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On Closedness and Test Complexity of Logic
Circuits

HIDEO FUJIWARA, MEMBER, IEEE

Abstract—The concept of closedness of a set of logic functions
under stuck-type faults is introduced. All sets of logic functions closed
under stuck-type faults are classified. For the sets of logic functions
closed under stuck-type faults, the test complexity and the universal
test sets are considered. It is shown that for each class of linear func-
tions, OR functions, and AND functions, both the minimum numbers
of multiple fault detection tests and multiple fault location tests are
exactly n + 1, where 7 is the number of inputs of the circuits, and that
there exists universal test sets with » + 1 tests to detect and locate all
multiple faults in such circuits.
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I. INTRODUCTION

HE problem of fault detection and location in logic cir-

cuits is of extreme importance and much attention has
been devoted to it. Many studies have been reported for special
classes of logic functions such as fan-out-free functions [2],
linear funetions [2]-[4], monotone functions, and unate
functions [5]-[8]. In this paper we introduce a new concept
of the closedness of a set of logic functions under stuck-type
faults. A set F of logic functions is said to be closed under
stuck-type faults if any stuck fault changes a function in F' to
a faulty function in F, where the circuit is composed only of
the elements realizing functions in F. It is shown that any set
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of logic functions closed under stuck-type faults is also closed
under the degeneration of input variables and vice versa.

The classical closedness problem in logic and switching
theory was completely solved for the binary case and all the
closed classes under composition were classified [1]. Using the
results, all the sets of logic functions closed under both de-
generation and composition are classified, among which are
the sets of monotone functions, linear functions, OR functions,
and AND functions, etc. Although both the sets of fan-out-free
functions and unate functions are not closed under composi-
tion, it is shown that these are closed under some restricted
composition, and thus these sets are shown to be closed under
stuck-type faults provided that the circuits are constructed by
the restricted composition.

For the sets of logic functions closed under stuck faults we
consider the test complexity, i.e., the minimum number of fault
detection tests and fault location tests, and present the uni-
versal test sets derived only from the functional description of
the circuits. The universal test set for a class F can detect
and/or locate all stuck faults in any realization of a function
in F such that the circuit is composed only of the elements
realizing functions in F. It is shown that for each class of linear
functions, OR functions, and AND functions, both the mini-
mum numbers of multiple fault detection tests and multiple
fault location tests are exactly # + 1, where » is the number
of inputs of the circuits, and that there exist universal test sets
with n + 1 tests to detect and locate all multiple faults in such
circuits

II. CLOSEDNESS UNDER DEGENERATION

In this section we prepare several notations and definitions
on the closedness of logic functions and present all the sets of
logic functions closed under both degeneration and composi-
tion.

Let 2, be the set of all n-input logic functions, then the set
of all logic functions can be represented as follows:

Q=U Q,

n=1
The set of all single-input logic functions is
Q, =1{0,1,1, N}

where 0 and 1 denote the constant functions, I denotes the
identity function, and NV denotes the negation function, i.e.,
0(x)=0,1(x) =1,I(x) = x,and N(x) = X.

Let f be in {2, and G be a set of logic functions. A logic
function 4 in §,, is said to be constructable from f and G if h
can be written as follows:

h(xy, X2, xn) = f(g (X117 5 Xe(1nn)s
L &ip(Xep1)s T s Xe(p o))

where the x,(; j)’s are variables chosen from x4, x,* - -, x, and
eachg;, -, g, GU {I}. It is obvious that this construction
implies fan-out-free structure except at the primary inputs.
However, applying this construction many times we can obtain
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arbitrary network structure as follows. Let F and G be subsets
of 2. We denote F ® G the set of all logic functions construc-
table from elements in F and subsets of G.

For any subset F of (, let

1) FO =F |l
2) F@ = Fld-n g F) ford = 2,
3) F¥= | F@,

d=1

F*is said to be the closure of F. F is said to be closed under
composition if F = F*_F is said to be closed under degener-
ation if F = F ® {0, 1}. F is said to be closed under 0-degen-
eration (I-degeneration) if F = F @ {0} (F = F ® {1}).

