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Abstmct- In this paper, the computational complexity of vergency becomes a cause of NP-completeness. To clarify 
fault detection problems and various Controllability and ObserV- the relation bemeen reconvergency and NP-completeness, we 
ability problems for combinational logic circuits are analyzed. It consider in this paper the fault-detection problem for circuits 
is shown that the fault detection problem is still NP-complete 
for monotone circuits limited in fanout, i.e., the number of sig- with a stringent condition on fanout of reconvergent paths. 
rial lines which fan out from a signal line is limited to two. It The fault detection problem is proved to be still NP-complete 
is also shown that the observability problem for unate circuits for monotone circuits limited in fanout, i.e., the number of 
is NP-complete, but that the controllability Problem for unate signal lines which fan out from a signal line is limited to two. 
circuits can be solved in time complexity O ( m ) ,  where m is the This if we limit the number of reconvergent number of lines in a circuit. Furthermore, two classes of cir- 

are introduced. For k-binate-bounded circuits the controllability is NP-complete. However, if We limit the total number of fan- 
problem is solvable in polynomial time, and for k-bounded cir- out points to a constant, then the fault-detection problem can 
cuits the fault detection problem is Solvable in polynomial time, be solved in linear time. Therefore, we see that the main cause 

k-bounded circuits includes many practical circuits such as de- 
coders, adders, one-dimensional cellular arrays, two-dimensional from a point but the number Of points which 
cellular arrays, etc. reconverge. 

Fault detection problem for combinational circuits can be 

that 
cuits, called k-binate-bounded circuits and k-bounded circuits, paths from a Point to the problem 

when 5 log P(m) for Some polynomia1 P(m). The Of of NP-completeness is not the number of reconvergent paths 

h f R l C  Tems-computational controllability/ divided into two subproblems: controllability and observabil- 
observability, for detection, NP- ity The controllability problem is to decide whether 
complete, polynomial time algorithms, test generation. 

there exists an input pattern which produces a specified logical 

I. INTRODUCTION 

ESTING has two main stages: the generation of tests for T a given circuit and the application of these tests to the cir- 
cuit. Hence, the complexity of testing can be classified into the 
complexity of test generation and the complexity of test appli- 
cation. The computational complexity of the algorithms used 
to generate a test is used to estimate the complexity of test gen- 
eration. The size of a test set or the length of a test sequence 
is adopted as a measure of the complexity of test application 
[l]. In this paper, we are concerned with the complexity of 
test generation. 

It is well known that major fault-detection problems are NP- 
complete in general [ 2 ] ,  and that they are still NP-complete 
even for monotone circuits without negated gates such as NOT, 
NOR, and NAND [3]. We can see that the fault-detection prob- 
lem for reconvergent-free circuits can be solved in O(m) ,  
where m is the number of signal lines. On the other hand, 
for the circuits with reconvergent fanouts, backtracking may 
occur during test generaiton. This backtracking due to recon- 
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value on a given signal line in the circuit. The observability 
problem is to decide whether there exists an input pattern 
which propagates the logical value on a specified signal line 
to a primary output of the circuit. In this paper, we show that 
the observability problem for unate circuits is NP-complete, 
but that the controllability problem for unate circuits can be 
solved in time complexity O(m),  where m is the number of 
lines in a circuit. Furthermore, we introduce a class of circuits 
called k-binate-bounded circuits, for which the controllability 
problem is solvable in polynomial time when k 5 logp(m), 
where p ( m )  is a polynomial in m. After analyzing the com- 
plexity of various problems, we present a class of logic circuits 
for which these fault detection problems are solvable in poly- 
nomial time. One-dimensional arrays like ripple-carry adders, 
two-dimensional arrays, decoder circuits, etc., belong to this 
class. 

11. VARIOUS SATISFIABILITY PROBLEMS 
In this section, we clarify the computational complexity of 

several satisfiability problems for various classes of Boolean 
expressions. The analysis of satisfiability problems is impor- 
tant to know the complexity of fault-detection, controllability, 
and observability problems since they are closely related to 
one another. We introduce notation and definitions necessary 
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for our discussion of satisfiability problems. For definitions of 
NP-completeness see [4]. 

