Bt, the necessity follows from 4) of Theorem 1 and
Lemma 3. The sufficiency follows from 2) of Theorem 1 and
Lemma 4.

In case of B',, the necessity follows from Lemma 3. The
sufficiency follows from 1) and 3) of Theorem 1 and Lemma 4.

Q.E.D.
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Hence, by Theorem 6 we can see that the necessary and
sufficient conditions for the existence of a function W to form a

p-t-diagnosable system in Ab, A', B', and B' are all the same.

V. CONCLUSIONS

This correspondence has considered two fundamental problems
for four classes of p-t-diagnosable systems A' , A', BtO, and B'1: 1)
Given a system S = (V, , W), find necessary and sufficient con-

ditions for the existence of a function F such that S = (V, F, W) is
p-t-diagnosable. 2) Given a system S = (V, F, -), find necessary

and sufficient conditions for the existence of a function W such
that = (V, F, W) is p-t-diagnosable and has no hardcore.
The model and its diagnosability treated here are more general

than those in previous investigations [1]-[l1]. When the probabil-
ity of failure of all units is the same, the existence theorem of a

function F for A' and At' coincides with that of Preparata et al. [3]
and that for B'o coincides with that of Barsi et al. [11]. Hence, some
existence theorems in this paper are the generalizations of
previous results [3], [11].
The necessary and sufficient conditions for the existence of

functions r and W are, in general, very simple and not so hard to
test. Hence, these results are useful to design various p-t-
diagnosable systems. The synthesis problems of finding the opti-
mal functions F and W have not been considered in this
correspondence. A function F is said to be optimal if

E (U)I

is minimized. A function W is said to be optimal if

'eV W(uj)
is minimized. In the above sense of optimality, optimal designs of
p-t-diagnosable systems are open research problems.
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