Now we present the necessary and sufficient condition for
a set of logic functions to be closed under both degeneration
and composition in the following lemma. Henceforth, we as-
sume that any set of logic functions except {0, 1}, {0}, and {1}
contains the identity function /, in order to consider nontrivial
sets of logic functions.

Lemma 1: For any subset F of ( such that F = F*:

1) F=F®{0,1} ifand only if 0,1 € F,
2) F=F ® {0} ifand only if 0 € F,
3) F=F®{l} ifand only if 1 € F.

Proof: 1) Suppose that F = F ® {0, 1}, then we have
F=F®{0,1}2{}®{0,1} 210, 1}

which implies 0, 1 € F.

Conversely, suppose that 0, 1 € F. Clearly, we have F = F
® F. Therefore, F = F ® F = F ® {0, 1}. From the definition
of operation ®, it can be easily shown that F ® {0, 1} = F.
Hence, F = F® {0, 1}.

2) and 3) can be proved similarly. Q.E.D.

All the closed classes under composition were classified (see
Kuntzmann [1]). From the result we can obtain all the closed
classes that contain constant functions 0 and/or 1. Fig. 1 shows
all the closed classes that contain both 0 and 1. Fig. 2 shows
all the closed classes that contain 0, and Fig. 3 shows all the
closed classes that contain 1. Figs. 1, 2, and 3 are obtained from
Kuntzmann [1]. Therefore, from this and Lemma 1 we can see
that the closed classes under degeneration, 0-degeneration, and
1-degeneration are those shown in Figs. 1, 2, and 3, respec-
tively. The notations shown in Figs. 1, 2, and 3 are defined as
follows.

A logic function f(x1, x5, - -, X,,) is said to be monotone if
for every variable x; (1 <i < n)

Sx, -

'1xﬂ)
Sf(X],"' s Xi—1, 1, xi+l"",xn)'

*y Xi—1, Os Xi+1,""

A logic function f(xy, - -, x,) is said to be linear if it can be
expressed in the form

cCo®C1x BB cpx,

wherec; =0or1fori=0,1,---,n. Alogic functionf(xl, e
X,) is said to be an OR function if it can be expressed in the
form

coVerxy VeV CpXp
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Fig. 1. Closed sets containing constants 0 and 1.

Fig. 3. Closed sets containing contant 1.

¥ ={fx,x, -, x) =0}

M = {f|f is a monotone function except 0 and 1}

P = {f|f = g h, g is both monotone and self-dual, and A
e @

S ={f|f =g Vv h, g is both monotone and self-dual, and
e Q

2 = {x v y}* = class of OR functions

IT = {x - p}* = class of AND functions

L = {f|f is a linear function}

af=alUp
ay=aly
My =M U {0, 1}
My=MU {0}
. . M, = MU {1}
Fig. 2. Closed sets containing constant 0. 201 =3 U {0’ 1}
v _ Zo=2 U {0}
wherec; =0or 1fori=0,1,- -, n. Similarly, a logic function 2 =2 U1}
S(x1, -+, x,) is said to be an AND function if it can be ex- Iy, =T U0, 1}
pressed in the form II, =11 U {0}
‘ II, =11y {1}

coler V x1)(e2 V x2) = (ca V Xp) Maj (x, y.z) = xp V yz V 2x
where¢; =0or 1 fori =0,1,---, n. Alogic function f(x,, - - Y MP, = {Maj, O}*

Xp) is said to be self-dual if the following equation holds: MIl, = {f|f = x - g, g is a product of sums without nega-
SX1, X2, 0, X0) = f(X1, X2, *, Xn). tion} U {0}

ayIl = {f|f = x - g, g is a product of sums}
a={flf(x,x,---,x) = x} Ly=ix®yel*
ﬁ=W(x,x,"',X) = 1} MS; ={Maj, 1}*
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MZ, ={f|f=x Vv g, gisasum of products without nega-
tion} U {1}

afZ ={f|f=x Vv g, g is a sum of products}.

In Figs. 1, 2, and 3, each single line “_"" shows that the
lower set is a subset of the upper one, and each double line
“—" shows that there exist infinitely many closed sets between
both ends.

From Lemma 1 and the result shown in Fig. 1, the following
theorem holds.