A literal is either x or x’ for some variable x ,  where x’ 
denotes a complement of x ,  and a clause is a sum of literals. A 
Boolean expression is said to be in conjunctive normal form 
(CNF) if it is a product of clauses. A Boolean expression is 
satisfiable if and only if there exists some assignment of 0’s 
and 1’s to the variables that gives the expression the value 
1. Then the satisfiability problem which is known to be NP- 
complete [SI is specified as follows: 

Satisfiability (SAT, for short): Is a Boolean expression sat- 
isfiable? 

An expression is said to be clause-monotone if each of 
its clauses contains either only negated variables or only un- 
negated variables. For example, ( X I  + X Z ) ( X ~  + x i )  is clause- 
monotone, but ( X I  + x ~ ) ( x z + x ~ )  is not. The satisfiability prob- 
lem for clause-monotone expressions (CM-SAT, for short) is 
known to be NP-complete. 

Theorem I [3]: CM-SAT is NP-complete. 
An expression is said to be monotone if it contains only 

unnegated variables. An expression is said to be unate if each 
variable is either only negated or only unnegated. A negated 
(unnegated) variable in a unate expression is called negative 
(positive) unate. 

Theorem 2 [3]: SAT for unate expressions is solvable in 
time complexity @e) ,  where e is the length of an expression. 

An expression is said to be in k-conjunctive normal form 
(k-CNF) if it is a CNF with each clause having at most k 
literals. The k-satisfiability problem (k-SAT) is to determine 
whether an expression in k-CNF is satisfiable. For k = 1 or 
2 there exist polynomial algorithms to test k-SAT. However, 
3-SAT is known to be NP-complete. 

Theorem 3 [SI: 2-SAT is solvable in polynomial time, but 
3-SAT is NP-complete. 

This k-SAT problem is related to the fault detection prob- 
lem for circuits limited in fanin, i.e., the number of inputs 
which fanin to a gate is limited to the value k. Similarly, 
we can define another k-SAT problem that is related to the 
fault detection problem for circuits limited in fanout, i.e., 
the number of signal lines which fan-out from a signal line 
is limited to the value k. An expression is said to be in k- 
fanout-conjunctive normal form (kF-CNF) if it is a CNF 
such that each variable appears at most k times. For example, 
( X I  +x2)(x{  +x3)(xl + x ; )  is 2-CNF and is 3F-CNF since 
variable X I  ( X I  and x ; )  appears three times. The k-fanout- 
satisfiability problem (kF-SAT, for short) is to determine 
whether an expression in kF-CNF is satisfiable. 

Before showing that this SAT problem for kF-CNF is NP- 
complete, we present two lemmas. 

Lemma 1: x1 = x2 = . . . = xm = y i  = y ;  = yL if 
and only if (xi + Y 1)(x2 + ~ 2 ) .  . . ( X m  + ym)(Xi + y ; ) (x ;  + 

Lemma 2: Given a CNF of a Boolean expression 
F where literals x and x’ appear p and q times, 
respectively. Suppose we introduce 2m new variables 
xi , x2, . . . , X m ,  Y I ,  y2, . . . , ym, where m = max { p ,  q } ,  and 
replace the p occurrences of x by x 1 ,  xp , . . . , x p  and q occur- 
rences of x’ by y1, y2, . . . , y q .  Let the replaced expression 

y i ) .  . . ( X L  + y i )  = 1. 

be F * .  Then, F is satisfiable if and only if F #  is satisfi- 
able, where F# = F*((x l  + Y I ) ( x ~  + y 2 ) .  . . ( X m  + Y m ) ( X {  + 

Lemma 2 can be proved using Lemma 1. Then, we can 
prove that SAT for Boolean expressions that are kF-CNF 
(k 2 3) and clause-monotone (CM-kF-SAT, for short) is NP- 
complete as follows. 

Y;)(x; + Y i ) .  . . (x:, + Y { ) ) .  

