
IEEE TRANSACTIONS ON COMPUTERS, VOL. C-32, NO. 12, DECEMBER 1983

On the Acceleration of Test Generation
Algorithms

HIDEO FUJIWARA, SENIOR MEMBER, IEEE, AND TAKESHI SHIMONO, STUDENT MEMBER, IEEE

Abstract-In order to accelerate an algorithm for test generation,
it is necessary to reduce the number of backtracks in the algorithm and
to shorten the process time between backtracks. In this paper, we
consider several techniques to accelerate test generation and present
a new test generation algorithm called FAN (fan-out-oriented test
generation algorithm). It is shown that the FAN algorithm is faster
and more efficient than the PODEM algorithm reported by Goel. We
also present an automatic test generation system composed of the FAN
algorithm and the concurrent fault simulation. Experimental results
on large combinational circuits of up to 3000 gates demonstrate that
the system performs test generation very fast and effectively.

Index Terms-Combinational logic circuits, D-algorithm, decision
tree, multiple backtrace, PODEM algorithm, sensitization, stuck
faults, test generation.

I. INTRODUCTION

W5| ITH the progress of LSI/VLSI technology, the prob-
lem of fault detection for logic circuits is becoming

more and more difficult. As the logic circuits under test get
larger, generating tests is becoming harder. Recent work has
established that the problem of test generation, even for
monotone circuits, is NP-complete [1]. Hence, it appears that
the computation is, for the worst case, exponential with the size
of the circuit. One approach to overcome this is to take several
techniques known as design for testability. The techniques
using shift registers such as LSSD [2], Scan Path [3], etc.,
allow the test generation problem to be completely reduced to
one of generating tests for combinational circuits. Hence, for
these LSSD-type circuits, it is sufficient to develop a fast and
efficient test generation algorithm only for combinational
circuits.
Many test generation algorithms have been proposed over

the years [4]-[8], [11]. The most widely used is the D-algo-
rithm reported by Roth [5]. However, it has been pointed out
that the D-algorithm is extremely inefficient in generating tests
for combinational circuits that implement error corr&ction and
translation functions. To improve this point, a new test gen-
eration algorithm called PODEM was recently developed by
Goel [8]. Goel showed that the PODEM algorithm is signifi-
cantly faster than the D-algorithm by presenting experimental
results. Indeed, the PODEM algorithm has succeeded in re-

Manuscript received September 27, 1982; revised June 1, 1983.
H. Fujiwara is with the Department of Electronic Engineering, Osaka

University, Osaka 565, Japan.
T. Shimono was with the Department of Electronic Engineering, Osaka

University, Osaka, Japan. He is now with the NEC Corporation, Tokyo 108,
Japan.

ducing the number of occurrences of backtracks in comparison
to the D-algorithm. However, there still remain many possi-
bilities of reducing the number of backtracks in the algo-
rithm.

In order to accelerate an algorithm for test generation, it is
necessary to reduce the number of occurrences of backtracks
in the algorithm and to shorten the processing time between
backtracks. In this paper. we consider several techniques to
accelerate test generation, and we present a new algorithm for
generating tests called FAN (fan-out-oriented test generation
algorithm). FAN is a complete algorithm in that it will gen-
erate a test if one exists. Experimental results on large com-
binational circuits of up to 3000 gates demonstrate that the
FAN algorithm is faster and more efficient than the PODEM
algorithm over these circuits. We also present an automatic
test generation system composed of the FAN algorithm and
the concurrent fault simulation [9] which performs test gen-
eration very fast and effectively over the above large combi-
national circuits.

II. ACCELERATION OF ALGORITHM

Now we assume that the readers are familiar with the D-
algorithm and the PODEM algorithm, and so we shall use
some terminologies such as D-frontier, D-drive, implication,
line justification, backtrace, etc., without definitions (see [5]
and [8] for definitions). In this paper, we shall consider mul-
tiinput and multioutput combinational circuits composed of
AND, OR, NAND, NOR, and NOT gates. The type of fault
model assumed here is the standard stuck fault, i.e., all faults
can be modeled by lines which are stuck at logical 0 (s-a-0) or
stuck at logical 1 (s-a-I). A fault consisting of a single stuck
line is called a single fault. We shall focus our attention only
on detecting single stuck faults.

