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On the Computational Complexity
) of System Diagnosis
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Abstract-In this paper we analyze the computational complexity
of system diagnosis. We show that several problems for instanta-
neous and sequential fault diagnosis of systens are polynomially
complete and that for single-loop systems these problems are
solvable in polynomial time.

Index Terms-Fault diagnosis, polynomial time algorithm, poly-
nomially complete, self-diagnosable systems, Turing machines.

I. INTRODUCTION
THE AVAILABILITY of computers is a matter ofprime

concern, as well as their reliability, and consequently
formal studies of self-diagnosability are required. A number
of papers dealing with various aspects of self-diagnosable
systems have appeared. Preparata et al. [1] first introduced a
graph-theoretic model of digital systems for the purpose of
diagnosis of multiple faults, and presented methods of
optimal connection assignments for one-step and sequential
fault-diagnosis procedures. In this model a system is made
up of a number of units where each unit is assumed to be
tested by some other units. With this model, necessary and
sufficient conditions were given for such systems to be
diagnosable for at most t faulty units [1]-[6].

Moreover, the problem of identifying the faulty units
based on the test outcomes of the system was also in-
vestigated [7]-[9]. However, in general, the problem of
finding a minimum set of faulty units is known to be
polynomially complete [7]. That is, this problem can be
solved in polynomial time if and only if the traveling
salesman, knapsack problem, etc., can be solved in polyno-
mial time. In this paper we show that several problems for
instantaneous and sequential fault diagnosis of systems are
polynomially complete and that for single-loop systems
these problems are solvable in polynomial time.

II. PRELIMINARIES
Consider a system of n operating units capable of testing

the correctness of one another. The testing arrangements
can be represented by a directed graph G = (V, E), where the
set ofvertices V = {u1, u2, ... , u1} represents the units. For u ,
uj E V, there is an edge from vertex ui to uj; i.e., (ui, uj) E E, if
and only if u, tests uj. The testing unit ui evaluates the tested
unit uj as either fault-free or faulty, the evaluation being
meaningful only if ui is fault-free. The test outcome is
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indicated by the weight aij on the edge (ui, uj) E E and obeys
the following rule:

aij= O, if ui and uj are fault-free

aij= 1, if ui is fault-free and uj is faulty

aij = O, 1, if ui is faulty.

The test outcomes {a1,} =_ a is termed the syndrome ofthe
system. Given a directed graph G = (V, E) of a system S and
a syndrome a = {aij} of S, the fundamental problem is to
identify the faulty units. It should be noted that each feasible
set of faulty units F must satisfy the following two
conditions:

1) aij = 1 for all (ui, Uj) E E, such that ui, F and uj E F;
2) aij = 0 for all (ui, uj) E E, such that ui, uJ E F.

We call such subset F ofV to be a consistentfault set ofS with
respect to a.

Definition 1: A system S, represented by a directed graph
G = (V, E), is said to be one-step t-fault diagnosable if, for
any syndrome a, there exists at most one consistent fault set
F with respect to a such that I F < t, where X denotes
the cardinality of a set X.

It is easy to see that in a one-step t-fault diagnosable
system all faulty units can be identified, provided the
number of faulty units present does not exceed t.

Let F,,, be the set of all consistent fault sets with respect to
a such that the number of faulty units present does not
exceed t; i.e., F, =,{Fi Fi < t, Fi is a consistent fault set
with respect to a}.

Definition 2: A system S, represented by a directed graph
G, is said to be sequentially t-fault diagnosable if, for any
syndrome a, either F,,, = 4 or nFi e Ft,, Fi * 4..

In a sequentially t-fault diagnosable system, ifthe number
of faulty units present does not exceed t, thennFi e Ft,a F, is
not empty if there exists at least one faulty unit. Thus we can
regard all the units belonging to the intersection as faulty.
Hence there exists a sequence of applications of tests and
repairs of identified faulty units that allows all faulty units
originally present to be identified.

Let P be the class of languages accepted by deterministic
polynomial time-bounded one-tape Turing machines, and
NP the class of languages accepted by nondeterministic
polynomial time-bounded one-tape Turing machines (see
Aho et al. [13]). The problem "Is P = NP?" is a longstanding
open problem in complexity theory. The notion of "P-
complete" used here is that of Sahni [12].
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Definition 3: A problem P1, is said to be P-reducible to a

problem P2 (written P1 oc P2) if the existence of a deter-
ministic polynomial time algorithm for P2 implies the
existence of a deterministic polynomial time algorithm for
P1.