Theorem 4: CM-3F-SAT is NP-complete. 
Proof: It is easy to see that CM-3F-SAT is in the class 

NP. We transform SAT to CM-3F-SAT. Given a CNF of a 
Boolean expression F. Let F #  be the Boolean expression de- 
rived from F by applying the operation of Lemma 2 to each 
of the variables in F. It is obvious that F# is clause-monotone 
and each variable appears at most three times. From Lemma 
2, F is satisfiable if and only if F# is satisfiable. The trans- 
formation operation of Lemma 2 can be performed in poly- 
nomial time in the size of F. Therefore, SAT is polynomially 
transformable to CM-3F-SAT. Q.E.D. 

From this theorem, we have the following corollary. 
Corollary 1: 3F-SAT is NP-complete. 
Theorem 5: 2F-SAT is solvable in time complexity O(n2)  

where n is the number of input variables. 
Proof: Let F be a 2F-CNF. For each variable x of F, 

there are two cases: 1) only literal x appears, and 2) both 
literal x and x’ appear. For each case we delete x and x’ from 
F by applying the following operation. 

1) When only literal x appears, F can be expressed as 

F = ( x  + p ) ( x  + q ) r  or F = (x  + p ) r  

where p and q are sums without x and r is a product of sums 
without x.  Then, by deleting ( x  + p )  and ( x  + q),  we have 
F* = r .  Considering the assignment of x = 1, we can see 
that F is satisfiable if and only if F * is satisfiable. 

2) When both literals x and x’ appear, F can be expressed 
as 

F = ( X  + p)(x’  + q)r 

where p and q are sums without x and r is a product of sums 
without x.  Then, by deleting x and x’ ,  we have F * = ( p  +q)r . 
Again, F is satisfiable if and only if F * is satisfiable. 

By applying the above operation for each variable, we can 
determine whether F is satisfiable or not. The time complexity 
of this procedure is O(rnn) where m is the size of the Boolean 
expression and n is the number of input variables. Since m is 
less than 2 n ,  we have time complexity O(n2).  Q.E.D. 

Corollary 2: CM-2F-SAT is solvable in time complexity 
O(n2)  where n is the number of input variables. 

An expression is said to be binate with respect to a variable 
x if both x and x’ are contained in it, and the variable x is 
said to be binate. An expression is said to be k-binate if it 
contains k binate variables. 

Theorem 6: SAT for k-binate expressions is solvable in 
time complexity 0 ( 2 k m )  where m is the size of the expres- 
sion. Therefore, if k 5 log2p(m),  where p ( m )  is a polyno- 
mial in m , the SAT is solvable in polynomial time O( mp (m) )  . 

Proof: Let F ( x I , x ~ , . . . , x ~ , x ~ + ~ , . . . , x ~ )  be a k- 
binate expression. Without loss of generality, we assume that 
X I , X ~ , . . . , X ~  are binate and xk+l , . . . , xn  are unate. For 
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unate variables, let (ak+l, . . . ,a,) be an assignment such that 
a; = 0 if xi is negative unate and a; = 1 if x i  is positive 
unate. Then F(xl,xz,...,xk,xk+l,...,xn) is satisfiable if 
and only if F(x1, x z , " . , x k ,  ak+l,...,a,) is satisfiable. To 
check if F(x1, X Z ,  . . . ,xk,  ak+l , .  . . ,a,) is satisfiable or not, 
consider all the combinations of values 0 and 1 on all k bi- 
nate variables. This computation can be performed in 0 ( 2 k m )  
time. Q.E.D. 

111. FAULT DETECTION PROBLEM 
The fault detection problem can be defined as follows. 
Fault Detection (FD, for short): Is there any input-output 

pattern which can detect a single stuck-at fault f in a combi- 
national circuit C? 

Theorem 7 [2]: FD is NP-complete. 
A combinational circuit is said to be monotone if it consists 

of only unnegated gates such as AND or OR. A combinational 
circuit is said to be unate if the number of negated gates 
(NOT, NAND, or NOR) in any path connecting two points in the 
circuit has the same parity (odd or even). FD is known to be 
NP-complete even for monotone and unate circuits [3]. 

Theorem 8 [3]: FD for monotone or unate circuits is NP- 
complete. 

