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The Complexity of Fault Detection Problems for Combinational
Logic Circuits

HIDEO FUJIWARA AND SHUNICHI TOIDA

Abstract—In this correspondence we analyze the computational complexity
of fault detection problems for combinational circuits and propose an approach
to design for testability. Although major fault detection problems have been
known to be in general NP-complete, they were proven for rather complex
circuits. In this correspondence we show that these are still NP-complete even
for monotone circuits, and thus for unate circuits. We show that for k-level (k
2 3) monotone/unate circuits these problems are still NP-complete, but that
these are solvable in polynomial time for 2-level monotone/unate circuits. A
class of circuits for which these fault detection problems are solvable in poly-
nomial time is presented. Ripple-carry adders, decoder circuits, linear circuits,
etc., belong to this class. A design approach is also presented in which an ar-
bitrary given circuit is changed to such an easily testable circuit by inserting
a few additional test-points.

Index Terms—Combinational circuits, computational complexity, design
for testability, fault detection, polynomial algorithms, test generation.

I. INTRODUCTION

Because of the increasing circuit density in LSI/VLSI chips, the
fault detection problem is becoming more difficult, and thus an ef-
ficient test generation for logic circuits is a matter of prime concern
[1]-[3]- Unfortunately, however, major fault detection problems are
known to be NP-complete in general [4], [S]. Hence, it appears very
unlikely that the fault detection problems can be solved by a poly-
nomial time algorithm. One general approach to this problem is de-
signing easily testable circuits, i.e., design for testability. Many studies
have been reported for designing logic circuits for which test sets are
easily obtainable [3], [6]-[19].

In this correspondence we show that fault detection problems are
NP-complete for k-level (k = 3) monotone/unate circuits although
these circuits are known to be easy to test [15]-[19]. The proof pre-
sented here is much simpler than that of [4]. It is also shown that test
generation problem for monotone/unate circuits is NP-complete even
if the circuits under tests are known to be irredundant. After analyzing
the complexity of fault detection problems, we present a class of cir-
cuits for which these problems are solvable in polynomial time.
Ripple-carry adders, decoder circuits, linear circuits, etc., belong to
the above class. A design approach is then presented in which an ar-
bitrary given circuit is changed to such an ¢asily testable circuit by
inserting a few additional test-points.

IL.

. The first NP-complete problem was reported by Cook [20], which
is usually referred to as the satisfiability problem (SAT, for short).
We give a brief description of this problem in the following since we
need it in our discussion of NP-completeness of fault detection
problems. For definitions of NP-completeness see [5].

A literal is either x or X for some variable x, and a clause is a sum
of literals. A Boolean expression is said to be in conjunctive normal
form (CNF) if it is a product of clauses. A Boolean expression is
satisfiable if and only if there exists some assignment of 0’s and 1’s
to the variables that gives the expression the value 1. Then the SAT
problem is specified as follows.
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Satisfiability (SAT): Is a Boolean expression satisfiable?

Theorem 1 (Cook’s Theorem [20]): SAT is NP-complete.

An expression is said to be clause-monotone if each of its clauses
contains either only negated variables or only unnegated variables.
The satisfiability for clause-monotone expressions (CM-SAT, for
short) is also NP-complete.

Theorem 2: CM-SAT is NP-complete.

For proofs of Theorems 2-4 see [23].

Consider a Boolean expression in conjunctive normal form E with
variables x1, x3, * - -, xp and clauses Cy, Cy, - -, C,. A clause C; is
said to cover a clause C; (written C; 2 C;) if all literals in C; are
contained in C;. An expression E is said to be reduced if no clause in
the expression covers another. The satisfiability for reduced clause-
monotone Boolean expressions (RCM-SAT, for short) is also NP-
complete.

Theorem 3: RCM-SAT is NP-complete.

Although SAT, CM-SAT, and RCM-SAT are all NP-complete,
the satisfiability problem is solvable in polynomial time if a Boolean
expression is monotone or unate. An expression is said to be monotone
if it contains only unnegated variables. An expression is said to be
unate if each variable is either only negated or only unnegated. The
satisfiability problems for monotone expressions and unate expres-
sions (M-SAT and U-SAT, for short, respectively) have been shown
to be solvable in time 0(/), where / is the length of an expression.

