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TABLE I
NUMBER OF CODE WORDS FOR SINGLE ERROR-CORRECTING CODES

CODE AN CODE SYMMETRIC ERROR-
LENGTH CORRECTING CODE

NUMBER OF NUMBER OF71. A CODEWORDS CODEWORDS [6]

10 11 94 72
12 13 316 256
18 19 13798 9728
28 29 9256394 8388608
36 37 1857283156 1275132482

1S an integer in a radix-2 representation. Therefore, the set defined
in (2) and (3) is the set of integers divisible by A, that is an AN code.
The AN code can be stated in the form of a theorem.

Theorem: When A is an odd prime and 2 is a primitive element of
a prime field GF(A), an AN code whose range is limited to 0 _ N _
(2A- -1)/A is capable of correcting a single asymmetric error. The
code length n is n = A - 1 and the number of code words M is

M = (2A- - 1)/A + 1.

In fact, the residue of the erroneous code word modulo A is equal
to the residue of the error value, 2i modulo A. Since 2 is a primitive
element, there is a one-to-one mapping between the set of integers
12iIO _ i _ A - 21 and the set of residues j2i mod A I0 < i < A - 21.
Therefore, the AN code is capable of correcting a single asymmetric
error.

1II. DISCUSSION

The single asymmetric error-correcting AN codes with A being
prime and 2 being primitive in GF(A) provide a greater code length
n = A -1 against (A - 1)/2 for symmetric case. They are linear and
cyclic since (2A1 - 1) is divisible by A. The numbers of the code
words of the single asymmetric error-correcting AN codes are shown
in Table 1. As shown in Table I these AN codes have more code words
than single symmetric error-correcting codes of the same code length.
Since these AN codes are cyclic, error correction can be made using
the decoding method for the arithmetic error-correcting cyclic AN
codes. In a code word, binary digits are arranged in the decreasing
order of weight from left to right. The residue of an erroneous code
word modulo A is computed as cyclically shifting the code word to
the right. If the residue of the code word shifted i times is 1, the error
value is 2i. Then the AN codes discussed are suitable for practical
applications to asymmetric channels, such as LSI memory protec-
tion.
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The Complexity of Fault Detection Problems for Combinational
Logic Circuits

HIDEO FUJIWARA AND SHUNICHI TOIDA

Abstract-In this correspondence we analyze the computational complexity
of fault detection problems for combinational circuits and propose an approach
to design for testability. Although major fault detection problems have been
known to be in general NP-complete, they were proven for rather complex
circuits. In this correspondence we show that these are still NP-complete even
for monotone circuits, and thus for unate circuits. We show that for k-level (k
2 3) monotone/unate circuits these problems are still NP-complete, but that
these are solvable in polynomial time for 2-level monotone/unate circuits. A
class of circuits for which these fault detection problems are solvable in poly-
nomial time is presented. Ripple-carry adders, decoder circuits, linear circuits,
etc., belong to this class. A design approach is also presented in which an ar-
bitrary given circuit is changed to such an easily testable circuit by inserting
a few additional test-points.

Index Terms-Combinational circuits, computational complexity, design
for testability, fault detection, polynomial algorithms, test generation.

I. INTRODUCTION

Because of the increasing circuit density in LSI/VLSI chips, the
fault detection problem is becoming more difficult, and thus an ef-
ficient test generation for logic circuits is a matter of prime concern
[1]- [3]. Unfortunately, however, major fault detection problems are
known to be NP-complete in general [4], [5]. Hence, it appears very
unlikely that the fault detection problems can be solved by a poly-
nomial time algorithm. One general approach to this problem is de-
signing easily testable circuits, i.e., design for testability. Many studies
have been reported for designing logic circuits for which test sets are
easily obtainable [3], [6]-[19].