We can easily see that the fault-detection problem for 
reconvergent-free circuits can be solved in O(m),  where m 
is the number of signal lines. On the other hand, for the cir- 
cuits with reconvergent fanouts, backtracking may occur dur- 
ing test generation. This backtracking due to reconvergence 
becomes a cause of NP-completeness. To clarify the rela- 
tion between reconvergence and NP-completeness, we con- 
sider here the fault-detection problem for monotone circuits 
limited in fanout. A combinational circuit is said to be k-fan- 
out-limited if the number of signal lines which fan out from 
a signal line is at most k. Consider the fault-detection prob- 
lem for monotone and k-fanout-limited circuits (M-kF-FD, 
for short). 

Theorem 9: M-3F-FD for k-level (k 2 3) circuits is NP- 
complete. 

Proof: Obviously, M-3F-FD is in the class NP. Hence, 
it is sufficient to show that some NP-complete problem is poly- 
nomially transformable to M3F-FD. We transform CM-3F- 
SAT to M-3F-FD for three-level circuits. 

Given any clause-monotone CNF F in which each variable 
appears at most three times. Without loss of generality, we as- 
sume that C 1 ,  CZ, . . . , C ,  are the clauses with unnegated vari- 
ables and C,+1, C,+Z,. . . , C ,  are the clauses with negated 
variables. For this expression F, we construct a three-level 
monotone circuit as shown in Fig. 1. 

1) Construct OR gates 01, 0 2 ,  . . . ,O, corresponding to the 
clauses C 1 , CZ , . . . , C ,  so that each OR gate 0; has the input 
variables of Ci . For example, suppose a clause Ci = x + y  +z, 
then the output of 0; is x + y + z .  

2) Construct AND gates A 1 ,  A z ,  . . . ,A,-, corresponding 
to the clauses C,+1, Cp+z, . . . , C ,  so that each AND gate A, 
has the input variables of C j .  For example, suppose a clause 
Cj  = x' + y ' ,  then the output of Aj is xy. 

Since each input variable appears at most three times in F, 
in this circuit of Fig. 1, the number of signal lines which fan 
out from a primary input is limited to three. Hence, the circuit 

cl q = =  
I I 

cg - = D l  
Fig. 1 .  Three-level monotone circuits. 

of Fig. 1 is monotone and 3-fanout-limited. A stuck-at-0 fault 
at input line xo is detectable if and only if there exists a test 
such that all the outputs of OR gates 0 , 0 2 ,  . . . , 0, are 1 and 
all the outputs of AND gates A I ,  & , . . . , A q - ,  are 0. Hence, 
the fault xo stuck-at-0 is detectable if and only if the given 
expression F is satisfiable. 

The above construction of the circuit can be carried out in 
an amount of time linear in the number of inputs. Therefore, 
CM-3F-SAT is polynomially transformable to M-3F-FD. 

Q.E.D. 
In the previous section, we have shown that CM-2F-SAT 

is solvable in time complexity O(n2) where n is the num- 
ber of input variables but CM-3F-SAT is NP-complete. This 
might suggest that though M-3F-FD is NP-complete, M-2F- 
FD might be solvable in polynomial time complexity. How- 
ever, this is not true as shown in the following theorem. 
For two-level circuits, M-2F-FD is of course solvable in time 
O(m2)  where m is the number of lines in the circuit since it 
is known that for two-level monotone combinational circuits 
the fault detection problem is solvable in time O(m2)  [3]. 

Theorem 10: M-2F-FD for k-level (k 2 4) circuits is NP- 
complete. 

Proofi It suffices to show that M-3F-FD for three-level 
circuits of the form in Fig. 1 which is NP-complete (Theorem 
9) is polynomially transformable to M-2F-FD for four-level 
circuits. 

Let C 1 be a 3-fanout-limited three-level monotone circuit 
of the form in Fig. 1. We change C 1  into a 2-fanout-limited 
monotone circuit C:! by inserting an AND gate G; and a new 
input y ;  for each fanout point si in C1 as shown in Fig. 2. It is 
obvious that the transformed circuit C2 is monotone four-level 
and 2-fanout-limited. Furthermore, it can be shown that C2 
with y ;  = 1 for all new inputs is equivalent to C1. Therefore, 
a single stuck-at fault in C1 is detectable if and only if the 
corresponding fault on the same line in C2 is detectable. 