Theorem I: Let F < Q. If F=F*=F®{0, 1}, then Fis Q,
M()l, L, 201, Ho], QT, or {0, 1, 1}*.

III. CLOSEDNESS UNDER STUCK-TYPE FAULTS

Let F be a set of logic functions, and let f be a logic function
in F. If a logic circuit which realizes the function f is composed
of the elements realizing functions in F, then such a realization
is called a closed composition with respect to F. Henceforth,
we assume that any realization of a function fin F is a closed
composition with respect to F. As an example, consider a
function f in F such that f can be expressed in the form

S(xi1, X2, x3, x4) = g1(g1(x1, X2), g2(x2, X3, X4))

where g; and g, is in F. Then we obtain a closed composition
as shown in Fig. 4, where F and Eare the elements realizing
functions g; and g,, respectively.

The standard stuck-type fault model will be assumed, i.c.,
all faults can be modeled by lines which are stuck at logical 0
or stuck at logical 1, while the functions performed by the el-
ements in the circuit remain unchanged. A fault consisting of
a single stuck line is called a single fault, and a fault involving
one or more stuck lines is called a multiple fault. A set of tests
which detects all single (multiple) faults in a circuit C is called
a single (multiple) fault detection test set for C. A set of tests
which detects and distinguishes all distinguishable single
(multiple) faults in C is called a single (multiple) fault loca-
tion test set for C.

A set F of logic functions is said to be closed under stuck
Sfaults if any multiple stuck fault changes a function in F to a
faulty function in F. F is said to be closed under stuck-at-0
(stuck-at-1) faults if any multiple stuck-at-0 (stuck-at-1) fault
changes a function in F to a faulty function in F. The closed
sets under stuck-at-0 (stuck-at-1) faults will be considered
when the logic circuits are composed of the elements such as
fail-safe elements in which only a stuck-at-0 (stuck-at-1) fault
may occur. Let S(F) be the set of all faulty functions that can
occur from each function in F when a multiple stuck fault is
present. Let So(F) (S1(F)), be the set of all faulty functions
that can occur from each function in F when a multiple
stuck-at-0 (stuck-at-1) fault is present. Then we can say that
F is closed under stuck fault if and only if S(F) = F, and that
F is closed under stuck-at-0 (stuck-at-1) faults if and only if
So(F) € F (S1(F) < F). It can easily be shown that any set
of logic functions closed under stuck-type faults is also closed
under degeneration and vice versa in the following theorem.

Theorem 2: For any subset F of € such that F = F*:

1) F2S(F) ifand only if F = F ® {0, 1}

2) F 2 So(F) if and only if F = F ® {0}

3) F=2S((F) ifand only if F = F @ {1}.
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Fig. 4. Circuit realizing function f.

Proof: 1) Suppose that F = S(F). Obviously, 0, 1 €
S(F). Therefore, we have F = S(F) = {0, 1}. From this and
Lemma 1, we have F = F ® {0, 1}.

Conversely, suppose that F = F ® {0, 1}, which implies 0, 1
€ F from Lemma 1. Let C be a circuit realizing a function f
in F. Let o be a multiple stuck fault such that lines /;, /5, - -,
I are stuck at oy, g2, - - -, 0%, respectively. Let C, be the faulty
circuit due to the fault o, and let f,, be the faulty function re-
alized by the circuit C,. Clearly, the circuit C, is equivalent
to the circuit in which the lines /1, /5, - - -, I are cut and con-
nected with constant elements o1, 02, * * +, 0%, respectively. By
hypothesis, F is closed under composition, and moreover F
contains constants 0 and 1. Therefore, the faulty function f,
is also in F which implies S(F) < F.

2) and 3) can be proved similarly. Q.E.D.

From Theorems 1 and 2 we have the following corollary.

Corollary 1: Let F = Q. If F = F*and F = S(F), then F is
Q, Mo], L, 201, Ho[, QT, or {0, 1, I}*

Corollary 1 shows that all the sets of logic functions that are
closed under both composition and stuck faults are 2, Moy, L,
Zo1, Hoy, Q1,and {0, 1, I}*. Similarly, from Theorem 2, Lemma
1, and the results shown in Figs. 2 and 3, we can see that all the
closed sets under stuck-at-0 faults and stuck-at-1 faults are
those shown in Figs. 2 and 3, respectively.