In this section, aiming at the acceleration of test generation,
we shall point out some defects of the PODEM algorithm and
consider several effective techniques to eliminate these dis-
advantages.

In generating a test, the algorithm creates a decision tree
in which there is more than one choice available at each deci-
sion node. The initial choice is arbitrary, but it may be neces-
sary during the execution of the algorithm to return and try
another possible choice. This is called a backtrack. In order
to accelerate the algorithm, it is necessary to

1) reduce the number of backtracks, and
2) shorten the process time between backtracks.

0018-9340/83/120-0-1137$01.00 © 1983 IEEE

1137

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-32, NO. 12, DECEMBER 1983

The reduction of the number of backtracks is particularly
important.

Heuristics should be used to achieve an efficient search. The
PODEM algorithm adopted heuristics in the backtrace op-
eration as follows.

* If the current objective level is such that it can be obtained
by setting any one input of the current gate to a controlling
state, e.g., 0 for an AND/NAND gate or 1 for an OR/NOR gate,
then choose that input which can be most easily set.

* If the current objective level can only be obtained by
setting all inputs of the current gate to a noncontrolling state,
e.g., 1 for an AND/NAND gate or 0 for an OR/NOR gate, then
choose that input which is hardest to set, since an early de-
termination of the inability to set the chosen input will prevent
fruitless time spent in attempting to set the remaining inputs
of the gate.

In this heuristic, we can use controllability measures. In the
PODEM algorithm as well as the D-algorithm, the D-frontier
usually consists of many gates, and a choice of which gate to
D-drive through next must be made. To decide this choice,
PODEM adopted heuristics using a very simple observability
measure as follows.

* As a D-frontier to D-drive, choose a gate closest to a
primary output.

In this heuristic, we can use other observability measures.
Methods for determining controllability/observability mea-
sures are available in the published literature, such as [10].

In order to reduce the number of backtracks, it is important
to find the nonexistence of the solution as soon as possible. In
the "branch and bound" algorithm, when we find that there
exists no solution below the current node in the decision tree,
we should backtrack immediately to avoid the subsequent
unnecessary search. The PODEM algorithm seems to lack the
careful consideration in this point.

* In each step of the algorithm, determine as many signal
values as possible which can be uniquely implied.
To do this, we take the implication operation which com-

pletely traces such signal determination-both forwards and
backwards through the circuit. The idea of this co"mplete im-
plication is inherent in the D-algorithm, and hence represents
an improvement only with respect to PODEM. Moreover, we
can take other techniques as follows.

. Assign a faulty signal value D or D which is uniquely
determined or implied by the fault under consideration (see
Fig. 1).
Note that we specify only the values that are uniquely de-

termined. As an example, for a three-input AND gate in Fig.
1(a) and the fault E s-a-0, we assign the value D to the output
E and l's to all inputs of the AND gate since these values are
uniquely implied by the fault E s-a-0. However, for the fault
E s-a-1, we assign only the value D to the output E. All the
input values of the AND gate are left unspecified, i.e., X, since
those values are not determined uniquely from E s-a- I [see Fig.
1(c)].
As an example, consider the circuit of Fig. 2. For the fault

L s-a- 1, we assign the value D to the line L and I's to the inputs
J, K, and E. Then after the implication operation, we have a
test pattern for the fault without backtracks, as shown in Fig.

B=l E=D

(a)

A=X

C -X E=D

(c)

A=l
B=1 E=D
C=D

(b)

B=l
A=1 - C=1

E=D

(d)
Fig. 1. Assignment of fault signals. (a) E s-a-0. (b) C s-a-0. (c) E s-a- 1.

(d) E s-a- 1.

A=1 H=O J=1

E=1
(a)

Fig. 2. Effect of fault signal assignment. (a) Fault signal assignment and
implication. (b) PODEM.