Theorem 4: M-SAT and U-SAT are solvable in time 0(/), where
1 is the length of an expression.

III. COMPLEXITY OF FAULT DETECTION

In this correspondence we shall be concerned with multiinput and
multioutput combinational circuits composed of AND, OR, NAND,
NOR, and NOT gates.

First, we consider the following decision problems.

Fault Detection (FD, for short): Can a single stuck fault be de-
tected by input-output experiments?

Irredundancy (IR): Is a combinational circuit C irredundant (i.e.,
can all single stuck faults be detected)?

In general, FD and IR are both known to be NP-complete [4]. In
this section we show that these problems are still NP-complete even
for k-level (k = 3) monotone/unate circuits although these are
solvable in polynomial time for 2-level monotone/unate circuits. A
circuit is said to be of k-level if the maximum number of gates except
NOT gates along any path from primary inputs to primary outputs
is k.

We shall use the following abbreviations:

kM-FD: FD for k-level monotone circuits,

kU-FD: FD for k-level unate circuits,

kM-IR: IR for k-level monotone circuits,

kU-IR: IR for k-level unate circuits.

We begin with the following theorem.

Theorem 5: 3M-FD and 3U-FD are NP-complete.

Proof: Since monotone circuits are also unate, it is sufficient to
prove that 3M-FD is NP-complete.

Obviously, 3M-FD is in NP. Hence, we need to show that some
NP-complete problem is polynomially transformable to 3M-FD. We
shall transform CM-SAT to 3M-FD.

Given any clause-monotone expression E with variables x, x5, -,
xp and clauses Cy, Cs, - - -, C,, we construct a 3-level monotone circuit
Q, as follows (see Fig. 1).

Without loss of generality, we assume that Cy, Cy, - - -, Cy, are the
clauses with negated variables and Cy+1, Cr+2, - -, C4 are the clauses
with unnegated variables.

Step 1: Construct AND gates A;, A, -+, Ay corresponding to the
clauses Cy, Cs, -+ -, Ci with negated variables so that each AND gate
A; has the input variables of C;. for example, suppose a clause C; =
a Vv b v c,then the output of 4;isa-b-c.

Step 2: Connect the above AND gates to OR gates G as shown in
Fig. 1.

Step 3: Construct OR gates Oy, 03, * -, Og— corresponding to the
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3-level monotone circuit Q).

clauses Cy+1, Ck+2,* * -, Cq with unnegated variables. For example,
the output of O;isa v b v ciftheclause C;=a v b Vv c.

Step 4: Connect all the OR gates Oy, Oy, - -, Oy, and G to AND
gate G, as shown in Fig. 1.

In this circuit Q,, a stuck-at-1 fault at the output of gate G, is
detectable if and only if there exists a test such that all the outputs
of AND gates Ay, A3, -+, Ak are 0 and all the outputs of OR gates O,
0y, -+, Og— are 1. Hence, the fault G s-a-1 is detectable if and only
if the given expression E is satisfiable.

The above construction can be carried out in an amount of time
linear in p and q. Therefore, CM-SAT is polynomially transformable
to 3M-FD. Q.E.D.

Theorem 6: 3M-IR and 3U-IR are NP-complete.

Proof: Obviously, 3M-IR is in NP. We show that RCM-SAT
is polynomially transformable to 3M-IR.

Given any reduced clause-monotone expression E with variables
X1, X3, ***, Xp and clauses Cy, Cy, - - -, C4, we construct a 3-level
monotone circuit Q5 as follows (see Fig. 2).

Step 1: Construct the 3-level monotone circuit Q, of Fig. 1 in the
manner mentioned in the proof of Theorem: 5.

Step 2: Add a primary input y and a primary output w to the OR
gate G as shown in Fig. 2.