In this correspondence we show that fault detection problems are
NP-complete for k-level (k > 3) monotone/unate circuits although
these circuits are known to be easy to test [1 5]-[ 19]. The proof pre-
sented here is much simpler than that of [4]. It is also shown that test
generation problem for monotone/unate circuits is NP-complete even
if the circuits under tests are known to be irredundant. After analyzing
the complexity of fault detection problems, we present a class of cir-
cuits for which these problems are solvable in polynomial time.
Ripple-carry adders, decoder circuits, linear circuits, etc., belong to
the above class. A design approach is then presented in which an ar-
bitrary given circuit is changed to such an easily testable circuit by
inserting a few additional test-points.

II. SATISFIABILITY PROBLEMS

The first NP-complete problem was reported by Cook [20], which
is usually referred to as the satisfiability problem (SAT, for short).
We give a brief description of this problem in the following since we
need it in our discussion of NP-completeness of fault detection
problems. For definitions of NP-completeness see [5].
A literal is either x orx for some variable x, and a clause is a sum

of literals. A Boolean expression is said to be in conjunctive normal
form (CNF) if it is a product of clauses. A Boolean expression is
satisfiable if and only if there exists some assignment of 0's and l's
to the variables that gives the expression the value 1. Then the SAT
problem is specified as follows.
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Satisfiability (SA T): Is a Boolean expression satisfiable?
Theorem 1 (Cook's Theorem [20]): SAT is NP-complete.
An expression is said to be clause-monotone if each of its clauses

contains either only negated variables or only unnegated variables.
The satisfiability for clause-monotone expressions (CM-SAT, for
short) is also NP-complete.

Theorem 2: CM-SAT is NP-complete.
For proofs of Theorems 2-4 see [231.
Consider a Boolean expression in conjunctive normal form E with

variables xl, X2, * * *, xp and clauses Cl, C2, - - *, Cq. A clause Ci is
said to cover a clause Cj (written Ci - Cj) if all literals in Cj are
contained in Ci. An expression E is said to be reduced if no clause in
the expression covers another. The satisfiability for reduced clause-
monotone Boolean expressions (RCM-SAT, for short) is also NP-
complete.

Theorem 3: RCM-SAT is NP-complete.
Although SAT, CM-SAT, and RCM-SAT are all NP-complete,

the satisfiability problem is solvable in polynomial time if a Boolean
expression is monotone or unate. An expression is said to be monotone
if it contains only unnegated variables. An expression is said to be
unate if each variable is either only negated or only unnegated. The
satisfiability problems for monotone expressions and unate expres-
sions (M-SAT and U-SAT, for short, respectively) have been shown
to be solvable in time 0(l), where I is the length of an expression.

Theorem 4: M-SAT and U-SAT are solvable in time 0(l), where
I is the length of an expression.

III. COMPLEXITY OF FAULT DETECTION

In this correspondence we shall be concerned with multiinput and
multioutput combinational circuits composed of AND, OR, NAND,
NOR, and NOT gates.

First, we consider the following decision problems.
Fault Detection (FD, for short): Can a single stuck fault be de-

tected by input-output experiments?
Irredundancy (IR): Is a combinational circuit C irredundant (i.e.,

can all single stuck faults be detected)?
In general, FD and IR are both known to be NP-complete [4]. In

this section we show that these problems are still NP-complete even
for k-level (k > 3) monotone/unate circuits although these are
solvable in polynomial time for 2-level monotone/unate circuits. A
circuit is said to be of k-level if the maximum number of gates except
NOT gates along any path from primary inputs to primary outputs
isk.

We. shall use the following abbreviations:
kM-FD: FD for k-level monotone circuits,
kU-FD: FD for k-level unate circuits,
kM-IR: IR for k-level monotone circuits,
kU-IR: IR for k-level unate circuits.
We begin with the following theorem.
Theorem 5: 3M-FD and 3U-FD are NP-complete.

Proof: Since monotone circuits are also unate, it is sufficient to
prove that 3M-FD is NP-complete.

Obviously, 3M-FD is in NP. Hence, we need to show that some
NP-complete problem is polynomially transformable to 3M-FD. We
shall transform CM-SAT to 3M-FD.