Definition 4: Two problems, P1 and P2, are P-equivalent
if P1 ocP2 and P2 oc P1.

Definition 5: A problem Pi is said to be P-complete if Pi
has a deterministic polynomial time algorithm if and only if
P = NP. Let PC be the equivalence class of P-equivalent
problems being P-complete.

III. COMPLEXITY OF SYSTEM DLIGNOSIS

One-step fault diagnosis is to identify all faulty units in a
system instantaneously. In a one-step t-fault diagnosable
system, there exists a unique consistent fault set, provided
that the number of faulty units does not exceed t. However,
in general, there exists more than one consistent fault set.
Hence, we regard the minimum consistent fault set as the
most likely consistent fault set. The problem of finding such
a minimum fault set is known to be P-complete [7].

Sequential fault diagnosis is a sequence of applications of
tests and repairs of identified faulty units that allows all
faulty units originally present to be identified. Hence, in
sequential fault-diagnosis procedures it is important to
compute nFie Ft,a, F,.

Problem 1 (Pl): Given a system S, represented by a

directed graph G = (V, E), a syndrome a, and a positive
integer t, does there exist a consistent fault set F of S with
respect to a such that IF < t?

Problem 2 (P2): Given a system S, represented by a

directed graph G = (V, E), a syndrome a, a unit u, and a

positive integer t, does there exist Fi such that u 0 Fi and
Fi E F,,,?
Problem 3 (P3): Given a system S, represented by a

directed graph G = (V, E), a syndrome a, a unit u, and a

positive integer t, does the unit u belong to nFi e Ft,. Ft?
Problem 4 (P4): Given a system S, represented by a

directed graph G, a syndrome a, and a positive integer t, find
nFie Ft, Fi.
Problem 5 (PS): Given a system S, represented by a

directed graph G, a syndrome a, and-a positive integer t, find
at least one unit in nFi( Ft,, Fi if not empty.

Problem 6 (P6): Given a system S, represented by a

directed graph G = (V, E), a syndrome a, and a unit u, does
there exist Fi such that u 0 Fi and Fi E Flyl ?

Problem 7 (P7): Given a system S, represented by a

directed graph G = (V, E), and a syndrome a, find
nFi e Flvl,a Fi.

In this section, we show that the previously stated prob-
lems P1-P5 for sequential and one-step fault diagnosis are

P-complete and that problems P6 and P7 are solvable in
polynomial time.

Lemmna)I
Pl oc P2.

Proof: Given a system S represented by a directed
graph G = (V, E), a syndrome a = {aij I (ui, uj)E}, and a

positive integer t, construct a system S' represented by a
directed graph G' = (V', E') such that V' = V u {up, Uq} and
E= E u {(UP, Uq), (Uq, up)}. Let a' be a syndrome of S' such
that a'= a u {a =, aq,, 0}.

It can easily be shown that a set F is a consistent fault set of
S with respect to a ifand only ifF is a consistent fault set ofS'
with respect to a' such that up, Uq 0 F. Hence we can see that
a polynomial time algorithm for P2 implies a polynomial
time algorithm for Pl. Q.E.D.
Maheshwari and Hakimi [7] have shown that the problem

of finding the minimum consistent fault set is P-complete,
and thus P1 E PC. It can easily be shown that P = NP
implies P2 E P. From this and Lemma 1, we have P2 E PC.
It can also be shown that Problems P2, P3, and P4 are
P-equivalent. Hence, we have the following theorem.

Theorem I

PI, P2, P3, and P4 E PC.
To diagnose a given system sequentially, it is not always

necessary to find all the units in nFi t,ffF j, but it is
necessary to find at least one unit in nFi c Ft,oj. This is
Problem 5, but even for P5 we can show it to be P-complete
in the following theorem.
Given a system S, represented by a directed graph G = (V,

E), a syndrome a, and a positive integer t, let us define the set
X. corresponding to a unit u innFi e Ft,6 Fi as follows. X. is
the smallest set of vertices such that 1) u E X,,, and 2) if
u; E X", (u,, uj) E E and aij = O, then ui E X.. Let S' be the
system represented by the directed graph G' = (V', E') such
that V' = V-X. and E' = {(ui, uj) (ui, uj) E E, ui, uj E V'}.
Let a'={aijIaijae a, (u,, Uj) EE'}, t' = t - IX.I and
Ft , = {F I F I < t', F' is a consistent fault set of S' with
respect to a'}. For the systems S and S', we have the following
lemma.