This construction can be performed in time linear in p and g.
Hence, there remains to prove that Q, is irredundant if and only if
E is satisfiable.

Suppose that E is not satisfiable. This implies that there exists no
test such that all the outputs of the AND gates 4y, A3, -, Ax are 0
and all the outputs of the OR gates O, Oy, - -, Oy— are 1, as shown
in the proof of Theorem 5. Hencé, a stuck-at-1 fault at line g, which
is an input of gate G, is not detectable because there exists no test
such that g = 0 and all other inputs of G are 1. This implies that 0,
is not irredundant. '

Conversely, suppose that E is satisfiable, that is, there exists at least
one test such that all the outputs of the AND gates 4, A,,- - -, Ay are
0 and all the outputs of the OR gates Oy, 05, * -, Oy are 1. We show
that Q, is irredundant by constructing tests for all single faults.

1) Todetect a s-a-1 fault at y, w, and the output of G, choose a
test such that all the outputs of AND gates 4, A5, - -, Ax are 0 and
y=0.

2) To detect a s-a-0 fault at y, w, and the output of G;, choose a
test such that all the outputs of AND gates 4y, A5, - -, Ax are 0 and
y=1
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3) Todetect a s-a-0 fault at g and the output of G5, choose a test
such that all the outputs of OR gates Oy, Oy, - -+, Og— are 1 and
y=1

4) To detect a s-a-1 fault at g and the output of G, choose a test
such that all the outputs of AND gates 4, A5, - -, A are 0, all the
outputs of OR gates Oy, Oy, -+, Oy« are 1 and y = 0. The existence
of this test is guaranteed by the hypothesis.

5) To detect a s-a-0 fault at the inputs and the output of AND gate
A; (1 i < k), choose a test such that all the inputs of 4; are 1, all
the outputs of the other AND gates 4; (j = 1,2, ,k; j # i) are 0
and y = 0. This test can be found since E is reduced.

6) To detect a s-a-1 fault at an input 4 and the output of AND gate
A; (1 <i < k), choose a test such that A = 0, all the other inputs of
A; are 1, all the outputs of the other AND gates 4; (j = 1,2,-- -, k;
j # i) are 0, and y = 0. This test can be found since E is reduced.

7) Todetect a s-a-1 fault at the inputs and outputs of OR gate O;
(1 <i < g — k), choose a test such that all the inputs of O; are 0, all
the outputs of other OR gates O; (j — 1,2,---,q — k;j = i) are 1,
and y = 1. This test can be found since E is reduced.

8) Todetect a s-a-0 fault at an input h and the output of OR gate
0; (1 <i < q — k), choose a test such that h = 1, all the other inputs
of O; are 0, all the outputs of the other OR gates O; (j = 1,2, -,
q — k; ji) are 1, and y = 1. This test can b¢ found since E is
reduced. Q.E.D.

Now we have shown that the fault detection problem and the ir-
redundancy test problem are both NP-complete even for 3-level
monotone/unate circuits. These results also imply that the fault de-
tection problem and the irredundancy test problem are in general
NP-complete. It was reported earlier that FD and IR are both NP-
complete by Ibarra and Sahni [4]. However, the proof in [4] is rather
long and complicated. As compared with this, the proof of Theorem
6 in this correspondence is simpler since we only use a simpler circuit
Q> than the circuit Q in [4].

Next, we consider the following test generation problem with a
more stringent condition. Suppose we know that a circuit C is mon-
otone and irredundant and we wish to know how long it will take to
find a test for a given fault in C. The following theorem shows that
this problem is still NP-complete.

Theorem 7: The problem of finding a test to detect a given fault
fin an arbitrary monotone and irredundant circuit C is NP-com-
plete.

Proof: It suffices to show that a polynomial time algorithm for
finding a test for fin C can be used to develop a polynomial time al-
gorithm for solving 3M-FD.
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Assume that we have a polynomial time algorithm A that finds a
test for a given fault f in an arbitrary monotone and irredundant
circuit C. Using this algorithm, we can construct a polynomial time
algorithm that solves 3M-FD as follows.