2(a). On the other hand, in PODEM, the initial objective (L,
0) is determined to set up the faulty signal D to the line L, and
then the backtrace procedure starts. As shown in Fig. 2(b), the
backtrace procedure causes a path to be traced from the initial
objective line L backwards to a primary input B. The assign-
ment B = 0 implies that L = 1. This contradicts the initial
objective, and setting L to D fails and a backtrack occurs. As
seen in this example, the assignment of Fig. 2(a) is a condition
necessary for a test of the fault L s-a- 1. By assigning the values
which are uniquely determined, we can avoid the unnecessary
choice.

Consider the circuit of Fig. 3(a). Suppose that the D-frontier
is IG2j. When the D-frontier consists of a single gate, we often
have specific paths such that every path from the site of the
D-frontier to a primary output always goes through those
paths. In this example, every path from the gate G2 to a pri-
mary output passes through the paths F-H and K-M. In order
to propagate the value D or D to a primary output, we have to
propagate the fault signal along both F-H and K-M. There-
fore, if there exists a test in this point, paths F-H and K-M
should be sensitized. Then we have the assignment C = 1, G
= 1, J = 1, and L = 1 to sensitize them. This partial sensiti-
zation which is uniquely determined is called a unique sensi-
tization. In Fig. 3(a), after the implication of this assignment,
we have A = 1, B = 0, F = D, and H = D without backtracks.
On the other hand, PODEM sets the initial objective (F, 0) to
propagate the fault signal to the line F and performs the

138

FUJIWARA AND SHIMONO: ACCELERATION OF TEST GENERATION ALGORITHMS

(a)

(b)
Fig. 3. Effect of unique sensitization. (a) Unique sensitization and

implication. (b) PODEM.

backtrace procedure. If the backtrace performs along the path
as shown in Fig. 7(b), we have to assign 0 to A, and we have
J = 0 and K = 1 by the implication. Although no inconsistency
appears at this point, an inconsistency or the disappearance
of the D-frontier will occur in the future when the faulty signal
propagates from H to K. To find such an inconsistency, the
PODEM algorithm uses a lookahead technique called the
X-path check, i.e., it checks whether there is any path from a

gate in the D-frontier to a primary output such that all the lines
along the path are at X. However, in our example, the back-
tracking from A = 0 to A = 1 is unavoidable in PODEM.

* When the D-frontier consists of a single gate, apply a

unique sensitization.
As seen in the above examples, in order to reduce the num-

ber of backtracks, it is very effective to find as many values as

possible which are uniquely determined in each step of the
algorithm. This is because the assignment of the uniquely
determined values could decrease the number of possible se-

lection.
The execution of the techniques mentioned above may result

in specifying the output of a gate G, but leaving the inputs of
G unspecified. This type of output line is called an unjustified
line. It is necessary to specify input values so as to produce the
specified output values. In PODEM, since all the values are

first assigned only to the primary inputs and only the forward
implication is performed, unjustified lines never appear.
However, if we take the techniques mentioned above, the un-

justified lines may appear, and thus in this case, some initial
objectives will be produced simultaneously so as to justify
them. This will be managed by introducing a multiple back-
trace procedure which is an extention of the backtrace proce-
dure of Goel [8].

Early detection of an inconsistency is very effective to de-
crease the number of backtracks. We shall continue to consider
some techniques to find an inconsistency at an early stage.
When a signal line L is reachable from some fan-out point,

that is, there exists a path from some fan-out point to L, we say
that L is bound. A signal line which is not bound is said to be

free. When a free line L is adjacent to some bound line, we say
that L is a head line. As an example, consider the circuit of Fig.
4(a). In the circuit, A, B, C, E, F, G, H, and J are all free lines,
and K, L, andM are bound lines. Among the free lines, J and
H are head lines of the circuit since J and H are adjacent to
the bound lines L and M, respectively.
The backtrace procedure in PODEM traces a single path

backwards to a primary input. However, it suffices to stop the
backtrace at,a head line for the following reasons. The sub-
circuit composed of only free lines and the corresponding gates
is a fan-out-free circuit since it contains no fan-out point. For
fan-out-free circuits, line justification can be performed
without backtracks. Hence, we can find the values on the pri-
mary inputs which justify all the values on the head lines
without backtracks. It is sufficient, or even efficient, to let the
line justification for head lines wait to the last stage of test
generation.

Stop the backtrace at a head line, and postpone the line
justification for the head line to the last.
To illustrate this, consider the circuit shown in Fig. 4(a).