Given any clause-monotone expression E with variables x1, X2,**,
xp and clauses C1, C2, - - *, Cq, we construct a 3-level monotone circuit
Qi as follows (see Fig. 1).

Without loss of generality, we assume that C1, C2, , Ck are the
clauses with negated variables and Ck+1, Ck+2,... , Cq are the clauses
with unnegated variables.

Step 1: Construct AND gates A1, A2,.*. , Ak corresponding to the
clauses C1, C2, * * *, Ck with negated variables so that each AND gate
Ai has the input variables of Ci. for example, suppose a clause Ci =
- v b v c, then the output of Ai is a b - c.
Step 2: Connect the above AND gates to OR gates G1 as shown in

Fig. 1.
Step 3: Construct OR gates 01, 02, O*,.°q-k corresponding to the

x ..... x1 P

Fig. 1. -3-level monotone circuit Ql.

clauses Ck+ 1, Ck+2, - - *, Cq with unnegated variables. For example,
the output of Oi is a v b v c if the clause Ci = a v b v c.

Step 4: Connect all the OR gates 01, 02, , Oq-k, and G1 to AND
gate G2 as shown in Fig. 1.

In this circuit Q1, a stuck-at-I fault at the output of gate G1, is
detectable if and only if there exists a test such that all the outputs
ofAND gates A1, A2, * - *, Ak are 0 and all the outputs ofOR gates 01,
02, - - *, Oq-k are 1. Hence, the fault G1 s-a-I is detectable if and only
if the given expression E is satisfiable.
The above construction can be carried out in an amount of time

linear in p and q. Therefore, CM-SAT is polynomially transformable
to 3M-FD. Q.E.D.

Theorem 6: 3M-IR and 3U-IR are NP-complete.
Proof: Obviously, 3M-IR is in NP. We show that RCM-SAT

is polynomially transformable to 3M-IR.
Given any reduced clause-monotone expression E with variables

XI, X2, ,xp and clauses C1, C2, - *-, Cq, we construct a 3-level
monotone circuit Q2 as follows (see Fig. 2).

Step 1: Construct the 3-level monotone circuit Q, of Fig. I in the
manner mentioned in the proof of Theorem 5.

Step 2: Add a primary input y and a primnary output w to the OR
gate G1 as shown in Fig. 2.

This construction can be performed in time linear in p and q.
Hence, there remains to prove that Q2 iS irredundant if and only if
E is satisfiable.

Suppose that E is not satisfiable. This implies that there exists no
test such that all the outputs of the AND gates A 1, A2, * - *, Ak are 0
and all the outputs of the OR gates 01, 02, - *., Oq-k are 1, as shown
in the proof ofTheorem 5. Hence, a stuck-at-I fault at line g, which
is an input of gate G2, is not detectable because there exists no test
such that g = 0 and all other inputs of G2 are 1. This implies that Q2
is not irredundant.

Conversely, suppose that E is satisfiable, that is, there exists at least
one test such that all the outputs of the AND gates A1, A2, - - *, Ak are
0 and all the outputs of the OR gates 01, 02, * * *, Oq-k are 1. We show
that Q2 is irredundant by constructing tests for all single faults.

1) To detect a s-a- I fault at y, w, and the output of G1, choose a
test such that all the outputs ofAND gates A 1, A2,.*. , Ak are 0 and
y = 0.

2) To detect a s-a-0 fault at y, w, and the output of G1, choose a
test such that all the outputs ofAND gates A1, A2,.*. , Ak are 0 and
y = 1.
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X ...x.1 P y

Fig. 2. 3-level monotone circuit Q2-

3) To detect a s-a-0 fault at g and the output of G2, choose a test
such that all the outputs of OR gates 012, q-k are 1 and
y = 1.

4) To detect a s-a- I fault at g and the output of G2, choose a test
such that all the outputs ofAND gates A1, A2, - * *, Ak are 0, all the
outputs ofOR gates 01, 02, - - - .Oq-k are 1 and y = 0. The existence
of this test is guaranteed by the hypothesis.