Algorithm A

Input: An irredundant monotone circuit C and a single stuck fault
of.

Output: A test to detect fin C.

Let p(-) be the polynomial time bound of 4.

Algorithm B

Input: A 3-level monotone circuit C’ and a single stuck fault f”.

Output: “yes” if there is a test to detect 7, and “no” otherwise.

Method:

Step 1: Apply Algorithm A to f” and C'.

Step 2: If A does not halt on f” and C’ after p(-) steps, there is
no test for f” and the answer is “no.” ,

Step 3: If A halts on f” and C’ in less than or equal to p(-) steps,
then check whether or not the output is a test for f”. If it is a test for
/7, then the answer is “yes.” Otherwise, there is no test for f7, and the
answer is “no.” Q.E.D.

Although all the above mentioned problems are NP-complete for
k-level (k = 3) monotone/unate circuits, we can see that such
problems are solvable in polynomial time for k = 2.

Theorem 8: 2M-FD and 2U-FD are solvable in time complexity
0O(m?), where m is the number of lines in a circuit.

Thseorem 9: 2M-IR and 2U-IR are solvable in time complexity
O(m?3).

For proofs of Theorems 8 and 9, see [23].

A Design for Testability

The result of Theorem 8 indicates that by using 2-level mono-
tone/unate circuits it is possible to convert any circuit into an
equivalent circuit for which a test set is obtained in time complexity
O(m?2). One realization of a 2-level logic circuit is a programmable
logic array (PLA) which is very well suited to LSI/VLSI. A PLA has
a structure shown in Fig. 3(a), which is composed of AND array, OR
array, and decoders. Fig. 3(a) shows a PLA with 1 bit decoders. The
augmented PLA shown in Fig. 3(b) can realize a 2-level monotone
circuit by resetting all flip-flops of a shift register. Then the equivalent
monotone PLA can be tested in time complexity O(m?2). The Ex-
clusive-OR gates and the shift register can be tested by using extra
AND term in time complexity O(n) where n is the number of in-
puts.

IV. POLYNOMIAL TIME CLASS

We have shown that the fault detection problem is still NP-com-
plete even for monotone/unate circuits. However, there are many
circuits for which the fault detection problem can be solved in poly-
nomial time, e.g., linear circuits, decoder circuits, parallel adder, etc.
In this section we present a class of circuits which contains the above
circuits and for which the fault detection problem can be solved in
polynomial time of the number of lines in the circuits.

A fan-out-point P is called a head fan-out-point if there is a path
from a primary input to p without encountering any other fan-out-
point.

A combinational circuit C is said to be k-head-fan-out-bounded
if C can be partitioned into subcircuits, called blocks, By, B3, -, B,
such that:

1) there is no reconvergent path in the interconnection of blocks
By, B,,---, B, and

2) for each block B; (1 <i < t) the number of head fan-out-points
in B; plus the number of lines coming into B; from other blocks except
primary inputs is at most k.

Note that there may exist parallel lines between blocks (see Fig.
4).
Example 1: Consider a parallel binary adder of p bits constructed
by cascading p stages of one-bit full adders called ripple-carry adder.
Fig. 5(a) shows a p stage ripple-carry adder and Fig. 5(b) shows an
implementation for one-bit full adder with three head fan-out-points.
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Partition this adder so that each block corresponds to a full adder.
Then we see that the ripple-carry adder is a 3-head-fan-out-bounded
circuit.

Example 2: Consider a gate-minimum p-bit parallel adder de-
signed by Lai and Muroga [22] whose block diagram is shown in Fig.
6. This circuit is a 6-head-fan-out-bounded circuit.

Example 3: The Exclusive-OR tree realization of a linear function
is a 2-head-fan-out-bounded circuit since each Exclusive-OR gate can
be realized by two head fan-out-points.

Example 4: A p-bit decoder can be realized by a circuit with 27
AND gates and p head fan-out-points. Hence, it is a p-head-fan-
out-bounded circuit.