Suppose that we want to set J = 0 and do not know at the
current stage that there exists no test under the condition J =
0. In PODEM, the initial objective is set to (J, 0), and the
backtrace may result in the assignment A = 1. Since the value
of J is still not determined, PODEM again starts the backtrace
procedure, and we get the assignment B = 0. A = 1 and B =
0 imply that J = 0. Here, by hypothesis, there exists no test
under J = 0, and thus an inconsistency occurs fQr the current
assignment, and PODIVM must backtrack to change the as-
signment on B, as shown in Fig. 4(b). In this case, if we stop
the backtrace to the head line J. we can decrease the number
of backtracks, as shown in Fig. 4(c).

Performing a unique sensitization, we need to identify paths
which would be uniquely sensitized. Also, we need to identify
all the head lines in the circuit. These must be identified, and
that topological information should be stored in some manner
before the test generation starts. According to our experi-
mental results, the computing time of the preprocess can be

1139

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-32, NO. 12, DECEMBER 1983

A

(a)

(b) (c)

Fig. 4. Effect of head lines. (a) Illustrative circuit. (b) PODEM. (c)
Backtracking at head lines.

as small as negligible compared to the total computing time
for test generation.

* Multiple backtrace, that is, concurrent tracing more than
one path, is more efficient than the backtrace along a single
path.

Consider the circuit of Fig. 5. For the objective of setting
C = 0, PODEM repeats the backtrace three times along the
same path C-B-A, and also along the same path C-F-E before
the value 0 is specified on C by the implication. Thus, we can
see that the backtrace along a single path is inefficient and
wastes time, which may be avoided. From this point of view,
we could guess that the multiple backtrace along plural paths
is more efficient than the single backtrace. The modes of
procedure which implement multiple backtrace are various.
In the following, we shall introduce a procedure for multiple
backtrace.

In the backtrace of PODEM, an objective is defined by an
objective logic level 0 or 1 and an objective line which is the line
at which the objective logic level is desired. An objective which
will be used in the multiple backtrace is defined by a triple:

(s, no(s), ni(s))
where s is an objective line, no(s) is the number of times the
objective logic level 0 is required at s, and n,(s) is the number
of times the objective logic level 1 is required at s.

The computation of no(s) and n1(s) will be described later.
The multiple backtrace starts with more than one initial ob-
jective, that is, a set of initial objectives. Beginning with the
set of initial objectives, a set of objectives which appear in the
midst of the procedure is called a set ofcurrent objectives. A
set of objectives which will be obtained at head lines is called
a set ofhead objectives. A set of objectives on fan-out points
is called a set offan-out-point objectives.
An initial objective required to set 0 to a line s is

-~~~~~~~~~~~

Fig. 5. Backtrace.

and an initial objective required to set 1 to s is

(s, no(s), n1(s)) = (s, 0, 1).
Working breadth-first from these initial objectives back-

wards to head lines, we determine next objectives from the
current objectives successively as follows.

1) AND gate [see Fig. 6(a)].
Let X be an input which is the easiest to control setting 0.

Then
no(X) = no(Y), n1(X) = n(Y)

and for other inputs Xi,

no(Xi) = 0, ni(Xi) = nI(Y)
where Y is the output of the AND gate.

2) OR gate [see Fig. 6(b)].
Let X be an input which is the easiest to control setting 1.

Then
no(X) = no(Y),, n1(X) = n1(Y)

and for other inputs Xi,
no(X1) = no(Y), nI(X) = 0.

3) NAND gate.
Let X be an input which is the easiest to control setting 0.

Then
no(X) = n (Y), n1(X) = no(Y)

and for other inputs Xi,

no(Xi) = 0, n1(Xi) = no(Y).

4) NOR gate.
Let X be an input which is the easiest to control setting 1.

Then
no(X) = n1(Y), n1(X) = no(Y)

and for other inputs Xi,
no(X,) = n1(Y), n1(XI) = 0.

5) NOT gate [see Fig. 6(c)].

no(X) = n1(Y), n1(X) = no(Y).

6) Fan-out point [see Fig. 6(d)].