The above transformation can be carried out in time com- 
plexity O(m). Hence, M-3F-FD for three-level circuits in Fig. 
1 is polynomially transformable to M-2F-FD for four-level 
circuits. Q.E.D. 

From Theorem 10, we can see that the fault detection prob- 
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Fig. 2. Reduction of fanout. 

lem is still NP-complete for k-level (k 2 4) for monotone 
circuits with a restriction such that each signal line fans out to 
at most two signal lines. This means that even if we limit the 
maximum number of reconvergent paths from a fanout point 
to two, the fault-detection problem is NP-complete. However, 
if we limit the total number of fanout points to a constant, 
then the fault-detection problem can be solved in linear time. 
Therefore, we can see that the main cause of NP-completeness 
is not the number of reconvergent paths from a fanout point 
but the total number of fanout points which reconverge. 

IV. CONTROLLABILITYIOBSERVABILITY PROBLEMS 

The process of test generation consists of the tasks of con- 
trolling and observing internal logic values. Representatives of 
controlling and observing tasks in test generation are the con- 
sistency and D-drive operations of the D-algorithm, respec- 
tively [l]. Hence, the fault detection problem for combina- 
tional circuits can be divided into two subproblems: controlla- 
bility and observability problems. The controllability problem 
is to decide whether there exists an input pattern which pro- 
duces a specified logical value on a given signal line in the 
circuit. The observability problem is to decide whether there 
exists an input pattern which propagates the logical value on 
a specified signal line to a primary output of the circuit. In 
this section, we analyze the complexity of these controllability 
and observability problems. 

Controllability Problem (CT, for short): Let C, s, and a 
be a circuit, a signal line in C, and a logical value, respec- 
tively. Is there any input pattern which produces value a on 
line s in C? 

Observability Problem (OB, for short): Is there any input 
pattern which propagates the logical value a on line s to a 
primary output of C? 

Lemma 3: a) SAT is polynomially transformable to CT, 
b) CT is polynomially transformable to OB, and 
c) OB is polynomially transformable to FD. 

Proof: Obvious. Q.E.D. 
Theorem ZZ: Both CT and OB for k-level (k 2 2) combi- 

Q.E.D. 
From this theorem, FD, CT, and OB are all NP-complete 

for general circuits, and hence all these problems seem to 
be equally hard. However, if we consider a class of unate 
circuits, we can see that FD and OB are harder than CT. 

Theorem 12: CT for k-level ( k  2 2) unate circuits (kU- 
CT, for short) is solvable in time complexity O(m), where m 
is the number of lines. 

Proof: Consider to set logical value a on signal line s. 
Since the circuit is unate, the parity of paths from s to a 

national circuits are NP-complete. 
Proof: Obvious from Lemma 3. 

_____ 
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primary input x is determined uniquely. When the parity is 
even (odd), assign x = U (x = a’). By assigning like this for 
all primary inputs, signal line s can be set to a .  Q.E.D. 

Theorem 13: OB for two-level unate circuits (2U-OB, for 
short) is solvable in time complexity O(m2). However, OB 
for k-level (k 2 3) unate circuits (kU-OB, for short) is NP- 
complete. 

Proof: From Lemma 3, OB is polynomially trans- 
formable to FD. It is known that FD for two-level unate cir- 
cuits is solvable in time O(m2) where m is the number of 
lines [3]. Hence, 2U-OB is solvable in time O(m2). 

Next, in order to prove that 3U-OB is NP-complete, we 
transform CM-3-SAT to 3U-OB. Let F be a clause-monotone 
CNF in which each variable appears at most three times. With- 
out loss of generality, we assume that C 1 ,  C2, . . . , C, are the 
clauses with unnegated variables and C,+I, Cp+2, . . . ,C, are 
the clauses with negated variables. For this expression F, we 
construct a three-level monotone circuit of Fig. 1 in the same 
way as the proof of Theorem 9. 

The logical value of input line xo is observable at the pri- 
mary output if and only if there exists an input pattern such 
that all the outputs of OR gates 0 1 ,  0 2 ,  . . . , 0, are 1 and all 
the outputs of AND gates A 1 ,  A2, . . . ,A,-, are 0. Hence, the 
logical value of input line xo is observable at the primary 
output if and only if the given expression F is satisfiable. 