So far, we have considered only the sets closed under com-
position. However, there still exist many sets of logic functions
not closed under composition but closed under stuck faults.
Indeed, it can be shown that there exist infinitely many sets
of logic functions F such that F % F* and F = S(F). The
classes of fan-out-free functions and unate functions are the
examples of such sets of logic functions.

A single-output circuit C is fan-out-free if every line in C
is connected to an input of at most one gate where the gates are
assumed to be AND, OR, NAND, NOR, and NOT gates. A logic
function fis said to be a fan-out-free function if f can be re-
alized by a fan-out-free circuit. The class of fan-out-free
functions is not closed under the composition. As an example,
consider three functions f, g1, and g; such that

S(x1, X2, X3) = x1x2 V X2X3 V X3X)
gi(xy, X2, x3) = X1 V X2 V X3
g2(xy, x2) = x1x2.

The function f can be expressed using g; and g; in the form

F(x1, X2, x3) = g1(g2(x1, X2), g2(x2, X3), g2(x3, X1)).
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Although g, and g, are fan-out-free functions, f is not fan-
out-free. Hence, the class of fan-out-free functions is not closed
under composition.

Now we define a restricted composition as follows. Let F
be a set of logic functions. If a logic circuit C which realizes
a function f in F is composed of the elements realizing func-
tions in F, and if every line in C is connected to any input of at
most one element in C, then such a realization is called a closed
tree composition or simply a tree composition.

The class of fan-out-free functions is not closed under
composition. However, if we restrict our realization of a given
fan-out-free function to a tree composition, then we can easily
show that the class of fan-out-free functions is closed under
composition, and that it is also closed under stuck faults.

Theorem 3: The class of fan-out-free functions is closed
under both composition and stuck faults provided that the
circuits under consideration are realized by tree composi-
tions.

It is well known that the class of unate functions is not closed
under composition [1]. However, it can be shown that it is
closed under some restricted composition. One example of such
composition is a unate gate network introduced by Reddy [8].
Now we can extend the unate gate network to the closed
composition as follows. If a circuit C which realizes a unate
function is composed of the elements realizing unate functions
and the number of inversions in any path connecting two points
in C are the same, then such a realization is called a unate
composition.

As an example, consider two unate functions g and g, such
that

gi(x1,x2) =x; VX2 and ga(xy, x2) = x1X>.

Fig. 5 shows a unate composition using the elements realizing
g1 and g», where “4” denotes a positive unate variable and “—"
denotes a negative unate variable. The function f realized in
Fig. 5 can be expressed as follows:

S(x1, x2, x3) = g1(g1(x1, x2), g2(x2, X3))
=(x; V X2) 'V (x2X3)
=x;1 VX3V X3

It can be easily shown that the following theorem holds.
Theorem 4: The class of unate functions is closed under both

composition and stuck faults provided that the circuit under

consideration is realized by a unate composition.

IV. TEST COMPLEXITY OF LOGIC CIRCUITS

In this section we will apply the property of the closedness
under stuck faults to the fault detection and location problem.
For nontrivial sets of logic functions which are closed under
stuck faults, i.e., Moy, L, Zo1, and Ily;, we will consider the test
complexity, i.e., the minimum number of fault detection tests
and fault location tests, and present the universal test sets
derived from the functional description of the circuits.

Given a circuit C, the minimum number of tests required
to detect all single faults in C and to detect all multiple faults
in C will be denoted by 6;(C) and 6,,(C), respectively. The
minimum number of tests required to locate (to within an in-
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L)

Fig. 5. Unate composition.

distinguishability class) all single faults in C and to locate all
multiple faults in C will be denoted by A;(C) and A,,,(C), re-
spectively.

To see the test complexity of the sets of logic functions closed
under stuck faults, we first consider the class of monotone
functions and unate functions. An input vector X is said to
cover the input vector Y if X has 1’s everywhere Y has 1I’s. A
minimal true vertex of a logic function is the input vector that
does not cover any other true vertex except itself, and a max-
imal false vertex of a function is the input vector that is not
covered by any other false vertex except itself.