Every circuit can be decomposed into subcircuits, called fan-out-
free circuits, which do not contain fan-out-points. We begin with a
lemma for fan-out-free circuits. For proofs of Lemmas 1 and 2, see
[23].

Lemma 1: Let C be a fan-out-free circuit with inputs x, x5, - -,
X, and output z. Suppose that the values 0, 1, D, and D are assigned
at Z and some of the inputs of C. Then there is an O(m) algorithm
to find an input pattern by assigning values to the remaining inputs
which justifies the value of Z, where m is the number of lines in C.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 6, JUNE 1982

a
ay by a, by a, b, p-1 p-1
C0 - — .. - Cp
- ———
50 sl 52 s

p-1
Fig. 6. Gate-minimum p-bit parallel adder.

Lemma 2: Suppose that the values 0, 1, D, and D are assigned on
all head fan-out-points. Then the values of other nonhead fan-out-
points are determined uniquely by the implication operation of time
complexity o(m) provided that no inconsistency occurs, where m is
the number of lines in a circuit.

Theorem 10: Let C be a circuit with k head fan-out-points. Then
there is an algorithm of time complexity 0(4*% - m) to find a test for
a single stuck fault in C, where m is the number of lines in C.

Proof: The test generation for a fault on line L can be performed
in the following steps. _

Step 1: Fix a value of L to D(D) if a fault is stuck-at-0 (1) fault.
Assign a value 0, 1, D, or D to each head fan-out-point in C to do the
following steps for each combination of values on the head fan-out-
points. If there is no untried combination remaining and no test has
been found, then there exists no test and so stop.

Step 2: For each assignment determine implications, that is, de-
termine all the line values that are implied uniquely by the values
assigned on the head fan-out-points. If any inconsistency occurs, then
go back to Step 1.

Note that if no inconsistency occurs, the values of all (head and
nonhead) fan-out-points are determined uniquely. (See Lemma
2)

Step 3: for each fan-out-free subcircuit C; to whose output a value
is assigned, find an input assignment to justify the output value of C;
by using the algorithm of Lemma 1. If the justification fails, then go
back to Step 1.

Step 4: Check whether or not every D-path starts at the line L
under test. If not, go back to Step 1.

Step 5: Check whether or not there is at least one D-path ending
at a primary output. If not and if there exists no fan-out-free subcir-
cuit to whose output no value is assigned yet, then go back to Step 1.
Otherwise, for each fan-out-free subcircuit C; to whose output no
value is assigned, find an input assignment to propagate either D or
D to the output of C; by using the algorithm of Lemma 1. If the
propagation fails for every subcircuit, then go back to Step 1. Oth-
erwise, we have found a test, and so stop.

The above algorithm requires the enumeration of at most 4%
combinations of values on head fan-out-points. By Lemma 1, we see
that Steps 3 and 5 can be performed in time 0(m;), where m; is the
number of lines in a subcircuit C;. By Lemma 2, we see that Step 2
can be performed in time 0(m). Hence, the above algorithm can be
carried out in 0(4% - m) time. Q.E.D.

The algorithm shown in the proof of Theorem 10 generates all the
combinations of values 0, 1, D, D on all head fan-out-points, i.e., 4%
assignments from the beginning. We can improve this by an implicit
enumeration technique. In generating a test, the algorithm creates
a decision tree in which a choice is made at each decision node on the
value of a line out of a number of possible values. The initial choice
is arbitrary, but it may be necessary during the execution of the al-
gorithm to return to the same node and consider another possible
choice. This is called a backtrack. In order to guarantee the time
complexity 0(4*% - m), we have to make sure that backtracks occur
only at k head fan-out-points.

We thus have shown that there exists an algorithm of time com-
plexity 0(4% - m) to find a test for a given fault of a circuit. We can
easily extend the result to a class of k-head-fan-out-bounded circuits
as in the following theorem.

Theorem 11: Let C be a k-head-fan-out-bounded circuit. Then
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there is an algorithm of time complexity 0(16% - m) to find a test for
a single stuck fault in C, where m is the number of lines in C.
Proof: The proof is similar to that of Theorem 11 in [23].