1140

(s, no(s), n I (s)) = (s, 1, 0)

FUJIWARA AND SHIMONO: ACCELERATION OF TEST GENERATION ALGORITHMS

Easiest to control 0 Easiest to control 1

y X

(a) (b)

x-

x y x ,, X2

Xk
(c) (d)

Fig. 6. Gates and fan-out point. (a) AND. (b) OR. (C) NOT. (d) Fan-out
point.

k k
no(X) = j no(Xi), n (X) = n 1 (Xi).

i=l i=l

Fig. 7 shows an example to illustrate the computation of
no(s) and nI(s). The initial objectives are (Q,O,1) and (R,1,O),
i.e., Q and R are first required to set 1 and 0, respectively. At
the fan-out point H, nI (H) is obtained by summing nI (K) and
n1(L), and the corresponding fan-out point objective becomes
(H,0,2).
The flowchart of Fig. 8 describes the multiple backtrace

procedure. Each objective arriving at a fan-out point stops its
backtracing while there exist other current objectives. After
the set of current objectives becomes empty, a fan-out point
objective closest to a primary output is taken out, if one exists.
If the fan-out point objective satisfies the following condition,
the objective becomes the final objective in the backtrace
process, and the procedure ends at the exit (D) in Fig. 8. The
condition is that the fan-out point p is not reachable from the
fault line and both no(p) and n I (p) are nonzero. In this case,
we assign a value [0 if no(P) > n1(p) or 1 if no(p) < n1 (p)] to
the fan-out point and perform the implications. The first part
of the condition is necessary to guarantee that the value as-
signed is binary, that is, neither D nor D.

In PODEM, the assignment of a binary value is allowed only
to the primary inputs. In our algorithm, FAN, we allow to
assign a value to fan-out points as well as head lines, and hence
the backtracking could occur only at fan-out points and head
lines, and not at primary inputs. The reason why we assign a
value to a fan-out point p is that there might exist a great
possibility of an inconsistency when the objective in back-
tracing has an inconsistent requirement such that both no(p)
and n1 (p) are nonzero. So as to avoid the fruitless computation,
we assign a binary value to the fan-out point as soon as the
objective involves a contradictory requirement. This leads to
the early detection of inconsistency which would decrease the
number of backtracks.

In the multiple backtrace, if an objective at a fan-out point
p has a contradictory requirement, that is , both no(p) and
n I (p) are nonzero, stop the backtrace so as to assign a binary
value to the fan-out point.
When an objective at a fan-out point p has no contradiction,

that is, either no(p) or n I(p) is zero, the backtrace would be
continued from the fan-out point. If all the objectives arrive

Fig. 7. Computation of no and n X.

no Does objective

yes

By the rules(l)-(5) Add n0 and nI Add the cur
determine next objec- O objective t
tives and add them to to t e corres- objset of
the set of current pond fanout- thobjecti ves
objectives point objective-J by the rule (6)

Fig. 8. Flowchart of multiple backtrace.

at head lines, that is, both sets of current objectives and fan-out
point objectives are empty, then the multiple backtrace pro-
cedure terminates at the exit (C) in Fig. 8. After this, taking
out a head line one by one from the set of head objectives, we
assign the corresponding value to the head line and perform
the implication. For details, see the flowchart of the FAN al-
gorithm in Fig. 9.

III. DESCRIPTION OF THE FAN ALGORITHM

The FAN (fan-out-oriented) test generation algorithm is
similar to PODEM based on the implicit enumeration process.
However, the FAN algorithm is characterized by putting
emphasis on the following points.

1) FAN pays special attention to fan-out points in cir-
cuits.

2) FAN is a branch-and-bound algorithm which adopts
many techniques presented in the preceding section so as to
detect an inconsistency as early as possible.
As mentioned in the preceding section, those techniques

would be very useful to decrease the number of backtracks, and
thus FAN could be faster and more efficient than PODEM.

1 141

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-32, NO. 12, DECEMBER 1983

Fig. 9. Flowchart of FAN algorithm.

The flowchart of the FAN algorithm is given in Fig. 9. Each
box in the flowchart will be explained in the following.

1) Assignment ofFault Signal: In box 1, a fault signal D
or D is assigned in the manner shown in Fig. 1.