5) To detect a s-a-0 fault at the inputs and the output ofAND gate
Ai (1 S i < k), choose a test such that all the inputs of Ai are 1, all
the outputs of the other AND gates Aj (j = 1, 2, * * *, k; j 5 i) are 0
and y = 0. This test can be found since E is reduced.

6) To detect a s-a-I fault at an input h and the output ofAND gate
Ai (1 < i < k), choose a test such that h = 0, all the other inputs of
Ai are 1, all the outputs of the other AND gates Aj (j = 1, 2, * *;, k;
j 5 i) are 0, and y = 0. This test can be found since E is reduced.

7) To detect a s-a- I fault at the inputs and outputs ofOR gate O0
(1 < i < q - k), choose a test such that all the inputs of 0i are 0, all
the outputs of other OR gates Oj (j -1, 2, * -

, q - k; j i) are 1,
and y = 1. This test can be found since E is reduced.

8) To detect a s-a-0 fault at an input h and the output ofOR gate
Oi (1 < i < q - k), choose a test such that h = 1, all the other inputs
of Oi are 0, all the outputs of the other OR gates Oj (j = 1, 2, * * ,

q - k; fi) are 1, and y = 1. This test can be found since E is
reduced. Q.E.D.
Now we have shown that the fault detection problem and the ir-

redundancy test problem are both NP-complete even for 3-level
monotone/unate circuits. These results also imply that the fault de-
tection problem and the irredundancy test problem are in general
NP-complete. It was reported earlier that FD and IR are both NP-
complete by Ibarra and Sahni [4]. However, the proof in [4] is rather
long and complicated. As compared with this, the proof ofTheorem
6 in this correspondence is simpler since we only use a simpler circuit
Q2 than the circuit Q in [4].

Next, we consider the following test generation problem with a

more stringent condition. Suppose we know that a circuit C is mon-
otone and irredundant and we wish to know how long it will take to
find a test for a given fault in C. The following theorem shows that
this problem is still NP-complete.

Theorem 7: The problem of finding a test to detect a given fault
f in an arbitrary monotone and irredundant circuit C is NP-com-
plete.

Proof: It suffices to show that a polynomial time algorithm for
finding a test forf in C can be used to develop a polynomial time al-
gorithm for solving 3M-FD.

Assume that we have a polynomial time algorithm A that finds a
test for a given fault f in an arbitrary monotone and irredundant
circuit C. Using this algorithm, we can construct a polynomial time
algorithm that solves 3M-FD as follows.

Algorithm A
Input: An irredundant monotone circuit C and a single stuck fault

Output: A test to detectf in C.
Let p(-) be the polynomial time bound of A.
Algorithm B
Input: A 3-level monotone circuit C' and a single stuck faultf'.
Output: "yes" if there is a test to detectf', and "no" otherwise.
Method:

Step 1: Apply Algorithm A tof' and C'.
Step 2: IfA does not halt onf' and C' after p(-) steps, there is

no test forf' and the answer is "no."
Step 3: IfA halts onf' and C' in less than or equal top(-) steps,

then check whether or not the output is a test forf'. If it is a test for
f', then the answer is "yes." Otherwise, there is no test forf', and the
answer is "no." Q.E.D.

Although all the above mentioned problems are NP-complete for
k-level (k 2 3) monotone/unate circuits, we can see that such
problems are solvable in polynomial time for k = 2.

Theorem 8: 2M-FD and 2U-FD are solvable in time complexity
O(m 2), where m is the number of lines in a circuit.

Theorem 9: 2M-IR and 2U-IR are solvable in time complexity
O(m3).

For proofs of Theorems 8 and 9, see [23].