Betancourt [5] has shown that the set of all maximal false
vertices and minimal true vertices of a unate function f are
sufficient to detect any stuck-at-0 or stuck-at-1 fault in any
AND/OR realization of f. The result of Betancourt [5] has been
extended to multiple faults and unate gate networks by Reddy
[8]. The number of maximal false vertices plus minimal true
vertices of an n-input unate function is at most

n+1
n+1
2
where (x) denotes the number of combinations choosing y
y

things out of x things and | z] denotes the integer part of z.
(See Akers [7].) These results can be extended to the unate
composition introduced in Section III, as follows.

Theorem 5: If C is any realization of an n-input unate
function under unate composition, then

n+1
6m(C)S n+1
B

This theorem can be proved similarly to the proofs in the
literature [7], [8], using “closedness under stuck faults” in
Theorem 4, i.e., the property that if one or more stuck-at-0 or
stuck-at-1 faults are introduced into a unate circuit under a
unate composition, the resulting circuit is still unate.

Corollary 2: If C is any realization of an n-input monotone
function under closed composition with respect to My, then
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n+1

n+1
2
Next, we will consider the test complexity for the class of

linear functions. A linear function f(xj, x5, ", Xx,) can be
expressed in the form

0m(C) =

co®cix; @@ cpxy

wherec; =0or1fori=0,1,---,n. If co =0 (1), then the
function is called an odd (even) linear function. There are 27+!
linear functions of n variables, of which only two are nonde-
generate, i.e.,

X1®x, D ®x, and 1®x; ®x, DD x,,.

The two nondegenerate functions are complements of each
other. Hence, it is sufficient to consider only the odd linear
functions in order to clarify the test complexity of linear
functions. Henceforth, we restrict outselves to odd linear
functions which will be denoted by /,.

Many works on the test complexity of linear functions have
been reported [2]-[4]. For any EXCLUSIVE-OR tree realiza-
tion C of I, (see Fig. 6), it has been shown that d;(C) = 4 by

Hayes [2] and §,,,(C) < % + 1 by Seth and Kodandapani

[4], under the fault assumption that any stuck fault within
EXCLUSIVE-OR gates is considered. Under the same fault
assumption, Hayes [2] has shown that for any EXCLUSIVE-OR
cascade realization C of I, (see Fig. 7), 6,,(C) < n+ 2. Breuer
[3] has shown that for any EXCLUSIVE-OR tree realization C
of I, 65(C) = 3 under the fault assumption that permits only
stuck faults on the input and output lines of EXCLUSIVE-OR
gates. .

The linear function is usually realized in either cascade or
tree structure of EXCLUSIVE-OR gates. However, these real-
izations are special cases of closed compositions. There exist
some other realizations closed under composition that are
neither cascade nor tree. We will consider the test complexity
for closed compositions. Then we have the following the-
orem.

Theorem 6: If C is any realization of /,, under closed com-
position with respect to L, then n + 1 tests #o, ¢;, - -, t, are
sufficient to locate or distinguish all distinguishable multiple
stuck faults in C, where

t0=(0’0,..',0’0)
t1=(1,0’...,0)
t2=(09 1’09“'90)

| tn=(0,+,0, 1),
Proof: Any linear function of n or fewer variables can be
expressed in the form
La(x1, %2, -, xp) = ao ® a1x; © ax2 ® - ® a,x,
wherea; =0or1fori=0,1,---,nand 4 = (ag, ay, -, an).
Since the class of linear functions L is closed under composi-
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Fig. 6. EXCLUSIVE-OR tree realization.
X
1
- Closi o= =
X, x3

n

Fig. 7. EXCLUSIVE-OR cascade realization.

tion, any faulty function of linear circuits under closed com-
position is also a linear function of k (k < n) variables, and
thus it can be expressed in the above form. When 4 = (0, 1,
-++, 1), the linear function /4 represents the fault-free linear
function /,. Let Ip = by ® bx; ® -+ & b,x, be a linear
function realized by a circuit under test where b; = O or 1 for
i =0,1, -, n. Applying the vectors #g, t1, - -, t, to the
equation

IA(xh X2, ", xn) = IB(xla X2, axn)
we obtain
ao = bo

ao® a; = by ® b

ap®a,=by® b,
which implies

a; = b; fori=0,1,---,n.