2) Backtrace Flag: The multiple backtrace procedure of
Fig. 8 has two entries: one entry is (A) where the multiple
backtrace starts from a set of initial objectives, and the other
entry is (B) where the multiple backtrace starts with a fan-
out-point objective to continue the last multiple backtrace
which terminated at a fan-out point. The backtrace flag is used
to distinguish the above two modes.

3) Implication: We determine as many signal values as

possible which can be uniquely implied. To do this, we take the
implication operation which completely traces such signal
determination both forwards and backwards through the cir-
cuit. In PODEM, since all the values are assigned only to the
primary inputs and only the forward implication is performed,
unjustified lines never appear. However, in FAN, since both
forward and backward implications are performed, the un-

justified lines might appear. Therefore, so as to justify those
lines, the multiple backtrace is necessary, not only to propagate
the fault signal (D or D), but also to justify the unjustified
lines.

4) Continuation Checkfor Multiple Backtrace: In box 4,
we check whether or not it is meaningful to continue the
backtrace. We consider that it is not meaningful to continue
the backtrace if the last objective was to propagate D or D and
the D-frontier has changed or if the last objective was to justify
unjustified lines and all the unjustified lines have been justified.
When it is not meaningful to continue, the backtrace flag is

set so as to start the multiple backtrace with new initial ob-
jectives.

5) Checking D-Frontier: PODEM uses a lookahead tech-
nique called an X-path check, i.e., it checks whether there is
any path from a gate in the D-frontier to a primary output such
that all lines along the path are at X. In FAN, the same tech-
nique is adopted to eliminate a meaningless D-frontier. FAN
counts only those gates in the D-frontier which have an X-
path.

6) Unique Sensitization: The unique sensitization is per-
formed in the manner mentioned ip the previous section (see
Fig. 3). Although the unique sensitization might leave some
lines unjustified', those lines will be justified by the multiple
backtrace.

7) Determination of a Final Objective: The detailed
flowchart of box 6 is described in Fig. 10. By using the multiple
backtrace procedure, we determine a final objective, that is,
we choose a value and a line such that the chosen value as-
signed to the chosen line has a good likelihood of helping
towards meeting the initial objectives.

8) Backtracking: The decision tree is identical to that of
PODEM, that is, an ordered list of nodes, with each- node
identifying a current assignment of either 0 or 1 to one head
line or one fan-out point, and the ordering reflects the relative
sequence in which the current assignments were made. A node
is flagged if the initial assignment has been rejected and the
alternative i$ being tried. When both assignment choices at a
node are rejected, then the associated node is removed and the
predecessor node's current assignment is also rejected. The
backtracking done by PODEM does not require saving and
restoring of status because, at each point, the status could be
revived only by forward implications of all primary inputs. The
same backtracking can be done in FAN, which does not re-
quire saving and restoring of status, by implications of all as-
sociated head lines and fan-out points. However, to avoid the
unnecessary repetition of implications, FAN allows the process
of saving and restoring of status to some extent.

9) Line Justification ofFree Lines. We can find values on
the primary inputs which justify all the values on the head lines
without backtracks. This can be done by an operation identical
to the consistency operation of the D-algorithm.

IV. EXPERIMENTAL RESULTS

We have implemented three programs, SPS (single path
sensitization), PODEM, and FAN test generation algorithms,
in Fortran on an NEAC System ACOS-1000. The SPS is a
test generation algorithm which is restricted to sensitize only
single paths, and thus it is simpler than the D-algorithm, These
programs were applied to a number of combinational circuits
shown in Table 1. The number of gates in these circuits range4
from 718 to 2982. The results are shown in Tables II and III.
To obtain the data of Tables II and III, three programs were
executed to generate a test for each stuck fault.
The number of times a backtrack occurs during the gener-

ation of each test pattern was calculated by the programs, and
the average number of backtracks is shown in Table II. Since
PODEM and FAN are complete algorithms, given enough
time, both will generate tests for each testable fault. However,

1142

FUJIWARA AND SHIMONO: ACCELERATION OF TEST GENERATION ALGORITHMS

MULTIPLE BtETRACTE MULTIPLE BACKTRACE
tEAD OBJECTIVE FREM A FAO-INT FROM THE SET OF
L O8JECTIVE OBJECTIVE INITIAL OBJECTIVES

.CONTRADICTORY
>,N!O R EQOIREMENT AT A

C OIIVOT-POINTOtURRRE

D~~~~~~~~~~~YES

.....