A Designfor Testability
The result of Theorem 8 indicates that by using 2-level mono-

tone/unate circuits it is possible to convert any circuit into an
equivalent circuit for which a test set is obtained in time complexity
O(m 2). One realization of a 2-level logic circuit is a programmable
logic array (PLA) which is very well suited to LSI/VLSI. A PLA has
a structure shown in Fig. 3(a), which is composed ofAND array, OR
array, and decoders. Fig. 3(a) shows a PLA with 1 bit decoders. The
augmented PLA shown in Fig. 3(b) can realize a 2-level monotone
circuit by resetting all flip-flops of a shift register. Then the equivalent
monotone PLA can be tested in time complexity O(m2). The Ex-
clusive-OR gates and the shift register can be tested by using extra
AND term in time complexity 0(n) where n is the number of in-
puts.

IV. POLYNOMIAL TIME CLASS

We have shown that the fault detection problem is still NP-com-
plete even for monotone/unate circuits. However, there are many
circuits for which the fault detection problem can be solved in poly-
nomial time, e.g., linear circuits, decoder circuits, parallel adder, etc.
In this section we present a class of circuits which contains the above
circuits and for which the fault detection problem can be solved in
polynomial time of the number of lines in the circuits.
A fan-out-point P is called a head fan-out-point if there is a path

from a primary input to p without encountering any other fan-out-
point.
A combinational circuit C is said to be k-head-fan-out-bounded

if C can be partitioned into subcircuits, called blocks, B1, B2,*** B,
such that:

1) there is no reconvergent path in the interconnection of blocks
B1, B2, - - - , B1, and

2) for each block Bi (1 < i < t) the number of head fan-out-points
in Bi plus the number of linescoming into Bi from other blocks except
primary inputs is at most k.
Note that there may exist parallel lines between blocks (see Fig.

4).
Example 1: Consider a parallel binary adder ofp bits constructed

by cascading p stages of one-bit full adders called ripple-carry adder.
Fig. 5(a) shows a p stage ripple-carry adder and Fig. 5(b) shows an
implementation for one-bit full adder with three head fan-out-points.
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Fig. 5. Ripple-carry adder. (a) Ripple-carry adder. (b) Full adder (FA).

Partition this adder so that each block corresponds to a full adder.
Then we see that the ripple-carry adder is a 3-head-fan-out-bounded
circuit.
Example 2: Consider a gate-minimum p-bit parallel adder de-

signed by Lai and Muroga [221 whose block diagram is shown in Fig.
6. This circuit is a 6-head-fan-out-bounded circuit.
Example 3: The Exclusive-OR tree realization of a linear function

is a 2-head-fan-out-bounded circuit since each Exclusive-OR gate can
be realized by two head fan-out-points.
Example 4: A p-bit decoder can be realized by a circuit with 2P

AND gates and p head fan-out-points. Hence, it is a p-head-fan-
out-bounded circuit.

Every circuit can be decomposed into subcircuits, calledfan-out-
free circuits, which do not contain fan-out-points. We begin with a
lemma for fan-out-free circuits. For proofs of Lemmas 1 and 2, see

[23].
Lemma 1: Let C be a fan-out-free circuit with inputs x1, x2,

xn and output z. Suppose that the values 0, 1, D, and D are assigned
at Z and some of the inputs of C. Then there is an 0(m) algorithm
to find an input pattern by assigning values to the remaining inputs
which justifies the value of Z, where m is the number of lines in C.

a0 0
a 1b a2 b2 ap- b-l

Extra

r-
Term

c0 p

S0 S1 s2 s

Fig. 6. Gate-minimum p-bit parallel adder.
p-1

Lemma 2: Suppose that the values 0, 1, D, and D are assigned on
all head fan-out-points. Then the values of other nonhead fan-out-
points are determined uniquely by the implication operation of time
complexity o(m) provided that no inconsistency occurs, where m is
the number of lines in a circuit.

Theorem 10: Let C be a circuit with k head fan-out-points. Then
there is an algorithm of time complexity 0(4k - m) to find a test for
a single stuck fault in C, where m is the number of lines in C.

Proof: The test generation for a fault on line L can be performed
in the following steps.