From Theorem 11 we have the following corollary.

Corollary 1: Let C be a k-head-fan-out-bounded circuit such that
k = log,p(m) for some polynomial p(m), where m is the number of
lines in C. Then the fault detection problem for C is solvable in time
complexity 0(p(m)* - m).

For a k-head-fan-out-bounded circuit, in order to solve the fault
detection problem in polynomial time, it is sufficient that k = log
p(m) for some polynomial p(m).

Theorems 10 and 11 indicate that the complexity or difficulty of
fault detection is related to the number of head fan-out-points in the
circuit. However, if there is no reconvergent path, a test can be found
in time 0(m) even though there exist fan-out-points in the circuit. This
implies that it is sufficient to consider only reconvergent fan-out-
points in order to get a similar result to Theorems 10 and 11. To
further improve the time complexity we define a more general set .S
of points which satisfies the following condition.

Condition 1: For any reconvergent fan-out-point p, either p belongs
to S or any path from each primary input to p contains at least one
point in S.

Obviously, the set of all head-fan-out-points satisfies Condition
1.

In order to find the smallest set that satisfies Condition 1, we first
construct a directed graph G = (¥, E) such that V is the set of vertices
composed of all fan-out-points plus two new vertices, a source s and
asink ¢, and E is the set of arcs such that

1) (s, h) € E for all head fan-out-points A,

2) (r,t) € E for all reconvergent fan-out-points r, and

3) (v,u) € E,v, u # s, t if there is a path from v to u in the
original circuit without encountering other fan-out-points.

~ For this graph G, we can easily see that a set S of points satisfying

Condition 1 corresponds to a set of vertices which cuts s and ¢. Hence,
the problem of finding the smallest set S satisfying Condition 1 can
be reduced to the problem of finding the minimum vertex cut set.

A Design for Testability

In the above discussion we have shown that the complexity of fault
detection is closely related to the number of reconvergent fan-out-
points in the circuit. Therefore, if we can reduce the number of rec-
onvergent fan-out-points, finding a test becomes easier. The reduction
of the number of reconvergent fan-out-points can be done by placing
in reconvergent paths an additional Exclusive-OR gate as shown in
Fig. 7. By controlling the value of x, we can always set an arbitrary
value to line b, and observe the value of line a. Therefore, placing an
Exclusive-OR gate on a line L is equivalent to cutting L logically. The
total number of additional inputs and outputs can be reduced to two
if we use a scan shift register approach such as LSSD [10].

V. CONCLUSION

In this correspondence we have shown that the fault detection
problem and the irredundancy problem are both NP-complete even
with a stringent condition such as monotonicity and unateness of
circuits. It is shown that for k-level (k = 3) monotone/unate circuits
these problems are NP-complete although these can be solved in
polynomial time for 2-level monotone/unate circuits. This implies
that by using 2-level monotone/unate circuits it is possible to convert
any circuit into an equivalent easily testable circuit. We have also
presented an implementation of an easily testable PLA.

We have introduced a class of circuits solvable in polynomial time,
called k-head-fan-out-bounded circuits. If K is bounded by log,p(m)
for some polynomial p(m), where m is the number of lines in a circuit,
then the fault detection problem is solvable in time 0(p(m)* - m).
Parallel adders, decoder circuits, linear circuits, etc., belong to this
class. We have also presented a more general class by considering
reconvergent fan-out-points. A design approach is then presented in
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Fig. 7. Reconvergent path.

which an arbitrary given circuit is converted to such an easily testable
circuit by placing Exclusive OR gates in reconvergent paths.

The algorithm presented in the proof of Theorem 10 is not efficient
since it considers all the combinations of values 0, 1, D, D at all head
fan-out-points in a circuit. However, since the objectives of this cor-
respondence are to clarify the computational complexity of fault
detection problems, to present some classes of circuits for which a test
can be found in polynomial time, and to give an approach to the design
for testability, we have not tried to develop more efficient algorithms
in this correspondence. Better and more efficient algorithms for test
generation are now being developed in our group.
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