MULTIPLE BACKTRACE
OF FIG. 8

LET THE FANOUT-POINT OBJECTIVE
BE FINAL OBJECTIVE TO ASSIGN
A VALUE

Fig. 10. Determination of final objective.

TABLE I
CHARACTERISTIC OF CIRCUITS

Number of Number of Number of NSmber of Number of Number of
Circuit Gates Lines Inputs Outputs Fanout- Faults

Points

#1 Error 718 1925 33 25 381 1871
Correcting
Circuit

#2 Arithmetic 1003 2782 233 140 454 2748
Logic
Unit

#3 ALU 1456 3572 50 22 579 3428

#4 ALU and 2002 5429 178 123 806 5350
Selector

#5 ALU 2982 7618 207 108 1300 7550

being limited in computing time, we gave up continuing test
generation for the faults for which the number of backtracks
exceeds 1000. Such faults are called abortedfaults in Table
III. The results shown in Tables II and III demonstrate that,
although PODEM is faster than SPS, FAN is more effcient
and faster than both PODEM and SPS. The average number
of backtracks in FAN is extremely small compared to
PODEM and SPS.
We have also implemented an automatic test generation

system composed of FAN and the concurrent fault simulator
[9] in such a way that the fault simulator is used after each test
pattern is generated to find what other faults are detected by
the tests. Note that the test pattern is completed by replacing
the unspecified inputs by 0's and l's. These faults are deleted
from the fault list. The results of this system are shown in Table

TABLE II
NORMAL IZED COMPUTING TIME AND AVERAGE NUMBER OF

BACKTRACKS

Normalized Computing Time Average Number of Backtracks
Circuit

SPS PODEM FAN SPS PODEM FAN

1 5.2 1.3 1 31.2 4.9 1.2

2 4.5 3.6 1 51.7 42.3 15.2

3 14.5 5.6 1 189.7 61,9 0.6

4 3.1 1.9 1 1.5 5.0 0.2

5 3.4 4.8 1 38.1 53.0 23.2

TABLE III
TEST COVERAGE

% Tested Faults X Aborted Faults Z Untestable Faults
Circuit

SPS PODEM FAN SPS PODEM FAN SPS PODEM FAN

1 99.04 99.20 99.52 0.48 0.48 0.11 - 0.32 0.37

2 91.15 94.25 95.49 4.70 3.49 1.38 - 2.26 3.13

3 66.25 92.53 96.00 16.25 5.05 0 - 2.42 4.00

4 98.77 98.75 98.90 0.07 0.26 0 - 0.99 1.10

5 94.73 94.38 96.81 3.54 4.79 2.17 - 0.82 1.02

TABLE IV
FAN COMBINED WITH CONCURRENT SIMULATOR

Computing Time (seconds)
Circuit % Tested % Aborted # of Test

FAN Concurrent Total Faults Faults Patterns
Simulator

1 3.8 4.6 8,4 99.52 0.11 151

2 34.6 3.7 38.3 95.74 1.13 159

3 7.4 9.5 16.9 96.00 0 215

4 4.0 10.5 14.5 98.90 0 195

5 76.5 18.9 95.4 98.20 0.78 283

IV. Computing times on an ACOS-1000 (15 millions of in-
structions per second) were reasonable, and a high-speed test
generation system has been implemented, as seen from Table
IV.

V. CONCLUSIONS

The PODEM reported by Goel succeeded in improving the
poor performance of the D-algorithm for error-correction and
translation-type circuits. However, we have shown that there
still remain many possibilities of reducing the number of
backtracks in the algorithm. The FAN algorithm presented
in this paper adopts many techniques to reduce the number of
backtracks. Experimental results on large combinational cir-
cuits of up to 3000 gates show that the FAN algorithm is faster
and more efficient than the PODEM algorithm in computing
time, the number of backtracks, and test coverage. An auto-
matic test generation system compsoed of the FAN test gen-
erator and the concurrent fault simulator has also been im-
plemented. The results on large circuits show that computing

1143

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-32, NO. 12, DECEMBER 1983

time on an ACOS-1000 were reasonable, and the system
achieved a high-speed test generation. Recently, a new method
has been presented by Savir and Roth [11] which leads to the
elimination of fault simulation. Considering that a nontrivial
amount of time is spent on the fault simulation, their method
could be incorporated in FAN to yield a more powerful test
generator.