Step 1: Fix a value of L to D(D) if a fault is stuck-at-0 (1) fault.
Assign a value 0, 1, D, or D to each head fan-out-point in C to do the
following steps for each combination of values on the head fan-out-
points. If there is no untried combination remaining and no test has
been found, then there exists no test and so stop.

Step 2: For each assignment determine implications, that is, de-
termine all the line values that are implied uniquely by the values
assigned on the head fan-out-points. If any inconsistency occurs, then
go back to Step 1.
Note that if no inconsistency occurs, the values of all (head and

nonhead) fan-out-points are determined uniquely. (See Lemma
2.)

Step 3: for each fan-out-free subcircuit Ci to whose output a value
is assigned, find an input assignment to justify the output value of Ci
by using the algorithm of Lemma 1. If the justification fails, then go
back to Step 1.

Step 4: Check whether or not every D-path starts at the line L
under test. If not, go back to Step 1.

Step 5: Check whether or not there is at least one D-path ending
at a primary output. If not and if there exists no fan-out-free subcir-
cuit to whose output no value is assigned yet, then go back to Step 1.
Otherwise, for each fan-out-free subcircuit Ci to whose output no
value is assigned, find an input assignment to propagate either D or
D to the output of Ci by using the algorithm of Lemma 1. If the
propagation fails for every subcircuit, then go back to Step 1. Oth-
erwise, we have found a test, and so stop.
The above algorithm requires the enumeration of at most 4k

combinations of values on head fan-out-points. By Lemma 1, we see
that Steps 3 and 5 can be performed in time 0(mi), where mi is the
number of lines in a subcircuit Ci. By Lemma 2, we see that Step 2
can be performed in time 0(m). Hence, the above algorithm can be
carried out in 0(4k * m) time. Q.E.D.
The algorithm shown in the proof of Theorem 10 generates all the

combinations of values 0, 1, D, D on all head fan-out-points, i.e., 4k
.assignments from the beginning. We can improve this by an implicit
enumeration technique. In generating a test, the algorithm creates
a decision tree in which a choice is made at each decision node on the
value of a line out of a number of possible values. The initial choice
is arbitrary, but it may be necessary during the execution of the al-
gorithm to return to the same node and consider another possible
choice. This is called a backtrack. In order to guarantee the time
complexity 0(4k m), we have to make sure that backtracks occur
only at k head fan-out-points.
We thus have shown that there exists an algorithm of time com-

plexity 0(4k - m) to find a test for a given fault of a circuit. We can
easily extend the result to a class of k-head-fan-out-bounded circuits
as in the following theorem.

Theorem 11: Let C be a k-head-fan-out-bounded circuit. Then

x1

x2

X
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there is an algorithm of time complexity O(16k - m) to find a test for
a single stuck fault in C, where m is the number of lines in C.

Proof: The proof is similar to that of Theorem 11 in [23].
From Theorem 11 we have the following corollary.
Corollary 1: Let C be a k-head-fan-out-bounded circuit such that

k = log2p(m) for some polynomial p(m), where m is the number of
lines in C. Then the fault detection problem for C is solvable in time
complexity O(p(m)4 * m).

For a k-head-fan-out-bounded circuit, in order to solve the fault
detection problem in polynomial time, it is sufficient that k = log
p(m) for some polynomial p(m).

Theorems 10 and 11 indicate that the complexity or difficulty of
fault detection is related to the number of head fan-out-points in the
circuit. However, if there is no reconvergent path, a test can be found
in time 0(m) even though there exist fan-out-points in the circuit. This
implies that it is sufficient to consider only reconvergent fan-out-
points in order to get a similar result to Theorems 10 and 11. To
further improve the time complexity we define a more general set S
of points which satisfies the following condition.

Condition 1: For any reconvergent fan-out-pointp, either p belongs
to S or any path from each primary input to p contains at least one
point in S.

Obviously, the set of all head-fan-out-points satisfies Condition
1.