The above construction of the circuit can be carried out in 
an amount of time linear in the number of inputs. Therefore, 
CM-3F-SAT is polynomially transformable to 3U-FD. 

Q.E.D. 
From Theorems 12 and 13, we see that OB is a harder 

problem than CT. On the other hand, improvement of observ- 
ability can be achieved easier than that of controllability. In 
other words, generally speaking, extra hardware for improv- 
ing controllability is more expensive than that of observabil- 
ity. Furthermore, in electron-beam testing all internal signal 
lines are observable. Hence, from the viewpoint of design for 
testability, design methodologies for improving controllability 
might be more important than that of observability. 

A circuit is said to be k-binate-bounded if it can be 
changed into a unate circuit by cutting at most k signal lines. 

Theorem 14: CT for k-binate-bounded circuits is solvable 
in time 0(2km), where m is the number of lines in the circuit. 
Therefore, if k 5 log,p(m), then this controllability problem 
can be solved in time O(p(m)m). 

Proof: Let C be a k-binate-bounded circuit. By cutting 
Signal lines SI, s2, . . . , S k  , c is changed into a unate circuit. 
Assign a value 0 or 1 to every line cut. The number of possible 
assignments for this is 2k. For each assignment, determine im- 
plications, i.e., determine all the line values that are implied 
uniquely by other line values. After the implications, the re- 
maining circuit becomes a unate circuit. Hence, we can easily 
solve CT for the remaining unate circuit in time O(m) from 
Theorem 12. The above computation requires at most 0(2km) 
time. Q.E.D. 

V. POLYNOMIAL TIME CLASS 

In this section, we introduce a class of circuits for which 
the fault detection problem can be solved in polynomial time 
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Fig. 3. Adder. 
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Fig. 4. (Nhk + Nu)-bounded circuit. 

in the number of lines in the circuits. One-dimensional cel- 
lular arrays like ripple-carry adders, two-dimensional cellular 
arrays, and decoder circuits belong to this class. 

Consider a partition II = {CI, C2, . . . , Cf } of a circuit 
C,  where C1, C2, . . . , C ,  are subcircuits of C and satisfy 
Ci nCj = 0 and C = C1 U C 2  U .. .  UC,. Such a sub- 
circuit is called a block. Consider an undirected graph Gn 
with respect to II such that each vertex represents a block 
and each edge corresponds to each connection line between 
blocks. Note that an edge (U, U) exists if and only if there is 
at least one signal line between two blocks corresponding to 
U and U. 

A combinational circuit C is said to be k-bounded if there 
exists a partition II = {CI, C2, . . . , Cf } of C such that 

1) the number of inputs of each block Ci (1 5 i 5 t) is at 
most k, and 

2) graph Gn has no cycle. 
A combinational circuit C is said to be (kl ,  k2)-bounded 

if it can be changed into a kl-bounded circuit by cutting at 
most k2 lines in C. 

Example 1: Fig. 3 shows a p  stage adder. Suppose a par- 
tition such that each block corresponds to a full adder, then 
we see that the adder is 3-bounded. 

Example 2: Consider a two-dimensional cellular array 
shown in Fig. 4. Let N h  and Nu be the numbers of hori- 
zontal and vertical inputs of each cell, respectively. Suppose 
a partition such that each block corresponds to a set of k cells 
of each column, then we see that the array is (Nhk + N u ) -  
bounded. 

I I 
I I 

t 
Fig. 5. (Nhk + N,k - Ns + Nu)-bounded circuit. 

Example 3: Consider a two-dimensional cellular array 
shown in Fig. 5 .  This array is augmented from the array of 
Fig. 4 by adding skew lines. Let N, be the number of skew 
lines of each cell. Suppose a partition such that each block 
corresponds to a set of k cells of each column, then we see 
that the array is (Nhk + N,k - N, + Nu)-bounded. 

For k-bounded circuits we have the following theorem. 
Theorem 15: Let C be a k-bounded circuit. Then there is 

an algorithm of time complexity O( 16km) to find a test for a 
single stuck-at fault in C,  where m is the number of lines in 
C.  