ACKNOWLEDGMENT

We would like to express our thanks to Prof. H. Ozaki and
Prof. K. Kinoshita for their support and encouragement of this
work.

REFERENCES

[I] H. Fujiwara and S. Toida, "The complexity of fault detection: An ap-
proach to design for testability," in Proc. 12th Int. Symp. Fault Tolerant
Comput., June 1982, pp. 101-108.

[2] E. B. Eichelberger and T. W. Williams, "A logic design structure for
LSI testing," in Proc. 14th Design Automation Conf., June 1977, pp.
462-468.

[3] S. Funatsu, N. Wakatsuki, and T. Arima, "Test generation systems in
Japan," in Proc. 12th Design Automation Conf., June 1975, pp.
114-122.

[4] F. F. Sellers, M. Y. Hsiao, and L. W. Bearnson, "Analyzing errors with
the Boolean difference," IEEE Trans. Comput., vol. C-17, pp. 676-683,
July 1968.

[5] J. P. Roth, "Diagnosis of automata failures: A calculus and a method,"
IBM J. Res. Develop., vol. 10, pp. 278-291, July 1966.

[6] C. W. Cha, W. E. Donath, and F. Ozguner, "9-V algorithm for test
pattern generation of combinational digital circuits," IEEE Trans.
Comput., vol. C-27, pp. 193-200, Mar. 1978.

[7] K, Kinoshita, Y. Takamatsu, and M. Shibata, "Test generation for
combinational circuits by structure description functions," in Proc. 10th
Int. Symp. Fault Tolerant Comput., Oct. 1980, pp. 152-154.

[8] P. Goel, "An implicit enumeration algorithm to generate tests for
combinational logic circuits," IEEE Trans. Comput., vol. C-30, pp.
215-222, Mar. 1981.

[9] E. G. Ulrich and T. Baker, "The concurrent simulation of nearly iden-
tical digital networks," in Proc. 10th Design Automation Workshop,
June 1973, pp. 145-150.

[10] L. H. Goldstein, "Controllability/observability analysis of digital cir-
cuits," IEEE Trans. Circuits Syst., vol. CAS-26, pp. 685-693, Sept.
1979.

[II] J. Savir and J. P. Roth, "Testing for, and distinguishing between fail-
ures," in Proc. 12th Int. Symp. Fault Tolerant Comput., June 1982,
pp. 165-172.

N Hideo Fujiwara (S'70-M'74-SM'83) was born in
:_ Nara, Japan, on February 9, 1946. He received

X the B.S., M.S., and Ph.D. degrees in electronic en-
gineering from Osaka University, Osaka, Japan,
in 1969, 1971, and 1974, respectively.

Since 1974 he has been with the Department of
Electronic Engineering, Faculty of Engineering,
Osaka University. In 1981 he was a Visiting Re-
search Assistant Professor at the University of
Waterloo, Waterloo, Ont., Canada. His research
interests include switching theory, design for

testability, test generation, fault diagnosis, and fault-tolerant systems.
Dr. Fujiwara is a member of the Institute of Electronics and Communi-

cation Engineers of Japan and the Information Processing Society of Japan.
He was a member of the Technical Program Committee of the 1982 Inter-
national Symposium on Fault Tolerant Computing, and received the IECE
Young Engineer Award in 1977.

Takeshi Shimono (S'81) was born on November
25, 1958. He received the B.S. and M.S. degrees in
electronic engineering from Osaka University,
Osaka, Japan, in 1981 and 1983, respectively.
He is now with the NEC Corporation, Tokyo,

Japan. His research interests include design for
testability, test generation, and fault simulation.

Mr. Shimono is a member of the Institute of
Electronics and Communication Engineers of
Japan.

1144