In order to find the smallest set that satisfies Condition 1, we first
construct a directed graph G = ( V, E) such that V is the set of vertices
composed of all fan-out-points plus two new vertices, a source s and
a sink t, and E is the set of arcs such that

1) (s, h) E E for all head fan-out-points h,
2) (r, t) E E for all reconvergent fan-out-points r, and
3) (v, u) E E, v, u # s, t if there is a path from v to u in the

original circuit without encountering other fan-out-points.
For this graph G, we can easily see that a set S of points satisfying

Condition 1 corresponds to a set of vertices which cuts s and t. Hence,
the problem of finding the smallest set S satisfying Condition 1 can
be reduced to the problem of finding the minimum vertex cut set.

A Designfor Testability

In the above discussion we have shown that the complexity of fault
detection is closely related to the number of reconvergent fan-out-
points in the circuit. Therefore, if we can reduce the number of rec-
onvergent fan-out-points, finding a test becomes easier. The reduction
of the number of reconvergent fan-out-points can be done by placing
in reconvergent paths an additional Exclusive-OR gate as shown in
Fig. 7. By controlling the value of x, we can always set an arbitrary
value to line b, and observe the value of line a. Therefore, placing an
Exclusive-OR gate on a line L is equivalent to cutting L logically. The
total number of additional inputs and outputs can be reduced to two
if we use a scan shift register approach such as LSSD [10].

V. CONCLUSION

In this correspondence we have shown that the fault detection
problem and the irredundancy problem are both NP-complete even
with a stringent condition such as monotonicity and unateness of
circuits. It is shown that for k-level (k > 3) monotone/unate circuits
these problems are NP-complete although these can be solved in
polynomial time for 2-level monotone/unate circuits. This implies
that by using 2-level monotone/unate circuits it is possible to convert
any circuit into an equivalent easily testable circuit. We have also
presented an implementation of an easily testable PLA.
We have introduced a class of circuits solvable in polynomial time,

called k-head-fan-out-bounded circuits. IfK is bounded by log2p(m)
for some polynomial p(m), where m is the number of lines in a circuit,
then the fault detection problem is solvable in time O(p(m)4 - m).
Parallel adders, decoder circuits, linear circuits, etc., belong to this
class. We have also presented a more general class by considering
reconvergent fan-out-points. A design approach is then presented in

Fig. 7. Reconvergent path.

which an arbitrary given circuit is converted to such an easily testable
circuit by placing Exclusive OR gates in reconvergent paths.
The algorithm presented in the proof of Theorem IO is not efficient

since it considers all the combinations of values 0, 1, D, D at all head
fan-out-points in a circuit. However, since the objectives of this cor-
respondence are to clarify the computational complexity of fault
detection problems, to present some classes of circuits for which a test
can be found in polynomial time, and to give an approach to the design
for testability, we have not tried to develop more efficient algorithms
in this correspondence. Better and more efficient algorithms for test
generation are now being developed in our group.
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In this correspondence we define a model of a memory which is
subject to a very general class of failure modes. The model can be used
to represent single-cell, row, column, and entire chip failures. In ad-
dition, the model can be used to represent higher levels failures (such
as row or column of chips on an array card) or other partial chip
failures (such as half-chip). We derive a general equation for the
reliability of the memory. All of the above referenced results are
special cases of this equation.

The Reliability of Memory with Single-Error Correction

W. F. MIKHAIL, R. W. BARTOLDUS, AND
R. A. RUTLEDGE

Abstract-This correspondence contains the derivation of the reliability,
as a function of time, of semiconductor memory with single-error correction.
The results are applicable to a wide range of memory organizations.

It is well known that memory chip failures may affect a single cell, a row or
column of cells, or the entire chip. The memory model in this correspondence
will simultaneously account for all these failure modes, as well as higher level
failure modes, such as the loss of a row or column of chips, or of an entire bit-
plane.
A new measure of memory system reliability is proposed: the effective un-

correctable error rate. This is defined as the average rate of occurrence of
uncorrectable errors over the time interval (0, T).

Index Terms-Error-correcting codes, fault-tolerant systems, memory
reliability, semiconductior memory, single-error correction.