Therefore, we can uniquely determine the values of a;’s, and
thus distinguish all 2”*! linear functions /s, applying n + 1
tests 2o, 21, ", th. Q.E.D.

Since the test set T = {tq, t1, - -, t,} is independent of the
structural description of a given circuit, it is a universal test
set under closed composition.

Theorem 7: If C is any realization of an n-input linear
function under closed composition with respect to L, then

0m(C) =Au(C)=n+1.

Proof: By Theorem 6, 6,,,(C) < \,,(C) < n+ 1. There-
fore, it suffices to prove that 6,,(C) = n+ 1.

Let C be any arbitrary realization of an n-input linear
function /, under closed composition. If it can be shown that
n + 1 tests are necessary to detect all multiple stuck faults on
the primary inputs of C, then we can say 0,,(C) = n + 1. This
will be proved in the following.

When we consider all the multiple stuck faults on the pri-
mary inputs xy, X2, " - -, x,, of C, there exist exactly 27+1 — 2
faulty functions /4’s such that
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A=(0,-++,0,0)
0,--+,0,1)
©0,-++,1,0) Lo
0+, 1,1)
(1’...’1’1)

except A = (0, 1,---,1)and (1,1, -, 1). Therefore, /4 isa
faulty function if and only if a; = 0 for some i (1 <i < n).

Applying all the 2” input combinations of (x1, x2, "+, X,)
to the equation /4(x1, x2," ", Xp) = X1 ® X2 @ - - ® x,,, WE
have 2” equations as follows:

a0=0
ap®a; =1
ao®an=1

a0®a|®a2=0

aa®a ®az;=0

if n is even,
if n is odd.

The maximum number of linearly independent equations
among the above 2" equations is n + 1. Therefore, n + 1
equations are necessary to determine the values ay, az," - -, an
uniquely. In other words, n + 1 tests are necessary to detect
all multiple stuck faults on the primary inputs of C. Hence, we
obtain 6,,(C) = n + 1. Q.E.D.

Next, we will show the test complexity for the class of OR
functions and AND functions. Any OR function of n or fewer
variables can be expressed in the form

fo
a0$a1$"-$an=ll

fa(x1,x2,° ", xp) =ao V aixy V axxa V- -V apXxy

wherea; =0or1fori=0,1,---,nand 4 = (ag, a1, ", an).
Since the class of OR functions 2 is closed under composition,
any faulty function is also an OR function of k (k < n) vari-
ables, and thus it can be expressed in the above form. When
A=(0,1,---,1), the OR function f4 represents the fault-free
OR function. There exist exactly 2” + 1 OR functions f4’s. In
the same way as the case of linear functions, we can distinguish
all 27 + 1 OR functions applying n + 1 tests to, 1, ", ¢, de-
fined in Theorem 6. Hence, we have the following theorem.

Theorem 8: 1f C is any realization of an n-input OR function
under closed composition with respect to 2, then n + 1 tests
to, L1, -, t, are sufficient to locate or distinguish all distin-
guishable multiple stuck faults in C.

For the class of AND functions we have the dual theorem of
Theorem 8 as follows.

Theorem 9: If C is any realization of an n-input AND
function under closed composition with respect to II, then n
+ 1 tests o, 71, - *  , 1, are sufficient to locate or distinguish all
distinguishable multiple stuck faults in C, where

to=(1,1,---,1)
1=(0,1,-+-,1)
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tr=(1,0,1,---,1)

;n=(1,1,”'9170)‘

Theorem 10: 1f C is any realization of an n-input OR (AND)
function under closed composition with respect to Z(II),
then

Sm(C) = An(C) = n+ 1.

The proof of this theorem is similar to Theorem 7.

V. CONCLUSION

In this paper the concept of closedness under stuck-type
faults has been introduced and all the sets of logic functions
closed under stuck-type faults have been presented. Applying
the property of closedness to the fault detection and location
problem, we have clarified the test complexity for the closed
classes and presented the universal test sets for them. Non-
trivial closed classes have a small sized universal test set due
to the closedness under stuck faults. So, the closedness under
stuck faults has the ease of detecting and locating faults in the
circuits.
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