Lemma 2

1) For any Fi c Fta, Xu ' Fi.
2) Ft,={Fi F Fi=--XU, Fi E Ft,}.
3) nFieFt,6Fe = AF,eF,',G F, UXI .

Proof: 1) Suppose that there exists a set F such that
X. F and F E F,,,. From this and the definition ofX. we
can see that there exists an edge (ui, uj) E E such that ui,
uj E Xu, ui S F, uj E F, and aij = 0. This contradicts that F is
a consistent fault set of S with respect to a.

2) For any Fi E F,,a, X. ' Fi, and thus Fi-X. Ft,,,.
Hence

Ft,, {F! F = Fi - Xu, Fi E Ft,

Conversely, we show that for any F E F,,,, there exists a
set Fi such that F! = Fi - Xu and Fi E F,,a.
For any F! E F,,,,,, F is a consistent fault set of S' with

respect to a'. Hence, aij= 1 for all (ui, UJ) E E such that
ui 0 F' u X. and uj E F', and ai =0 for all (ui, uj) E E such
that ui, uj 0 F' u X.. From the definition of X., we have
that aij = 1 for all (ui, uj) E E such that ui, Fuu Xu and
U E Xu.

Therefore, F; u X, is a consistent fault set of S with
respect to a. Clearly, F u X."= 4 and IF u XuI =
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IFJl + IX. < t. Hence Fi = F u X. is in F,, and

Ft,, c {EFi|F= Fi-Xu, Fi Ei Ft,,al
3) From 1) and 2) it is clear that

n Fi= n (F-"-n -
Fi, e Ft,,,, Fi c Ft,a Fi Ft,,

Hence

n Fn=A F>UXU.
Fi e Ft,a Fi,e Ft',,'

Q.E.D.

block B.

10 0 0 0 0 0 1 ] 1 1 1 1 1 0
i- i+ll--- ' W

_l i i+l s s+l u j'1

t_ L

(a)

1,0O OI 0 0 0 0@_

a-1 i i+l

a.

0 0 1 1 1 1 1 1 1 '0
-.W reo *0-- - -*J4

s- s s+l u.,

alternately fauyalternately faulty

Theorem 2
P5 E PC.

Proof: From Theorem 1, P4 E PC. Clearly, P5 oc P4.
Hence it suffices to show P4 oc P5.
Given a system S, represented by a directed graph G = (v,

E), a syndrome c, and a positive integer t, then we can find
nFi E F,,, Fi, using the following algorithm.

ui-i ui ui+l uS

O : fault-free unit

*: faulty unit

(b) Z! + /2j

;-1US Us+l

alternately faul

1 I0

u.j

Lty

(c) rti/21
Fig. 1. Illustration for Lemma 3.

Algorithm for P4

OUTPUT (the empty set);
while t > 0 do

begin

use the algorithm for PS to find at least one unit u in
nFie Ft,a Fi if not empty;
if the algorithm judges the intersection to be empty
then stop
else
bei

- construct the set X. corresponding to u;

delete all units in X, from the system;
t+t- IX-1;
OUTPUT 4-OUTPUT U X,

end
end

end

From Lemma 2, clearly this algorithm terminates and
then OUTPUT =nFi Ft,a F,. If the algorithm for P5 can be
done in polynomial time, then the previous algorithm for P4
is a polynomial time algorithm. Hence P4 cc P5. Q.E.D.

Theorem 3

P6 and P7 are solvable in polynomial time.
Proof: Let xl, x2, * x, be the binary variables corre-

sponding to the units ui, u2, , un, respectively, such that
xi = 1 if unit ul is fault-free, and x, = 0 if unit ui is faulty.
From Preparata [2], we see that a set F is a consistent fault
set of a system S with respect to a syndrome a if and only if
the assignment of 0's to the variables in F and of l's to the
variables not in F gives the following Boolean expression the
value 1:

nj (xi Vxaiij v ajajjaij e a

Similarly, for a consistent fault set F, which does not
contain a given unit Uk, the previous expression can be
reduced to the following expression:

Hi (Xi XjaijvXjaHj)-l (xjiikj v Xjaij) (xi V ik).
aiija akiaE aic-a
i,j$#k

Therefore, the just given Boolean expression is satisfiable
[14] if and only if ui 0 F for some F E F,a This expression is
in 2-conjunctive normal form, and thus P6 is P-reducible to
the 2-satisfiability problem which has a polynomial time
algorithm [14]. Hence P6 is solvable in polynomial time.
We can see that u 0 F for some F EFF., if and only if

uXF eF. F. Therefore, using a polynomial time algo-
rithm for P6, we can determine whether u E nF e Ff, F for
each u E V, and thus we can construct n Fe F, aF in polyno-
mial time. Hence P7 is solvable in polynomial time.

Q.E.D.

IV. SINGLE-LOOP SYSTEMS
A single-loop system is a system consisting of a cycle of

units ul, u2, **, u. in which unit ui tests unit ui+ 1,
1 < i < n - 1 and unit un tests unit u1. The necessary and
sufficient condition is given for such single-loop systems to
be sequentially t-fault diagnosable [1], [2]. In Section III we
have shown that, in general, Problems P1-P5 are P-
complete. In this section, we show that for single-loop
systems Problems P1-PS are all solvable in polynomial
time.
Given a single-loop system S, represented by a directed

graph G = (V, E) and a syndrome a, let us partition the loop
into blocks of units where each block Bi= {ui, ui+1, ,

us, ...,uj}has the weight pattem of the form O .. .01 ... 1, as
illustrated in Fig. 1(a). In the case when the test outcomes are
all l's, this partition is one partition having only one block V.

Let (ui, Uj) be an edge in E; ui is called the tail and uj the
head of the edge (ui, uj); La] denotes the greatest integer not
exceeding a, while [al denotes the smallest integer not
smaller than a.
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Lemma 3
Let B1, B2, , Bk be all blocks of single-loop system S

with respect to syndrome a. For a minimum consistent fault
set F with respect to a, we have

k

|Fl|= E [lJ/2]
i= 1

where 1i is the number of edges of weight 1 whose tail is in
block Bi.

Proof: If the syndrome a is a, where all test outcomes
are l's, then we have k = 1; i.e., block B 1 contains all units in
the system. In this case, clearly, the cardinality of the
minimum consistent fault set is [r1 /21.

If a is a syndrome where at least one test outcome 0
appears, then we can let 1i be the number ofedges ofweight 0
whose heads are in block B1, where Bi = {tu, ui+1,,.1 us, ,
uj}. Let us be the last unit which is the head of an edge of
weight 0 [see Fig. 1(a)]. If us, is faulty, then ui, uj+ 1, , u are
all faulty and we obtain the smallest set Fio of faulty units in
block Bi, as shown in Fig. l(b). The number of such faulty
units is II + Li, /2J. If us is fault-free, then we have the smallest
set Fi1 offaulty units in B1, as shown in Fig. 1(c). The number
of such faulty units is r[1/21.

Since li > 0, we have li + Lli/2jJ [li/21 for all i. Therefore,
FiI is smaller than Fio, which implies that Fi1 is the smallest
set of faulty units in Bi. From this, we can see that the union
of Fil for all Bi (1 < i k) is the minimum consistent fault
set, the cardinality of which is E= 1 [li/21. Q.E.D.

Given a single-loop system S represented by a directed
graph G = (V, E) and a syndrome a, we can compute the
value 1i for each block Bi in 0( V I) steps. Therefore, from
Lemma 3 we have an 0(I V t ) algorithm for computing the
cardinality of the minimum consistent fault set F. Clearly,
IF t ifand only ifthere exists a consistent fault set F such
that F I < t. Hence by computing |IF we can solve
Problem 1, and thus we have the following theorem.

Theorem 4

For single-loop systems there exists a deterministic algo-
rithm for P1 of time complexity 0( V I), where VI is the
number of units.
For single-loop systems, Problems 2 and 3 are also

solvable in time complexity 0t( V ).

Theorem 5
For single-loop systems, there exists a deterministic algo-

rithm for P2 and P3 of time complexity 0( V 1).
Proof: Let G = (V, E) be the directed graph represent-

ing a single-loop system S and let a be a syndrome. Let F be a
minimum consistent fault set with respect to a such that
u 0 F for a given unit u. Clearly, I F < t if and only if there
exists a consistent fault set F such that u 0 F and F .< t.
Therefore, there exists an 0(I V I ) algorithm for P2 and P3 if
we have an 0(I Vt ) algorithm for computing the cardinality
of a minimum consistent fault set F with u PP. Hence, to
complete the proof it suffices to show that there exists an
0(I V ) algorithm to compute I F with u 0 P.