INTRODUCTION

The reliability of semiconductor memory with single-error cor-
rection has been addressed in a number of recent papers [1]- [7]. In
each of these papers certain memory chip failure modes are neglected.
In this correspondence we give a method for computing reliability
which simultaneously accounts for these and for other failure
modes.

Consider a memory which contains N words of W bits each, and
which is capable of correcting a single-bit error in any word. If each
cell fails with probability (1 - p) independently of all other cells, then
the reliability of the memory is easily seen to be

[pW+ W(1 -p)pW1]N.
This equation is used by Hilberg [7] and by Cox and Carroll [1], [2],
although in a different form. It is known, however, that memory cells
do not fail independently. An array chip which consists of a rectan-
gular array of cells may fail in a number of different ways, including
single-cell, row or column of cells, and entire chip failure [3], [4], [6],
[8], [9]. If any one of these failure modes is assumed to be the only
failure mode, then the calculation of reliability is still simple. It is
necessary only to let (1 - p) represent the probability of a b-cell
failure, and replace N by N/b in the above formula, where b is the
number of cells affected by each failure. This is done by Levine and
Meyers [3] and by Ferris-Prabhu [6] for the case where every failure
is a chip-kill. Siewiorek and Elkind [4] use this formula four times,
assuming that each of the four modes in turn is the only mode. The
calculation becomes more complex when multiple failure modes are
considered simultaneously. Wang and Lovelace [5] consider four
failure modes: cell, half-column, column, and chip. This represents
a considerable advance over the other models, but it still does not
account for the fact that both rows and columns of cells may fail.
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THE MEMORY MODEL

We first describe the abstract logical model of memory, and then
show how this general model can accommodate a variety of specific
cases by proper choice of the logical-to-physical mapping.
The memory is modeled logically as W bit-planes, where Wis the

number of bits per data word. Each bit-plane is an L-level hierarchy
composed of arrays of arrays of arrays, etc., down to the lowest level.
A level-i array is an Mi X Ni array of level-(i - 1) arrays; i = 2, 3,
* , L. A level- I array is the smallest part of the memory which can
fail, usually, but not necessarily, a single cell. It is assumed to be a
1 X 1 array: M1 = N1 = 1. A level-2 array is an M2 X N2 array of
level- I arrays; a level-3 array is an M3 X N3 array of level-2 arrays,
etc. The entire bit-plane is a level-L array. We will refer to such a
memory as an L-level memory. Fig. 1 shows the structure of a typical
three-level memory.

There are three failure modes associated with each level-i array
(i = 1, 2, fai:A,L):

i, 2 Array fail: Affects every cell on one level-i array

i, 2 Row fail: Affects every cell on one row of one level-i array
(i> 1)

i, 3 Column fail: Affects every cell on one column of one level-i
array (i > 1).

There is one additional failure mode corresponding to failures (such
as in the error correction logic) which would disable the entire
memory. We refer to this as mode (0, 0) to be consistent with the
above notation:

0, 0 Memory fail Affects every cell in the memory.

A reliability function is associated with each failure mode

Pi>(t) = Prob [failure mode (i, j) does not occur before time t].

This probability applies independently to each instance of failure
mode (i, j). For example, each row on each level-2 array has proba-
bility P22(t) of surviving until time t, independently of all other such
rows and all other failure models. In a level- I array, the three failure
modes (1, 1), (1, 2), and (1, 3) are equivalent because M1 = N1 = 1.
Therefore, without loss of generality, we assume that modes (1, 2)
and (1, 3) cannot occur

The logical memory model is determined by its structural parame-
ters

W,L,(Mi, Nj)i =1, 2,- ,L

and its component reliabilities

Pjj(t)- i= 1, 2,---L j= 1, 2,3

Poo(t).
In order to apply the model to a particular memory, we also need

the logical-to-physical mapping. We must specify, for each i, what
physical entity is represented by the level-i array. In general, more
than one mapping is possible for any given memory system. A map-

P12(t) = P13(t) = 1 for all t.
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