Proof: Let C be a k-bounded circuit. Let II = 
{Cl, C2, . . . , Cf } be a partition of C that satisfies conditions 
1) and 2). Without loss of generality, we can assume that 
each primary output constitutes one block individually. They 
are called primary output blocks. 

Our test generation procedure consists of two main parts. 
The first is to construct a graph GT from C defined later. The 
second is to find a subtree corresponding to a test of a given 
fault in the graph GT . Five-valued logic ( 1 , 0, X, D, 0') sim- 
ilar to that in D-algorithm is used in our procedure. 

1) Construction of graph G T .  
Step 1: For each block Ci (1 5 i 5 t), construct vertices 

of GT as follows: Consider all the combinations of values 0, 
1, D, D' on all inputs of Ci, and for each input assignment 
compute the values of internal lines of Ci . If any inconsistency 
occurs in the computation, then reject the assignment. Note 
that the value D or D' on any predecessor line of a faulty line L 
is an inconsistency. Let us represent each of these assignments 
by a vertex in G T .  

Step 2: For each pair of adjacent blocks Ci and C, of C, 
construct edges of GT as follows: Let S I ,  s 2 ,  ".,sq be the 
lines connected between Ci and C j . For a vertex U of Ci and 
a vertex U of C j ,  if the values of s1 , s2 , . . . , sq  on U and U 
are the same, then place an edge between U and U. 

Step 3: If there is a vertex U in GT satisfying the following 
condition, then delete the vertex U and the edges connected to 
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Condition: Let U be a vertex of Ci. There is no edge 

2) Construction of a test from graph GT. 
Let C f  be a block with a fault. A test is an input assignment 

such that every assignment between blocks is consistent and 
there is at least one sensitized path from Cf to a primary 
output. Hence, we can easily see that a test corresponds to a 
subtree T i n  GT satisfying the following: 

a) T contains one vertex for each block C; ( 1  5 i 5 t) .  
b) T contains faulty signal D or D’ for at least one primary 

output block. 
The computation of steps 1 and 2 of part 1 can be per- 

formed in time O(4km) and O(16kA4), respectively, where 
A4 is the total number of signal lines between blocks. The 
computation of part 2 can be performed in time O(E) ,  where 
E is the number of edges of Gr.  Hence, the total compu- 
tation of the above procedure can be carried out in time 
O(4km) + O( 16kA4) + O( 16kM) 5 O( 16km). 

Q.E.D. 
Corollary 3: Let C be a k-bounded circuit such that 

k 5 log,p(m) for some polynomial p ( m ) ,  where m is the 
number of lines in C. Then the fault detection problem for C 
is solvable in time complexity O(p(m)4m) .  

Corollary 4: Let C be a (k , ,  k,)-bounded circuit. Then 
there is an algorithm of time complexity O( 16k14k2m) to find 
a test for a single stuck-at fault in C, where m is the number 
of lines in C. 

between C; and its adjacent block Cj .  

VI. CONCLUSION 
In this paper, we have analyzed the computational com- 

plexity of fault detection problems and various controllability 
and observability problems for combinational logic circuits. 
We have shown that the fault detection problem is still NP- 
complete for monotone circuits limited in fanout; that is, even 
if we limit the number of reconvergent paths from a fanout 
point to a constant, say two, the fault detection problem is 
still NP-complete. From this result and the fact that, if we 
limit the total number of fanout points to a constant, then the 
fault-detection problem can be solved in linear time, we see 
that the main cause of NP-completeness is not the number 
of reconvergent paths from a fanout point but the number of 
fanout points which reconverge. 

To further study into the problem of fault-detection, we have 
divided it into two subproblems: controllability and observabil- 
ity problems. We have shown that the observability problem 

for unate circuits is NP-complete, but that the controllability 
problem for unate circuits can be solved in linear time. Fur- 
thermore, we have introduced two classes of circuits called k- 
binate-bounded circuits and k-bounded circuits. For k-binate- 
bounded circuits the controllability problem is solvable in 
polynomial time, and for k-bounded circuits the fault detection 
problem is solvable in polynomial time when k 5 logp(m) 
for some polynomial p(m). The class of k-bounded circuits 
includes many practical circuits such as decoders, adders, one- 
dimensional cellular arrays, two-dimensional cellular arrays, 
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