__________________________ block B _I

1 0 0 0 0 0 1 1 1 1 1 :0

u: U1 U2 U3 Us1 U S+ U

(a)

U=Us+j
1 O O O 0 1 1 1 1 1 11 11 1 10

un Ul u2 3 U5 Us+l US+3 us+j-2 us+jFP u5+j+l um
I -I]

alternately faulty alternately faulty

(b) LtI/21 + 1

1 .0 0 0 0 0 1 1 1 1 1 1 1 1 1 0

u 1:u 2 us us+l ue
=u

alternately faulty

(C) A; + LQ1/2J
block Bk

10 0 0 0 0 1 1 1 1 1 1 11 lB

Un-l n- 01

alternately faulty

(d) Ltk/2j + 1

lOB 000e1D ~-t1 1 1 1 l

Un' U1 u2 ua US+1 Un-1 U U1
=u I

alternately faulty

(e) Ii + Ft1/21
Fig. 2. Illustration for Theorem 5.

Let V = {ul, u2, .,u5} and let B 1, B2, ,,Bkbe all blocks
of V partitioned according to the syndrome a. If a is a1
where all test outcomes are l's, then we have k = 1; i.e.,
block -B1 equals V. In this case, clearly, there exists a
minimum consistent fault set P with u 0 P, and the cardinal-
ity of F is [n/2].

If a is a syndrome where at least one test outcome 0
appears, then without loss of generality we assume u E B1,
B1 = {ul, U2, , US, , Um}, anl= al2= ... = as-I,s= 0
and as,s +1 = * = am,m, = 1[see Fig. 2(a)]. Let X be the set
of units us +3,9 Us+5 * selected alternately from us+
until um. Clearly, XI = [ll /21.
Case 1: u 0 X. Clearly, there exists a minimum consistent

fault set F with u ¢ P, and thus It = = [4/2].
Case 2: u E X and u * us+,. Suppose that u = us+j and

unit u is fault-free, then we have the smallest set of faulty
units {us+1, us+3 , Us+j-2;Us+j1,US +j+l,Us+j+3, }in
block Bl, -as shown in Fig. 2(b). The number of such faulty
units is [11/2] + 1. For other blocks Bi, the smallest number
of faulty units is [ri /21. Therefore,

k

|IF L1l /2J + I + E rl-1
i=2

Case 3: is= us+1 and k2.2. Suppose that unit is is
fault-free, then we have the smallest set of faulty units in
block B1 as shown in Fig. 2(c). The number of such faulty
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units is I'I + [1 /2J. In this case, unit u. in block Bk is also
recognized to be faulty. Therefore, we have the smallest set of
faulty units in block Bk, as shown in Fig. 2(d). The number of
such faulty units is L[k/2j + 1. Hence, we have

k-i

l=[l/2J+ 1I + LIk/21+ 1 + E [ri/21.
i=2

Case 4: u = u+ 1, k = 1, and 11 > 2. Suppose that u is
fault-free, then we have the smallest set of faulty units as
shown in Fig. 2(e). The number of such faulty units is
11 + r1 /21. Therefore,

If I =II + rl,/2i.
Case 5: u = u,+,, k = 1, and 11 = 1. Clearly,

u = u +1 = u,,, and in this case there exists no consistent
fault set F with u 0 F.

In any of the cases mentioned above, we can compute the
cardinality of a minimum consistent fault set F with u 0 F in
computational time of 0(1 V I). Q.E.D.
By applying an algorithm for P2 to each unit ui E V, we

can solve Problems 4 and 5. Therefore, from Theorem 5 we
can see that P4 and P5 are solved by 0( V|) algorithm for
single-loop systems.

Theorem 6

For single-loop systems there exists a deterministic algo-
rithm for P4 and P5 of time complexity 0(| VI).

V. CONCLUSION

In this paper we have clarified the computational com-
plexity of fault diagnosis in self-diagnosable systems. In
general, several problems for one-step and sequentially fault
diagnosis are P-complete. However, for single-loop systems
such problems are all solvable in polynomial time.
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